
Draft. Full paper not yet available.

The Associated-Data Problem

(How to cheaply authenticate unencrypted data
when using an authenticated-encryption scheme)

Phillip Rogaway∗

5 November 2001

Abstract

When using an authenticated-encryption scheme (a shared-key mechanism that provides
both privacy and authenticity) it is sometimes useful, when encrypting a message, to also authen-
ticate some additional information which is not privacy protected. We address this associated-
data problem, wherein a Sender can bind to an authenticated ciphertext C a string AD, called
its associated-data, and where the Receiver must provide the identical associated-data AD when
processing C—otherwise, the ciphertext will, almost certainly, be deemed invalid. We explain
the utility of this problem, give a formal definition for it, and provide efficient solutions, both
in general and for the authenticated-encryption scheme OCB.

Keywords: associated-data problem, authenticated encryption, block-cipher usage, crypto-
graphic standards, modes of operation, OCB mode.

1 Introduction

The problem. During the last year and half there have emerged new block-cipher modes of op-
eration which integrate privacy and authenticity protection in a single, compact mode. The first
such scheme was suggested by Jutla [12], with Gligor et al. [9] and Rogaway et al. [18] soon of-
fering related schemes. The new modes are an alternative to the generic composition approach,
as named and analyzed by [4], where one glues together an arbitrary encryption scheme and an
arbitrary MAC. Compared to doing that, the integrated modes promise several advantages, includ-
ing improved efficiency and ease-of-correct-use. But the new modes would seem to have at least
one disadvantage: an apparent inability to authenticate data without actually encrypting it and
transmitting the associated ciphertext.

As an example showing where this can matter, consider a protocol that flows a message
Msg = Header ‖ Ciphertext ‖ Tag, where Ciphertext is determined by encrypting some under-
lying Plaintext under a key Kenc, and Tag is determined by MACing Header ‖ Ciphertext under

∗Department of Computer Science, University of California at Davis, Eng. II Building, Davis, California 95616
USA; and Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand.
email: rogaway@cs.ucdavis.edu web: http://www.cs.ucdavis.edu/∼rogaway



a key Kmac. Suppose we wish to modify this flow to employ an authenticated-encryption scheme
such as OCB [18]. We can not just OCB-encrypt Header ‖ Plaintext and send the resulting
CiphertextHeader ‖ Plaintext in place of Msg because, presumably, Header had to be in the clear for
purposes of routing or parsing the message. Nor can we OCB-encrypt Plaintext alone, sending
the resulting CiphertextPlaintext along with Header, for in this case we would have done nothing
to authenticate Header. We could send CiphertextHeader ‖ Plaintext appended to Header, encrypting
Header only to provide for its authenticity, but doing this would lengthen the message sent, which
we certainly don’t want.

In general, when a Receiver R gets an authenticated ciphertext C allegedly sent by a given
Sender S, the Receiver R may wish to ensure not only that Sender S sent C, but also that that
Receiver R shares with Sender S a common understanding as to some further aspect of their
current situation. This “further aspect of their situation” is encoded in a string AD, called the
associated-data. The Sender and Receiver are expected to provide identical associated-data or else
the Receiver should, almost certainly, detect the mismatch and reject the transmission C.

In our earlier example, the associated-data would be Header. Here one anticipates that it is sent
to the Receiver in the clear. In other examples, AD might represent information implicitly shared
between the Sender and Receiver (eg., as a result of an earlier session-setup) such as cryptographic
parameters that are in use, or the Sender’s or Receiver’s name or IP address. In cases like these
the associated-data will be static over the course of the communication session. When this is the
case, we aim for a solution that adds essentially zero per-message cost.

Origin of the problem. The associated-data problem was first described to the author by
Burt Kaliski [13]. Shortly afterwards, it was independently suggested by Nancy Cam-Winget and
Jesse Walker [7], and then by other individuals. Everyone who has asked about this problem has
been involved in standardization efforts in which it became clear that one would sometimes like to
bind to a ciphertext some additional, non-secret data. People wanted a cheap and secure way to
do this when using an mechanism that integrates privacy and authenticity.

The naive solution, and doing better than it. As suggested earlier, one way to bind
associated-data AD to an authenticated ciphertext is to have the Sender encode AD together with
the plaintext M that he wants to communicate, and then encrypt-with-authenticity the resulting
string AD ‖ M . The drawbacks of this are that it lengthens the ciphertext, and that it costs the
Sender and Receiver additional computation time with every message that is sent, even when the
associated-data AD is static during the entire session. We could try to erase the first inefficiency by
having the Sender encrypt-with-authenticity AD ‖M , and then drop from the resulting ciphertext
that segment which corresponds to AD (assuming that the ciphertext has such a structure). But
such an approach does not, in general, work; an authenticated-encryption mode may fail to provide
authenticity if a portion of the ciphertext is not transmitted. Indeed modes like OCB [18] and
IAPM [12] do fail to provide authenticity if ciphertext blocks are dropped. Here we seek a solution
which applies to any authenticated-encryption scheme, rests on sound analysis, leaves fixed the
length of a ciphertext, and adds essentially no overhead if AD is absent or static. Further efficiency
goals, like avoiding the use of a new cryptographic key, will also be of interest.

