
Multiple forgery attacks against

Message Authentication Codes

David A. McGrew and Scott R. Fluhrer

Cisco Systems, Inc.

{mcgrew,sfluhrer}@cisco.com

May 31, 2005

Abstract

Some message authentication codes (MACs) are vulnerable to multiple forgery attacks, in which an at
tacker can gain information that allows her to succeed in forging multiple message/tag pairs. This prop
erty was first noted in MACs based on universal hashing, such as the Galois/Counter Mode (GCM) of
operation for block ciphers. However, we show that CBC-MAC and HMAC also have this property, and
for some parameters are more vulnerable than GCM. We present multiple-forgery attacks against these
algorithms, then analyze the security against these attacks by using the expected number of forgeries. We
compare the different MACs using this measure.

This document is a pre-publication draft manuscript.

1

http:forgeries.We
mailto:mcgrew,sfluhrer}@cisco.com

1 Introduction

A Message Authentication Code (MAC) is a symmetric-key method that is used to protect a message from
unauthorized alteration. A MAC consists of a tag generation algorithm and a tag verification algorithm.
The tag generation algorithm takes as input a message M , a secret key K, and possibly a nonce IV , and
returns a tag T . The tag verification algorithm takes as input M , T , K, and IV (if a nonce is used), and
returns a binary value indicating whether or not the message/tag/nonce tuple is valid, that is, the tag
provided as input matches the one produced by the tag generation algorithm applied to the other inputs.
Some MACs use nonces, while others do not. For generality, we describe MACs as using nonces in this
section.

In the standard model of MAC security, an adversary can send queries to a tag generation oracle and a tag
verification oracle. These oracles model cryptomodules that implement the MAC and contain the secret
key K. The tag generation oracle takes as input M and IV and returns T . The tag verification oracle
takes as input M , T , and IV , and returns a binary output indicating whether or not the message/tag pair
is valid. The adversary is allowed to make multiple queries to both oracles. For each oracle, the nonce
values provided as inputs must be distinct. If the adversary is able to create a message/tag/nonce tuple
that the tag verification oracle accepts as valid, and which does not correspond to any message/nonce pair
provided to the tag generation oracle, we call this tuple a forgery.

Security analyses typically consider the probability that a computationally limited adversary can craft a
forgery, and bound the number of queries that the adversary can make to either or both oracles. The
probability of a single forgery has proven to be a useful measure of security, and many MACs have been
shown to be secure with respect to it. However, some MACs are vulnerable to multiple forgery attacks, by
which an adversary can create a large number of forgeries. The probability of a single forgery is not a good
measure of security against these attacks. Consider the experiment in which we allow an adversary some
number of queries to tag generation and tag verification oracles, then we count the number of forgeries that
were made. That number is a random variable, which we denote as F . The value of P[F > f] for f > 0
is bounded by the conventional security measure of P[F > 0]. However, the conventional measure tells us
nothing about the probability of multiple forgeries. To better understand security against multiple forgery
attacks, we compute the expected number of forgeries

E(F) = f P[F = f], (1)
f

where E denotes the expectation operator.

The Galois/Counter Mode (GCM) of operation for block ciphers provides both authentication and con
fidentiality [1]. It essentially consists of counter mode encryption together with a MAC based on xor
universal hashing. In this work, we neglect the encryption aspect of GCM and focus on its message authen
tication component. Its authentication tag consists of a hash of the message exored with a pseudorandom
value. As for all MACs that are based on the additive encryption of a hash value, GCM is vulnerable to
multiple forgery attacks, as described in Section 3. Some commentators have pointed to this fact as a de
merit of the mode. However, the most common MACs in practice, HMAC [2] and CBC-MAC [3], are also
vulnerable to multiple forgery attacks, as we show in Section 2.1. Prior work has considered attacks similar
to ours [4, 5], but has not focused on multiple forgeries as a measure of security. Other MACs are vulnerable
to multiple forgery attacks; for example, Ferguson showed such an attack against OCB [6]. However, our

1

http:forgeries.To

work focuses on GCM, CBC-MAC, and HMAC. We estimate the expected number of forgeries for these
MACs, and show that the chained MACs are actually worse in this regard than GCM and MACs like it, for
typical usage scenarios. We then compare the different MACs, and conclude by summarizing our results
and observations.

In all of our analyses, we model the underlying cryptographic primitives as being ideally random. How
ever, we conjecture that it is possible to incorporate an alternate measure of MAC security such as P[F > f]
into a concrete proof of security.

2 Chained MACs

Several message authentication codes are chained MACs; they essentially use a block chaining mode. Both
HMAC and CBC-MAC fall into this category. A chained MAC can be described with the following equa
tions:

f(K) for i = 0
Xi = (2)

g(K, Xi−1,Mi) for 1 ≤ i ≤ m − 1

T = h(K, Xm−1,Mm).

