
Fast Secure
Multiparty ECDSA

Samuel Ranellucci,

Cryptographer at Unbound Tech

11/03/2019

2

Agenda
1. Introduction

2. Building blocks

3. Fmult

4. Signing

5. Issues

6. Comparison

3

What kind of devices

Server

4

What kind of devices

Laptop

5

What kind of devices

Cell phone

6

Building block

1. Additively-homomorphic “encryption” scheme

1. “Decryption” produces a commitment to a value

2. Multiplication protocol

3. Assumptions

1. DDH

2. Fmult

1. Paillier or OT

7

ElGamal in the exponent

• Keygen

• 𝑘𝑘 ∈𝑅𝑅 𝔾𝔾

• 𝑃𝑃 ← 𝑘𝑘 ⋅ 𝐺𝐺

• Encrypt m

• 𝑟𝑟 ∈𝑅𝑅 𝐺𝐺
• Output [𝑟𝑟 ⋅ 𝐺𝐺, 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺]

• “Decrypt” [𝑟𝑟 ⋅ 𝐺𝐺, 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺]

• 𝑑𝑑 ← 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺 − 𝑟𝑟 ⋅ 𝐺𝐺 ⋅ 𝑘𝑘
Decrypts to 𝑚𝑚 ⋅ 𝐺𝐺

8

Fmult

Initialize

1. Stores input (𝔾𝔾,𝐺𝐺, 𝑞𝑞)

Input

1. On input (input, sid)

2. Send random 𝑎𝑎𝑖𝑖 to party 𝑃𝑃𝑖𝑖
3. secret[sid] ← ∑𝑎𝑎𝑖𝑖

Mult

1. On input (mult, sid1, sid2)

2. c ← secret sid1 ⋅ secret sid2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑞𝑞
3. Send c to all parties

• Affine (sid1, sid2, x , y)

• secret 𝑠𝑠𝑠𝑠𝑑𝑑2 ← secret 𝑠𝑠𝑠𝑠𝑑𝑑1 ⋅ 𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑑𝑑 𝑞𝑞

• Element-out (sid)

• 𝐴𝐴 ← secret 𝑠𝑠𝑠𝑠𝑑𝑑 ⋅ 𝐺𝐺

Functionality that allows the following
operations

9

1. Init (create ElGamal key)

1. Private share⇒ 𝑑𝑑𝑖𝑖
2. Private key ⇒ 𝑑𝑑 ← ∑𝑑𝑑𝑖𝑖
3. Public-key ⇒ 𝑃𝑃 ← 𝑑𝑑 ⋅ 𝐺𝐺

1. Input (Private share 𝑎𝑎𝑖𝑖)

1. Create ElGamal encryption of
shares

Fmult

10

3. Affine (sid1, sid2, x, y)

1. Linear combination of elements

3. Element-out (sid2)

1. 𝐴𝐴𝑖𝑖 ← 𝑎𝑎𝑖𝑖 ⋅ 𝐺𝐺

2. 𝐴𝐴 ← ∑𝐴𝐴𝑖𝑖

Fmult

11

1. Private mult (𝑐𝑐 ← 𝑎𝑎 ⋅ 𝑏𝑏)

1. 𝑐𝑐 ← 𝑎𝑎 ⋅ 𝑏𝑏

2. 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛 ← Share(c)

3. Private

4. No correctness guarantee.

2. Verify correctness (see next
slide)

Fmult

12

Fmult

1. Verify correctness

1. Construct encryption of 𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏

2. Construct encryption of 𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏 via 𝑐𝑐𝑖𝑖
3. Prove that the difference between these encryptions is

zero.

4. Prove that each share of the second encryption is
consistent with 𝑐𝑐𝑖𝑖

13

Signing

• Fact: 𝑘𝑘−1 ⋅ 𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥 = 𝑘𝑘−1 ⋅ 𝜌𝜌−1 ⋅ 𝜌𝜌 ⋅ (𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥)

• sign𝑥𝑥 𝑚𝑚; 𝑘𝑘
• Fmult.Input ⇒ random 𝜌𝜌, 𝑘𝑘
• Fmult.output ⇒ 𝑅𝑅 ← 𝑘𝑘 ⋅ 𝐺𝐺

• (𝑟𝑟,𝑦𝑦) ← 𝑅𝑅
• Fmult.affine ⇒ 𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥
• Fmult.mult ⇒ reveals 𝜌𝜌 ⋅ 𝑘𝑘
• Compute 𝑘𝑘−1 ⋅ 𝜌𝜌−1

• Fmult.mult ⇒ 𝜌𝜌 ⋅ (𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥)

14

Multiplication instantiation

1. OT-based solution

1. Computational overhead : low

2. Communication overhead : high

2. Paillier-based

1. Computational overhead : high

2. Communication overhead : low

3. Suitable for mobiles.

4. Expensive “Range” proof

15

Issues

1.Support BIP derivation

2.Proactive security
1.Periodic refresh of shares
2.We provide security as long as the adversary does

not control a threshold of parties at any given time.

16

Issues

1. Failures do not require replacing keys

2. Arbitrary thresholds

17

Issues

Our protocol needs to work with smart phones
1. Multiplication protocol uses Paillier encryption to

reduce communication

2. OT-based protocols too expensive

3. Low-round complexity

18

Security of our protocol

Our protocol is secure with simulation-
based security under DDH.

19

Fast Multiparty Threshold ECDSA
with Fast Trustless Setup(ap

1. Uses RSA to create multiplicative shares

2. Uses a conversion from multiplicative to additive sharing

3. Uses mult functionality

4. Base protocol requires expensive Range-proof (just like us)

5. Protocol improvement requires

1. Game-based definition

2. Strong RSA assumption

3. Allows some leakage

20

Secure Two-party Threshold ECDSA from ECDSA
Assumptions(ap

1. 2-out-of-n

2. OT-based instantiation

3. Convert additive to multiplicative shares

4. Uses a mult functionality

5. An improved multiplication functionality

6. Log(n) round complexity

21

Open question

1. One-sided OT extension

1. OT extension where only one party is required to create large
communication.

2. Better Range proof

1. Lower computational, communication complexity.

Thank You

	Fast Secure Multiparty ECDSA
	Slide Number 2
	What kind of devices
	What kind of devices
	What kind of devices
	Building block
	ElGamal in the exponent
	Fmult
	Fmult
	Fmult
	Fmult
	Fmult
	Signing
	Multiplication instantiation
	Issues
	Issues
	Issues
	Security of our protocol
	Fast Multiparty Threshold ECDSA �with Fast Trustless Setup(ap
	Secure Two-party Threshold ECDSA from ECDSA Assumptions(ap
	Open question
	Slide Number 22