Contributions. Our main contributions are as follows:
First, we give a definition for the security of an authenticated-encryption scheme allowing

associated-data, an AEAD-scheme. The definition is very strong; in particular, the attack-model
gives the adversary the ability to control AD, while the notion of adversarial success generalizes
the notion of authenticity of ciphertexts [5, 14].
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Second, we describe generic solutions to the associated-data problem. One technique, suggested
by Cam-Winget and Walker [7], we call nonce stealing. The method is simple and useful, but
somewhat limited in its applicability, as the string AD can only be a few bytes. A less restrictive
approach, ciphertext translation, transforms an authenticated-encryption scheme that does not
provide for associated-data (an AE-scheme) into an authenticated-encryption scheme that does (an
AEAD-scheme). For this method one applies an xor-universal hash-function F to the string AD, and
then xors the result ∆ with a corresponding number of ciphertext bits, leaving the other bits alone:
ĒN,AD
KK′ (M) = ENK (M) ⊕ 0∗∆, where ∆ = FK′(AD). Notice that if FK′(ε) is defined to be a string

of 0-bits (where ε is the emptystring) then the constructed AEAD-scheme will be an extension of
the original AE-scheme, in the sense that ĒN, εKK′(M) = ENK (M). Also notice that if associated-data
AD is held fixed during a communications session then the corresponding offset ∆ = FK′(AD) may
be precomputed, essentially eliminating the per-message cost of authenticating AD. We prove that
the constructed AEAD-scheme is secure as long as the AE-scheme one starts from is secure.

Third, we concretize and adjust the generic solution to yield a specific suggestion for OCB [18].
The solution retains OCB’s use of a single block-cipher key. A nonempty message M is OCB-
encrypted using a key K to get a ciphertext C which includes some τ bits of tag, and associated-
data AD is PMAC-authenticated [19] under the same key K to get a τ -bit PRF-output of ∆. The
final ciphertext is C with its last τ bits xored with ∆. Under this definition, OCBN,AD

K (M) is fully
parallelizable in both M and AD, and the function can be used as a pseudorandom function by
fixing M = ε.

Comments. When using an xor-universal hash-function, the correctness of the AE⇒AEAD con-
version relies on the AE-scheme meeting a strong definition of privacy: ciphertexts should be
indistinguishable from random bits (when the adversary launches a chosen-plaintext attack), which
we call IND$-CPA. This is stronger than asking that ciphertexts be indistinguishable from the en-
cryption of random bits, IND-CPA. The IND$-CPA property is the one OCB was proven to achieve
in [18]. The current note provides evidence that IND$-CPA is a useful strengthening of IND-CPA.
The IND$-CPA property also allows the direct use of an encryption scheme as a pseudorandom
generator or as a pseudorandom function from n-bit inputs to arbitrary-length outputs.

2 Preliminaries

AE-schemes. We follow [18] (which builds on [1, 5, 11]) in defining nonce-using authenticated-
encryption schemes and their security. An authenticated-encryption scheme (an AE-scheme) is a
three-tuple Π = (K, E ,D). There are associated sets of strings Nonce = {0, 1}n and Message, the
latter having a simple (linear-time) membership test. The key space K = {0, 1}k is a nonempty set
of strings. Algorithm E is a deterministic algorithm that takes strings K ∈ K, N ∈ Nonce, and M ∈
Message, and returns a string C = ENK (M) = EK(N,M). Algorithm D is a deterministic algorithm
that takes strings K ∈ K, N ∈ Nonce, and C ∈ {0, 1}∗. The algorithm returns DNK(C), which is
either a string in Message or the distinguished symbol Invalid. We require that DNK(ENK (M)) = M
for all K ∈ K, N ∈ Nonce, and M ∈ Message.

An adversary with access to an oracle is nonce-respecting if the adversary never repeats the first
argument to its oracle, regardless of oracle responses: if the adversary asks a query (N,M) then it
never asks a subsequent query of (N,M ′).

Fix an AE-scheme Π = (K, E ,D). Let A be an algorithm having access to an oracle EK(·, ·), for
a randomly chosen key K. We say that A forges if A is nonce-respecting and A outputs a triple
(N,C) where DNK(C) 6= Invalid and A did not ask a query ENK (M) which resulted in a response
C. Let Advauth

Π (A) be the probability that A forges. Let Advauth
Π (q, µ) denote the maximal
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value of Advauth
Π (A) over all nonce-respecting adversaries that ask at most q queries, the sum of

these queries, plus the length of the forgery attempt, being at most µ bits. Let Advauth
Π (t, q, µ)

be identical, except that the adversary is also limited to running time plus description size of t,
relative to some standard and fixed model of computation.