Here Xi ∈ {0, 1}b for all i, where b is the number of bits of internal state of the MAC. The functions f, g and
h are determined by the details of the MAC. We let M1,M2, . . . ,Mm−1,Mm denote the unique sequence of
bit strings such that M = M1dM2d . . . dMm−1dMm, where M1,M2, . . . ,Mm−1 are complete blocks, each of
which is s bits in length. The final block Mm may be a partial block, that is, its length is between one and s
bits.

CMAC is a CBC-MAC variant that has been recommended by NIST [7]. For this MAC, there are b = 128
bits of internal state, and the block length s = 128 bits. The functions f , g, and h are given by

f(K) = 0 (3)
g(K, X, M) = E(K, X ⊕ M)
h(K, X, M) = MSBt(E(K, X ⊕ Pad(K, M))),

where Pad(K, M) is a key-dependent padding function, which takes a partial block M as input and returns
a complete block, and the function MSBt(X) returns a bit string containing the initial t bits of X .

HMAC uses an unkeyed collision-resistant hash function, such as MD5 or SHA1, to implement a keyed
MAC. HMAC-MD5 has b = 128 bits of internal state, while HMAC-SHA1 has b = 160 bits of internal state.
Both MACs operate on input blocks of size s = 512 bits. For a given hash function Hash, HMAC can be
described as

f(K) = c(IV, K ⊕ PI) (4)
g(K, X, M) = c(X, M)
h(K, X, M) = MSBt(Hash((K ⊕ PO)dc(X, Pad(M))),

2

where PI and PO are the constants IPAD and OPAD, c(X, M) is the compression function of the underlying
hash function, IV is the initial vector of the hash, and Pad(M) is the padding function used by the hash1.

2.1 Multiple forgery attack

The fundamental observation of our attack is that, if we apply the MAC to two messages A and B with a
common suffix,

A = P1dP2d . . . dPidSi+1d . . . dSn (5)
B = Q1dQ2d . . . dQidSi+1d . . . dSn,

and if the internal state variables XA, XB are equal, then the two messages will have the same authenticai i
tion tag, independent of the value of the suffix Si+1d . . . dSn. The attack attempts to find a pair of distinct
prefixes P and Q that yield a common internal state. We call the messages P dS and QdS a colliding pair.
After finding such a pair, we generate a forgery by requesting the tag for the message P dS', which is also
the tag for the message QdS'.

The attack consists of two stages. In the first stage, a colliding pair is found, and in the second, it is exploited
to make multiple forgeries. The first stage proceeds by making queries to the tag generation oracle, each
of which has the form AdB, where the suffix B is identical for each query, but the prefix A varies. If
the internal variable X1 is equal for for two distinct queries i and j, then the tags for those queries will
match. The converse is not true; colliding tags do not necessarily indicate colliding internal variables. For
reasonable tag sizes, the effect of these false positives is negligible on the effort of the attack. A single query
to the tag verification oracle enables us to filter out a false positive. The birthday paradox makes it likely
that we will find a colliding pair after 2b/2 queries to the tag generation oracle. After we have found a
colliding pair P dS and QdS, we can generate forgeries at will. The second stage proceeds by querying the
tag generation oracle with the message P dS' for some arbitrary value of S S', then querying the tag =
verification oracle with the message QdS'. This process is then repeated for different values of S'.

With CMAC, there is a one-to-one correspondence between X1 and M1. Therefore, we need to have prefixes
that are at least two blocks in length. For HMAC, we can use prefixes that are a single block in length.

3 Multiple forgery attacks on GCM

GCM’s message authentication tag can be computed as

T = MSBt(r(K, IV) ⊕ s(A, C)) (6)

where r is a pseudorandom function and s is a universal hash. Here C is the ciphertext resulting from the
encryption of the plaintext provided to GCM, and A is data that is authenticated but not encrypted. For our
purposes, A and C together constitute the message M .

1The padding function depends on the length of the message; we ignore this detail as it is irrelevant to our analysis.

3

A multiple forgery attack against GCM works as follows. An adversary who knows two valid four-tuples
(IV0, C0, A0, T0) and (IV0, C1, A1, T1) such that C0 = C1 and/or A0 = A1 can produce a forgery by observ
ing another valid four-tuple (IV2, C2, A2, T2) then setting C3 = C2 ⊕ (C0 ⊕ C1), A3 = A2 ⊕ (A0 ⊕ A1), and
T3 = T2 ⊕ (T0 ⊕ T1). The same trick can be repeated for each new valid four-tuple (IVi, Ci, Ai, Ti).

