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What kind of devices

Server
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What kind of devices

Laptop
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What kind of devices

Cell phone
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Building block

1. Additively-homomorphic “encryption” scheme

1. “Decryption”  produces a commitment to a value

2. Multiplication protocol

3. Assumptions

1. DDH

2. Fmult

1. Paillier or OT



7

ElGamal in the exponent 

• Keygen

• 𝑘𝑘 ∈𝑅𝑅 𝔾𝔾

• 𝑃𝑃 ← 𝑘𝑘 ⋅ 𝐺𝐺

• Encrypt  m

• 𝑟𝑟 ∈𝑅𝑅 𝐺𝐺
• Output  [ 𝑟𝑟 ⋅ 𝐺𝐺, 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺 ]

• “Decrypt”    [𝑟𝑟 ⋅ 𝐺𝐺, 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺]

• 𝑑𝑑 ← 𝑟𝑟 ⋅ 𝑃𝑃 + 𝑚𝑚 ⋅ 𝐺𝐺 − 𝑟𝑟 ⋅ 𝐺𝐺 ⋅ 𝑘𝑘
Decrypts  to  𝑚𝑚 ⋅ 𝐺𝐺
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Fmult

Initialize 

1. Stores input (𝔾𝔾,𝐺𝐺, 𝑞𝑞)

Input  

1. On input (input, sid)

2. Send random 𝑎𝑎𝑖𝑖 to party 𝑃𝑃𝑖𝑖
3. secret[sid] ← ∑𝑎𝑎𝑖𝑖

Mult

1. On input (mult, sid1, sid2)

2. c ← secret sid1 ⋅ secret sid2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑞𝑞
3. Send c  to all parties

• Affine (sid1, sid2, x , y)

• secret 𝑠𝑠𝑠𝑠𝑑𝑑2 ← secret 𝑠𝑠𝑠𝑠𝑑𝑑1 ⋅ 𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑑𝑑 𝑞𝑞

• Element-out   (sid)

• 𝐴𝐴 ← secret 𝑠𝑠𝑠𝑠𝑑𝑑 ⋅ 𝐺𝐺

Functionality that allows the following 
operations
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1. Init (create ElGamal key)

1. Private share⇒ 𝑑𝑑𝑖𝑖
2. Private key ⇒ 𝑑𝑑 ← ∑𝑑𝑑𝑖𝑖
3. Public-key ⇒ 𝑃𝑃 ← 𝑑𝑑 ⋅ 𝐺𝐺

1. Input (Private share 𝑎𝑎𝑖𝑖)

1. Create ElGamal encryption of 
shares

Fmult
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3. Affine (sid1, sid2, x, y)

1. Linear combination of elements

3. Element-out (sid2)

1. 𝐴𝐴𝑖𝑖 ← 𝑎𝑎𝑖𝑖 ⋅ 𝐺𝐺

2. 𝐴𝐴 ← ∑𝐴𝐴𝑖𝑖

Fmult
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1. Private mult  (𝑐𝑐 ← 𝑎𝑎 ⋅ 𝑏𝑏)

1. 𝑐𝑐 ← 𝑎𝑎 ⋅ 𝑏𝑏

2. 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛 ← Share(c)

3. Private

4. No correctness guarantee. 

2. Verify correctness (see next 
slide)

Fmult
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Fmult

1. Verify correctness

1. Construct encryption of  𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏

2. Construct encryption of 𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏 via 𝑐𝑐𝑖𝑖
3. Prove that the difference between these encryptions is 

zero.

4. Prove that each share of the second encryption is 
consistent with 𝑐𝑐𝑖𝑖
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Signing

• Fact:    𝑘𝑘−1 ⋅ 𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥 = 𝑘𝑘−1 ⋅ 𝜌𝜌−1 ⋅ 𝜌𝜌 ⋅ (𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥)

• sign𝑥𝑥 𝑚𝑚; 𝑘𝑘
• Fmult.Input    ⇒ random  𝜌𝜌, 𝑘𝑘
• Fmult.output ⇒ 𝑅𝑅 ← 𝑘𝑘 ⋅ 𝐺𝐺

• (𝑟𝑟,𝑦𝑦) ← 𝑅𝑅
• Fmult.affine ⇒ 𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥
• Fmult.mult ⇒ reveals 𝜌𝜌 ⋅ 𝑘𝑘
• Compute 𝑘𝑘−1 ⋅ 𝜌𝜌−1

• Fmult.mult ⇒ 𝜌𝜌 ⋅ (𝐻𝐻 𝑚𝑚 + 𝑟𝑟 ⋅ 𝑥𝑥)
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Multiplication instantiation

1. OT-based solution

1. Computational overhead   :  low

2. Communication overhead :  high

2. Paillier-based

1. Computational overhead   :  high

2. Communication overhead :  low

3. Suitable for mobiles.

4. Expensive “Range” proof
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Issues

1.Support BIP derivation

2.Proactive security
1.Periodic refresh of shares
2.We provide security as long as the adversary does 

not control a threshold of parties at any given time.
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Issues

1. Failures do not require replacing keys

2. Arbitrary thresholds
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Issues

Our protocol needs to work with smart phones
1. Multiplication protocol uses Paillier encryption to 

reduce communication

2. OT-based protocols too expensive

3. Low-round complexity
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Security of our protocol

Our protocol is secure with simulation-
based security under DDH.
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Fast Multiparty Threshold ECDSA 
with Fast Trustless Setup(ap

1. Uses RSA to create multiplicative shares

2. Uses a conversion from multiplicative to additive sharing

3. Uses mult functionality

4. Base protocol requires expensive Range-proof  (just like us)

5. Protocol improvement requires 

1. Game-based definition

2. Strong RSA assumption

3. Allows some leakage 
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Secure Two-party Threshold ECDSA from ECDSA 
Assumptions(ap

1. 2-out-of-n 

2. OT-based instantiation

3. Convert additive to multiplicative shares

4. Uses a mult functionality

5. An improved multiplication functionality

6. Log(n)  round complexity
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Open question

1. One-sided OT extension

1. OT extension where only one party is required to create large 
communication.

2. Better Range proof

1. Lower computational, communication complexity.
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