Let Π = (K, E ,D) be an AE-scheme for which the length of any ciphertext is a given function,
`(|M |), of the length of the plaintext M . Let $(·, ·) be an oracle that, on input N,M , returns a
random string of length `(|M |). Let A be a adversary having access to an oracle. Let Advpriv

Π (A) =
Pr[K R← K : AEK(·,·) = 1] − Pr[A$(·,·) = 1]. We name this notion IND$-CPA: indistinguishability
from random bits under a chosen-plaintext attack. Let Advpriv

Π (q, µ) denote the maximal value
of Advpriv

Π (A) over all nonce-respecting adversaries A that ask at most q queries, the sum of the
message-lengths in these queries being at most µ bits. Let Advpriv

Π (t, q, µ) be identical, except that
the adversary is also limited to running time plus description size of t.

Xor-universal hash functions. Function families and universality conditions on them originate
with Carter and Wegman [8]. A function-family is a function F : K × X → {0, 1}τ , where K has
an associated distribution and X ⊆ {0, 1}∗. We consider the security property called xor-universal,
first defined by [15]. For a function-family F : K × X → {0, 1}τ , let Advxu

F (α) = maxx,x′,c
{Pr[K R← K : FK(x) ⊕ FK(x′) = c]} where the maximum is over all c ∈ {0, 1}τ and over all
distinct x, x′ ∈ X subject to |x|, |x′| ≤ α. For a complexity-theoretic analog, let Advxu

F (t, α) =
maxA{Pr[K R← K; (x, x′, c) R← A(α) : FK(x) ⊕ FK(x′) = c]} where the maximum is over all
adversaries A that have running time plus description size of at most t and A outputs (x, x′, c) such
that |x|, |x′| ≤ α and x 6= x′.

Pseudorandom functions. The notion of a pseudorandom function originates with [10]; our
treatment is a concrete-security one that follows [3]. Let F : K × X → {0, 1}τ be a function-
family. Let Rand(X , τ) be the set of all functions from X to {0, 1}τ . Then define Advprf

F (A) =
Pr[K R← K : AFK(·) = 1] − Pr[ρ R← Rand(X , τ) : Aρ(·) = 1]. Let Advprf

F (q, µ) be the maximal
value of Advprf

F (A) over all adversaries A that ask at most q oracle queries, these queries totaling
at most µ bits. Let Advprf

F (t, q, µ) be identical except that A is also limited to running time plus
description size of t. If X = {0, 1}n one omits the redundant resource parameter µ. Let Perm(n) be
the set of all permutation from n bits to n bits. If F : K× {0, 1}n → {0, 1}n define Advprp

F (A) =
Pr[K R← K : AFK(·) = 1] − Pr[π R← Perm(n) : Aπ(·) = 1]. LetAdvprp

F (q) be the maximal value of
Advprp

F (A) among adversaries that ask q queries, and let Advprp
F (t, q) be the value for adversaries

also limited to running time plus description size of t.

Pseudorandom functions are xor-universal. The pseudorandom function requirement is
stronger than the xor-universal one: for any function-family F with a τ -bit output, Advxu

F (α) ≤
Advprf(2, α) + 2−τ , since one possible statistical test is to ask oracle queries FK(x) and FK(x′), for
selected x, x′, and test if the xor of these points is some particular value c. Similarly, Advxu

F (t, α) ≤
Advprf(t′, 2, α) + 2−τ , where t′ = Ω(t+ α+ τ).

3 Definition AEAD-Security

AEAD-schemes. An authenticated-encryption scheme allowing associated-data (henceforth an
AEAD-scheme) is a three-tuple Π = (K, E ,D). There are associated sets of strings Nonce = {0, 1}n,
Assoc, and Message, the last two having a simple (linear-time) membership test. The key space K
is a nonempty set of strings. Algorithm E is a deterministic algorithm that takes strings K ∈ K,
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N ∈ Nonce, AD ∈ Assoc, and M ∈ Message. The algorithm returns a string C = EN,AD
K (M) =

EK(N,AD,M). Algorithm D is a deterministic algorithm that takes strings K ∈ K, N ∈ Nonce,
AD ∈ Assoc, and C ∈ {0, 1}∗. The algorithm returns DN,AD

K (C), which is either a string in Message

or the distinguished symbol Invalid. We require that DN,AD
K (EN,AD

K (M)) = M for all K ∈ K,
N ∈ Nonce, AD ∈ Assoc, and M ∈ Message.

An adversary with access to an oracle is nonce-respecting if the adversary never repeats the first
argument to its oracle, regardless of oracle responses: so if the adversary asks a query (N,AD,M)
then it never asks a subsequent query of (N,AD′,M ′).

