
Oracle-­‐free Testing with
 
Two-­‐layer Covering Arrays
 

Rick Kuhn
 
National Institute of

Standards and Technology

Gaithersburg,	
  MD
 

East Carolina University
 
NSF	
  Research Experiences for Undergraduates
 

June 29, 2015
 



Some current approaches
 

• Fuzz testing
– crash system w/ randomvalues,	
  then analyze memory dump 

– Good for major faults that cause crashes 

• Metamorphic testing – 
– e.g. cos(x) = cos(x+360),	
  so compare outputs for both,	
  with a
difference indicatingan	
  error 

– Good for numerical software 

• Partial test oracle – 
– e.g.,	
  insert element x in data structure S check x in S after
 
– Usually not fully automatable 



New method
 

•	 Consider equivalence classes 
•	 Example: shipping cost based on distance	
  d and 
weightw, with packages < 1 pound are in one class,	
  
1..10	
  pounds in another,	
   10 in a third class. 

•	 Then for cost function f(d,w),	
  f(d, 0.2) = f(d, 0.9),	
  for 
equal values	
  of d. 

•	 But f(d, 0.2) ≠f(d 5.0),	
  because two differentweight
classes are involved.



Basic property of equivalence classes
 

when a1 and a2 are in the same equivalence class, 
f(a1,b,c,d,…) ≈ f(a2,b,c,d,…),	
  

where ≈ is equivalence with respect to some 
predicate. 

If not,
 
-­‐ then either the code is wrong,	
  

-­‐ or equivalence classes are not defined correctly.
 



Can we use this property for testing?
 

• Let’s do an example: access control. access is allowed if (1) subject 
is employee	
  and time is in working hours and	
  it’s a weekday; or
 
(2) subject is an employee with administrative privileges; or
(3) subject is an auditor and it is a weekday. 

• Equivalence classes for time of day and day of the week 

• time = minutes past	
  midnight	
  (0..0539),	
  (0540..1020),	
  (1021..1439).	
  

• Days of the week weekend and weekdays,	
  


designated	
  as (1,7) and (2..6) respectively.



 
 

Code we want	
  to test
 
int access_chk()	
   {

if (emp && t >= START && t <= END && 
d >= MON && d <= FRI) return 1; 

else 
if (emp && p) return 2;
else 
if (aud && d >= MON && d <= FRI) 

return 3;
else 
return 0; 

} 



Establish equivalence classes
 

emp:	
   boolean 

day: (1,7),	
  (2,6) 
A1 A2

time:	
  

emp (bool) : 0,1 
day (enum) : A1,A2 
time (enum): B1,B2,B3 

(0,100,539),(540,1020),(1021,1439) priv (bool): 0,1 
B1 B2 B3 aud (bool) : 0,1 

priv:	
  boolean
 

aud:	
   boolean
 



All of these should be equal
 

Eq. class A1 

Eq. class B1 



These should	
  also be equal
 

Eq. class A2 

Eq. class B1 

Now we’re 
using class A2 



Primary 
array: 
0,A2,B1,1,1 

1,A1,B1,0,0 

0,A1,B2,1,0 

1,A2,B2,0,1 

0,A1,B3,0,1 

1,A2,B3,1,0 

Covering 
One secondary 
array 
for each row 

array 
emp:	
   boolean 

day: (1,7),	
  (2,6) 
A1 A2

time: (0,539),(540,1020),(1021,	
   1439) 
B1 B2 B3

priv:	
  boolean
 

aud:	
   boolean
 

Class A2 = (2,6)
 
Class B1 = (0,539)
 

0 2 0 1 1
 
0 6 0 1 1
 
0 2 539 1 1
 
0 6 539 1 1
 



Run the tests
 

• Correct code Faulty code: 
output: if (emp &&	
  t>=START & t==END

3333 && d>=MON	
  && d<=FRI) return 1; 
0000 

0000 

1111 

0000 

2222 

Faulty code output: 
3333 
0000 
0000 
3311 
0000 
2222
 



What’s happening	
  here?
 

Input 
domain
 

Incorrect
boundary
 

We simply
detect 
inconsistency
between	
  
partitions 



Can this really work on practical code?
 
Experiment: TCAS code (same used in earlier model checking tests)
 
•	 Small C module,	
  12 variables 
•	 Seeded faults in 41 variants 

•	 Results: 
Primary x
secondary #tests total 

faults 
detected 

3-­‐way x 3-­‐way 285x8 2280 6 
4-­‐way x 3-­‐way 970x8 7760 22 

•	 More than half of faults detected 
•	 Large number of tests -­‐> but fully automated,	
  no human 

intervention 
•	 We envision this type of checking as part of the build process;

can be used in parallel with static analysis,	
  type checking 



Prototype tool has been developed
 



Next Steps 
•	 Realistic trial use 
•	 Different constructions for secondary array,	
  e.g.,	
  
random values 

•	 Formal analysis of applicability – range of 
applicability/effectiveness,	
  limitations,	
  special
cases 

•	 Determine how many faults can be detected this 
way 

•	 Develop tools to incorporate into build process 