Authenticity of an AEAD-scheme. Fix an AEAD-scheme Π = (K, E ,D). Let A be an
algorithm having access to an oracle EK(·, ·, ·), for some randomly chosen key K. We say that A
forges if A is nonce-respecting and A outputs a triple (N,AD,C) where DN,AD

K (C) 6= Invalid and A
did not ask a query EN,AD

K (M) which resulted in a response C. Let AdvAUTH
Π (A) be the probability

that A forges. Let AdvAUTH
Π (q, µ, α) be the maximal value of AdvAUTH

Π (A) over all nonce-respecting
adversaries A that ask at most q queries, these, along with the forgery attempt and all associated
data, totaling at most µ bits, and each associated-data string, including that in the forgery attempt,
limited to α bits. Let AdvAUTH

Π (t, q, µ, α) be identical, except that the adversary is also limited to
running time plus description size of t.

Comments. The definition above is very strong—arguably stronger than what is “necessary” to
capture the underlying intuition. In particular, the attack model is strong insofar as the adversary
is allowed to manipulate both the nonce and the associated-data (subject to the constraint that
no nonce is repeated), and the adversary’s goal is modest insofar as she “gets credit” even for
forgeries that use bizarre nonces and associated-data values, whether new or repetitions. In a real
system, the message and the nonce will primarily be controlled by the Sender (for example, the
nonce may be a counter) while the associated-data will primarily be chosen by the Sender and/or
the Receiver. Still, an adversary may be able to influence these values. For example, an adversary
might force a nonce to be incremented by thwarting a transmission from reaching its destination;
or an adversary might induce the Sender to utilize bogus associated-data by manipulating flows in
an unauthenticated handshake that proceeds the use of the AEAD-scheme. Allowing the adversary
to manipulate all of M , N , and AD, and giving the adversary credit for any new (N,AD,C), is a
pessimistic approach that allows one to develop a robust definition.

The definition uses a space Assoc, with AD ∈ Assoc, rather than referring to an arbitrary
vector of strings AD ∈ ({0, 1}∗)∗, say. This turns out to be more convenient, and involves no real
loss of generality: to allow vector-valued associated-data one has only to specify an injective and
efficiently-computable encoding from ({0, 1}∗)∗ → Assoc, for some convenient set Assoc.

As usual, there is a certain degree of arbitrariness in how we have chosen to bound the resource
parameters; the definitions of q, µ, α are made with an eye towards what our theorems will say.

Privacy of an AEAD-scheme. Let Π = (K, E ,D) be an AEAD-scheme. Assume that the length
of any ciphertext is a given function, `(|M |), of the length of the plaintext M . Let $(·, ·, ·) be an
oracle that, on input (N,M,AD), returns a random string of length `(|M |). Let A be a adversary
having access to an oracle. Let AdvPRIV

Π (A) = Pr[K R← K : AEK(·,·) = 1] − Pr[A$(·,·,·) = 1].
Let AdvPRIV

Π (q, µ) = Pr[K R← K : AEK(·,·) = 1] − Pr[A$(·,·,·) = 1] denote the maximal value of
AdvPRIV

Π (A) over all nonce-respecting adversaries A that ask at most q queries whose total length—
message length plus associated-data length— totals at most µ bits. Let AdvPRIV

Π (t, q, µ) be identical,
except that the adversary is also limited to running time plus description size of t.
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4 Nonce Stealing

We now provide a first suggestion, due to Nancy Cam-Winget and Jesse Walker [7], for incorporating
associated-data into an AE-scheme. We call the technique nonce stealing.

Suppose that the nonce in an AE-scheme is n bits, but that the application that uses this AE-
scheme is content to use n0 < n bits for a nonce. For example, the nonce for the AE-scheme may be
n = 128 bits, but an “application-layer nonce” of n = 64 bits may suffice for a given application. (A
nonce of 32–64 bits would normally be adequate for applications that uses a counter for a nonce.)
In such a case, associated-data may be packed into the “unused” n − n0 bits of the AE-scheme’s
nonce.

At first glance, nonce stealing would sound to be of limited use, because so few bits of associated-
data can be accommodated in this way. But often a few bytes is all that one needs, making the
technique useful. The technique adds essentially no overhead, as well.

As an example, nonce stealing is anticipated for the IEEE 802.11 standard. The draft standard
uses OCB-AES128, so the nonce is n = 128 bits. Of these 128 bits, the standard’s designers
currently anticipate that only 28 will be needed for the application nonce, which is a counter. The
remaining 100 bits are associated-date: a source and destination address comprising 48 bits each,
plus a quality-of-service indicator which is another 4 bits.

Nonce-AD is also anticipated for an IETF Internet Draft which will describe the use of OCB-
AES128 as an IPsec transform [16]. This time the associated-data is the exact same data that is
to be used as the application-level nonce: a 32-bit SPI and a 32-bit Sequence Number. In such
a case, the way to authenticate the associated-data is to do nothing—we claim that the nonce of
an AE-scheme is already automatically authenticated. We now justify this claim, thereby showing
correctness for both forms of nonce stealing we have described.

Given AE-scheme Π = (K, E ,D), define AEAD-scheme Π̄ = (K, Ē , D̄) by setting ĒN,NK (M) =
ĒNK (M) and D̄N,NK (C) = D̄NK(C). Actually, this does not quite fit the syntax of an AEAD-scheme,
since it does not allow arbitrary associated-data AD within some specified set of strings; instead,
the associated-data must coincide with the nonce. Still, the definition of AEAD-authenticity makes
sense even with this new restriction, so we continue undeterred. An adversary would be deemed
successful in breaking the authenticity of the constructed AEAD-scheme if, after asking Ē-queries
of (N1, N1,M1), . . . , (Nq, Nq,Mq), getting responses C1, . . . ,Cq, she produces a valid ciphertext
(N,N,C) where there was no earlier Ē-query (N,N,Mi) that resulted in a response C. Thus, for the
constructed AEAD-scheme, the adversary succeeds if, after asking E-queries (N1,M1), . . . , (Nq,Mq),
getting responses C1, . . . ,Cq, she produces a valid ciphertext (N,C) where there was no earlier E-
query (N,Mi) that resulted in a response C. But this is precisely the definition for authenticity for
an AE-scheme. In other words, under our definitions, security of nonce stealing is immediate.

The possibility of nonce stealing provides another reason, besides those enumerated in [18], why
an AE-scheme is best designed to employ an arbitrary nonce. The possibility of nonce stealing also
motivates the strong definition we have been using for authenticity of an AE-scheme: with a weaker
definition of AE-scheme authenticity, nonce stealing likely would not work.

5 Ciphertext Translation

We now provide a solution to the AEAD-problem which permits arbitrary associated-data. The
solution amounts to a method to transform an AE-scheme Π into an AEAD-scheme Π̄ with the
help of an xor-universal function-family F . We call the technique ciphertext translation.

First, a bit of notation. For C and ∆ strings with |C| ≥ |∆|, let us write C ⊕ 0∗ ∆ for the
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string C ⊕ (0|C|−|∆| ‖ ∆). (We are defining a binary operator named ⊕ 0∗.) That is, C ⊕ 0∗ ∆ is
C ‖ T ⊕ ∆, where C = CT and |T | = |∆|. For completeness, define C ⊕ ∆ = ε if |C| < |∆|.

Let Π = (K, E ,D) be an AE-scheme in which the length of any ciphertext is at least τ bits.
Let Assoc ⊆ {0, 1}∗ be a given set of strings (with a linear-time membership test, let us say)
and let F : K′ × Assoc → {0, 1}τ be a function-family. Then we construct the AEAD-scheme
Π̄ = (K̄, Ē , D̄) = Π[F ] as follows:

The key space is K̄ = K ×K′.
Encryption is defined by ĒN,AD

KK′ (M) = ENK (M) ⊕ 0∗ FK′(AD).
Decryption is defined by D̄N,AD

KK′ (C) = DNK(C ⊕ 0∗ FK′(AD)).
That is, one takes the associated-data AD and computes from it ∆ = FK′(AD). Now, to

encrypt, compute an authenticated ciphertext C without regards to AD, but then xor ∆ with the
last |∆| bits of C.

We comment that the security results that follow are indifferent to which bits of the ciphertext
get modified by ∆.

Ciphertext-translation has the following pleasant properties: (1) the method extends any AE-
scheme Π, and without regards to the internal structure of Π; (2) the method is parameterized by
an arbitrary function-family F , with the requisite property of F soon to be explained; (3) when
AD is static over the course of a session (or even over the course of several messages), the value
∆ = FK′(AD) may be profitably precomputed; (4) the approach adds essentially no overhead to
an AE-scheme when associated-data is not used; (5) the method gives rise to a proper extension of
the AE-scheme, ĒN, εKK′(M) = ENK (M), as long as one sees to it that FK′(ε) = 0τ .

Ciphertext-translation has the following unpleasant property: (a) it uses a new key, K ′, different
from the keys used for Π. This disadvantage will be addressed in Section 9.

6 Security of Ciphertext Translation

We now show the following theorem on the security of ciphertext translation.

Theorem 1 Let Π = (K, E ,D) be an AE-scheme in which each ciphertext has at least τ bits, and
let F : K′ × Assoc→ {0, 1}τ be a function-family. Then

AdvAUTH

Π[F ] (q, µ, α) ≤ Advauth
Π (q, µ) + Advpriv

Π (q, µ) + Advxu
F (α)

AdvPRIV

Π[F ](q, µ) ≤ Advpriv
Π (q, µ) .

Proof: We begin by proving the authenticity claim. Let A be an adversary that attacks the
authenticity of Π[F ] = (K̄, Ē , D̄) using resources (q, µ, α). We construct an adversary B that attacks
the authenticity of Π, uses resources (q, µ), and achieves advantage Advauth

Π (B) ≥ AdvAUTH
Π (A)−

Advpriv
Π (q, µ)−Advxu

F (α).

Definition of the adversary B. Adversary B works as follows. First, B chooses a random
K ′

R← K′. Then B runs A. When A makes its ith oracle query, (Ni,ADi,Mi), adversary B makes
the query of (Ni,Mi) to it own oracle. Adversary B receives a response Ci = Ci ‖ Ti, computes
∆i = FK′(ADi), and provides to A the ciphertext Ci ⊕ 0∗ ∆i. After A makes its q oracle queries
(and B makes the correspond q oracle queries), adversary A makes a forgery attempt (N,AD,C),
where C = C ‖ T . At that point adversary B computes ∆ = FK′(AD) and makes its own forgery
attempt of (N,C ⊕ 0∗ ∆). Clearly B uses the claimed resources (q, µ).
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Analysis of B’s forgery probability. Let predicate Aforges(a,K ′,K) be true iff A forges
when A’s internal coins are a and A interacts with an encryption oracle Ē that uses coins (K,K ′).
Let predicate Bforges(a,K ′,K) be true iff B forges when B’s internal coins are (a,K ′) and B
interacts with an encryption oracle E that uses internal coins of K.

We claim that for “most” values of (a,K ′,K), we have that Aforges(a,K ′,K) = Bforges(a,K ′,K).
Indeed a case analysis shows that the only time when Aforges(a,K ′,K) could be different from
Bforges(a,K ′,K) is when (a,K ′,K) results in A making a forgery attempt (Ni, AD, Ci ‖ Ti) where
AD 6= ADi. In that case it is possible that Aforges(a,K ′,K) = true but Bforges(a,K ′,K) = false.
The case analysis is as follows. Run A in the manner determined by (a,K ′,K), defining the variables
(Ni,ADi,Mi), ∆i, Ci = Ci ‖ Ti, and (N,AD,C), where C = C ‖ T . There is a corresponding
execution of B with identical associated variables. One checks that, in the two executions,

if N 6∈ {N1, N2, . . . , Nq} then A(a,K ′,K) forges iff B(a,K ′,K) forges.
if N = Ni (for some i) and C 6= Ci, then A(a,K ′,K) forges iff B(a,K ′,K) forges.
if N = Ni (for some i) and C = Ci and AD = ADi then A(a,K ′,K) forges iff B(a,K ′,K)
forges.

We are left to bound the probability, over (a,K ′,K), that N = Ni (for some i), C = Ci, AD 6= ADi,
Aforges(a,K ′,K) = true, and Bforges(a,K ′,K) = false. This event happens iff adversary A forges
with (N,AD,C), where C = C ‖ T , after having asked an earlier query (N,ADi,Mi) that resulted in
ciphertext Ci = C ‖ Ti, and Ti ⊕ FK′(ADi) = T ⊕ FK′(AD). In such a case, the forgery attempt
can be valid for A (as AD is new) but invalid for B (the forgery attempt being a repetition). We wish
to show that this case rarely occurs: over random (a,K ′,K), almost certainly Ti ⊕ FK′(ADi) 6=
T ⊕ FK′(AD). Now Pr[Ti ⊕ FK′(ADi) = T ⊕ FK′(AD)] = Pr[FK′(ADi) ⊕ FK′(AD) = c], where
c = Ti ⊕ T , and we would like to conclude that this value is at most Advxu

F (α) by the definition
of xor-universality. However, this isn’t quite true: were adversary A’s the encryption oracle to leak
no information about K ′ to A, then A could find c and distinct AD,ADi of length at most α such
that FK′(ADi) ⊕ FK′(AD) = c with probability, over K ′, of at most Advxu

F (α). However, the
encryption scheme Π is not perfectly private.

To deal with this, let

δ = Pr[A’s attack yields T, Ti, ADi 6= AD s.t. Ti ⊕ FK′(ADi) = T ⊕ FK′(AD)]−Advxu
F (α)

and note that there is an adversary D that distinguishes E-encrypted text from random bits that
achieves advantage δ and that asks at most q queries and µ total bits. The adversary D behaves
like the adversary B we have defined, but instead of outputting a forged ciphertext the adversary
computes whether or not, forB’s forged ciphertext and earlier queries, C 6= Ci and Ti ⊕ FK′(ADi) =
T ⊕ FK′(AD). If this inequality holds, D outputs 1; otherwise, D outputs 0. The adversary achieves
advantage δ and runs with resources (q, µ). We conclude that δ ≤ Advpriv

Π (q, µ). We conclude
that AdvAUTH

Π[F ] (q, µ, α) ≤ Advauth
Π (q, µ) + Advxu

F (α) + δ ≤ AdvAUTH

Π[F ] (q, µ, α) ≤ Advauth
Π (q, µ) +

Advpriv
Π (q, µ) + Advxu

F (α), finishing the authenticity claim in the theorem.

Privacy. The second inequality in the theorem statement is easy. For convenience, we reuse the
names A and B. Let A be an adversary that attacks the privacy of Π[F ] = (K̄, Ē , D̄) using resources
(q, µ, α). We construct an adversary B that attacks the privacy of Π, uses resources (q, µ), and
achieves advantage Advpriv

Π (B) ≥ AdvPRIV
Π (A). Adversary B works as follows. First, B chooses a

random K ′
R← K′. Then B runs A. When A makes its ith oracle query, (Ni,ADi,Mi), adversary B
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makes the query of (Ni,Mi) to it own oracle. Adversary B receives a response Ci = Ci ‖ Ti,
computes ∆i = FK′(ADi), and provides to A the ciphertext Ci ⊕ 0∗ ∆i. After A makes its q
oracle queries (and B makes the correspond q oracle queries), adversary A outputs a bit b. At that
point adversary B outputs the same bit b. Clearly B uses the claimed resources (q, µ), and, since
B perfectly simulates the native environment for A, AdvPRIV

Π[F ](A) = Advpriv
Π (B), completing the

theorem.

As usual, there is a complexity-theoretic analog to Theorem 1. Let Π = (K, E ,D) be an AE-
scheme in which each ciphertext has at least τ bits, and let F : K′ × Assoc → {0, 1}τ be a
function-family. Then AdvAUTH

Π[F ] (t, q, µ, α) ≤ Advauth
Π (t′, q, µ)+Advpriv

Π (t′, q, µ)+Advxu
F (t′, α) and

AdvPRIV

Π[F ](t, q, µ) ≤ Advpriv
Π (t′, q, µ) where t′ = t+O(µ) + TimeF (q, µ), where TimeF (q, µ) denotes

the time to compute K ′ R← K′ plus the time to compute FK′ on at most q + 2 points, these points
totaling at most µ bits.

7 Using a PRF instead of an XOR-Universal Function-Family

While the function-family F used by ciphertext translation needs only to be good in the sense of
being xor-universal, there are a couple of advantages to selecting a function-family that meets the
stronger notion of being a good PRF. One advantage of using a PRF for F is that it allows one to
use an AE-scheme that meets a weaker notion of privacy, namely, IND-CPA. But this advantage
may be of no practical significance, since all the proposed authenticated-encryption modes seem to
meet the stronger IND$-CPA notion, anyway.

A more significant advantage of using a good PRF is that it facilitates using the AEAD-scheme
as a MAC. This addresses a question of Ron Rivest [17], who asked if OCB can be used in some
simple manner to give a MAC, or to give other useful tools. Note that trying to use OCB or IAPM
as a MAC by sending only the tag block does not work. But if one uses the ciphertext translation
construction with a pseudorandom function, one gets a good MAC in a different way: just regard
the message to encrypt as the empty string, and regarding the message to MAC as the associated-
data. In this way one actually gets something better than a MAC: there is now a pseudorandom
function embedded within, and still accessible though, the AEAD-interface. In particular, set the
nonce to N = 0, say, regard the message M which one wants to MAC or as associated-data, and
then encrypt the emptystring. The scheme is deterministic and stateless: one can keep reusing the
nonce N = 0 in this way, even though it is not normally acceptable to repeat a nonce.

In order to ensure that the AEAD-scheme is an extension of the underlying AE-scheme, that
is, that ĒN,εKK′(M) = ENK (M), it is desirable to arrange that FK′(ε) = 0τ . Of course hardwiring
FK′(ε) = 0τ keeps F from being a PRF over the entire domain of F : one can distinguish g = FK′

from a random function g by asking for g at ε. But when F is used within the ciphertext-translation
construction with an AE-scheme meeting IND$-CPA security, Ē 0,AD

KK′ (ε) should again give a good
PRF over the entire domain Assoc. In any case, being a good PRF across nonempty strings should
be quite good enough for applications, so we do not pursue the question further.

8 Instantiating Function-Family F

In this section we give some suggested functions F to use within the ciphertext-translation con-
struction: CBCMACτ , XORMACτ , or PMACτ . All of these functions are built from a block
cipher E : K×{0, 1}n → {0, 1}n and target complexity-theoretic statements. Entirely information-
theoretic constructions, and constructions which do not use a block cipher, are certainly possible.

9



Proofs of the relevant bounds are omitted from this draft.

Using CBCMAC. Let Assoc = ({0, 1}n)∗ and let E : K × {0, 1}n → {0, 1}n be a block cipher.
Define CBCMACτ

a(ε) = 0τ and, for x ∈ ({0, 1}n)+, and define CBCMACτ
a(x1 · · ·xm), where |x1| =

· · · = |xm| = n, as the first τ bits of ym, where y0 = 0n and yi = Ea(yi−1 ⊕ xi). Though CBCMACτ

is not a PRF on the set Assoc, it is computationally xor-universal, with good bounds, on this set.
This can be shown by adapting the proofs in [6], say.

Using the XORMAC core. Fix ` ∈ [1..n − 1] (e.g., ` = 8 or ` = 32) and let Assoc =
({0, 1}n−`)<2` . For i ∈ [1..2i− 1], let 〈i〉 denote the encoding of i into ` bits. Let E : K×{0, 1}n →
{0, 1}n be a block cipher. Define XORMACτ

a(ε) = 0τ and, for x = x1 . . . xm, |x1| = . . . = |xm| =
n−`, define XORMACτ

a(x) as the first τ bits of Ea(〈1〉 ‖ x1) ⊕ Ea(〈2〉 ‖ x2) ⊕ · · · ⊕ Ea(〈m〉 ‖ xm).
Though XORMACτ is not a PRF on the set Assoc, it is computationally xor-universal on this set.
This function-family is the core of the XOR MAC [2]. The function is computationally xor-universal,
with good bounds, on the set Assoc. Note that this function is fully parallelizable.

Using PMAC. Let Assoc = {0, 1}∗. Define PMACτ
a(ε) = 0τ , and, for all other values of x, define

PMACτ
a(x) = PMAC[E, τ ] (x), as specified in [19]. By the results in [19], this function is a PRF

on the set {0, 1}+. This function is fully parallelizable, approximately as fast to compute as the
CBC MAC, and is defined on all bit strings.

9 Avoiding Multiple Keys when Using OCB

According to what has been said so far, one needs to use two different keys to solve the associated-
data problem using ciphertext translation: we set ĒN,AD

KK′ (M) = ENK (M) ⊕ 0∗ FK′(AD), and
the “key-reusing definition” of ĒN,AD

K (M) = ENK (M) ⊕ 0∗ FK(AD) certainly will not, in gen-
eral, work. Nonetheless, we single out a case where the key-reusing definition ĒN,AD

K (M) =
ENK (M) ⊕ 0∗ FK(AD) does work: Couple OCB with PMAC, encrypting by OCBN,AD

K (M) =
OCBN

K(M) ⊕ 0∗ PMACτ
K(AD).

To prove the security of this scheme one needs to establish that there is no bad “interference”
between the two schemes. The proof is non-trivial because there is “interaction” between OCB and
PMAC when keyed by the same key: beyond the common definition of “L” in the two schemes,
which is easily dealt with, OCB defines R = EK(N ⊕ L) and PMAC defines C[1] = EK(M [1] ⊕ L).
In the formal model, both N and M [1] are under the adversary’s control. This type of interaction
between the two schemes would seem to spell trouble. All the same, one can prove that PMACK

remains a good pseudorandom function even in the presence of an oracle for OCB-encryption and
ciphertext-validity verification, these under the same key K that keys PMAC. This fact can be
used to justify key-reuse across these two functions. Details are postponed until the full paper.

Acknowledgments

Burt Kaliski first suggested the AEAD problem to me. Mihir Bellare, John Black, Nancy Cam-
Winget, Burt Kaliski, Robert Moskowitz, Ron Rivest, and Jesse Walker all gave useful comments
and information. Work on the associated-data problem was furthered because of NIST’s modes-of-
operation effort; thanks to Elaine Barker, William Burr, Morris Dworkin, and the others at NIST
who have been involved. The current note is responsive to a promise the author made for a writeup
during NIST’s second Mode of Operation workshop (Aug 24, 2001).

10



This work was funded under NSF CCR-9625460 and by a gift from CISCO Systems. Special
thanks to CISCO’s Dave McGrew, who has followed and championed my work.

This work was carried out while the author was at Department of Computer Science, Faculty
of Science, Chiang Mai University, Thailand. Many thanks to CMU for extending, as usual, their
gracious hospitality.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operation. Proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 97), IEEE, 1997.
http://www.cs.ucdavis.edu/∼rogaway/
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A Other Proposals

Phil Hawkes and Greg Rose [20] suggest to address the associated-data problem in Jutla’s IAPM
by first modifying the definition of the checksum to be the xor of all plaintext blocks and all
ciphertext blocks; then placing the associated-data in any understood locations of the plaintext,
as long as it falls along block boundaries; and then omitting from the transmitted ciphertext all
ciphertext blocks which correspond to plaintext blocks of associated-data. This suggestion may
work—it seems plausible. However: (i) there are no definitions of the goal and no proofs; (ii) the
change is specific to IAPM; (iii) the approach adds computational overhead (for the new xors)
regardless of whether or not one has associated-data; and (iv) the approach adds computational
overhead (for encrypting the AD blocks) even when the associated-data is static during the course
of a communications session.
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