4 Expected number of forgeries

To measure the effectiveness of a MAC against multiple forgery attacks, we use the expected number of
forgeries, which we denote as E(F), where F is the random variable denoting the number of forgeries
resulting from a particular attack. We allow the attacker q queries to each oracle. For an ideal MAC, that is,
a true random function, the best that an attacker can do is to guess a different tag with each query of the
verification oracle. With a tag size of t, each forgery attempt has a probability of 2−t of succeeding. The
number of forgeries obeys Bernoulli’s distribution, and the expected number of forgeries after q attempts is
q2−t .

In the following, we consider the security of several MACs in the ideal model, in which the underlying
cryptographic components are assumed to be truly random.

4.1 Universal Hashing

We next consider the case in which the forgery probability for a single query to the verification oracle is φ
whenever there have not yet been any successful forgeries, and the probability of a repeat forgery is one.
The probability that the first successful forgery will occur on the f th try equals the probability (1 − φ)f −1

that the first f − 1 attempts will fail, times the probability φ that the next attempt will succeed. If the f th

attempt is the first successful one, then the adversary can generate a total of q − f + 1 successful forgeries.
Thus the expected number of forgeries after q queries is

q q q

E(F) = (q − f + 1)(1 − φ)f−1φ = φ(q + 1) (1 − φ)f−1 − φ f(1 − φ)f−1 . (7)
f =1 f=1 f =1 n k r(1−r)The geometric series is k=1, r = 1−r

n

. We use this fact to compute E(F):

q q
φ(q + 1) ∂

E(F) = (1 − φ)f + φ (1 − φ)f (8)
1 − φ ∂φ

f =1 f =1

1 − φ
= q − (1 − (1 − φ)q).

φ

This value can be approximated by expanding the binomial (1 − φ)q and collecting leading terms for q «
1/φ, the domain of interest, giving

1
E(F) = q 2φ + O(q 2φ3) (9)

2

4

http:attack.We

Note that E(F) ≈ 1 when the number of queries is about φ−1/2. For a MAC based on universal hashing
with an E-almost xor universal hash function, where the hash is exored with the output of a pseudorandom
function, the probability of the first forgery is φ ≤ E.

For GCM using the AES block cipher [8], E = (l + 1)2−t, where l is the number of 128-bit blocks in the
largest message and t is the number of bits in the authentication tag. An adversary guessing a tag has
success probability of at most E2128/(2128 − ql), using knowledge gained from the ql invocations of AES.
Thus the expected number of forgeries for AES-GCM is

l + 1 22−tE(FGCM) ≈ q . (10)
2

4.2 Chained MACs

For any chained MAC, the expected number of forgeries can be computed by considering the number of
queries made during the first stage of the attack. That stage ends whenever there is a collision on the
internal variable Xi. Consider the f th query to the tag generation oracle. At this step, either we have found
a colliding pair in a previous step, or we found the first colliding pair at this step, or we have not found a
colliding pair. In either of the first two cases, we have found the information that we need in order to forge
messages for the remaining queries. The probability that either of the first two cases holds is

n! 1
1 − . (11)

(n − f)! nf

This probability considers collisions across internal states. Colliding tags which do not correspond to inter
nal collisions are filtered out using a query to the tag verification oracle. The expected value of F is the sum
of P[F > f] over all values of f :

q
n! 1

E(F) = 1 − . (12)
(n − f)! nf

f =1

Using Stirling’s approximation and Taylor’s expansion and then collecting terms gives

1 32−b + O(q 42−2b)E(F) = q (13)
6

The expected number of forgeries is cubic in the number of queries, with an error term that is small when
q « 2b/2. Thus this approximation is reasonable in the typical domain of usage of the MAC. In this domain,
E(F) can be nearly 1/6 · 2b/2 . In short, the expected number of forgeries is a significant fraction of the
number of queries that are allowed.

For Merkle-Damgärd hash functions such as MD5 and SHA1, the collision probability increases with in
creasing message length. An attacker can use this fact to improve the attack on HMAC by using longer
prefixes. In Equation 12, we neglect the fact that a collision may occur at any point in the chain X1, X2,
This collision is significant if Pi = Qi, where i is the number of blocks in the prefix. An attacker can exploit
this property to improve the expected number of collisions. Because of this, Equation 12 underestimates
the value of E(F) for HMAC.

5

http:collidingpair.In

5 Comparison

We summarize our results by denoting the expected number of forgeries for an ideal MAC, for AES-GCM,
and for a chained MAC as E(FIdeal), E(FGCM), and E(FChained), respectively. We use the approximations
derived earlier, which are all valid for q « 2b/2 and q « 2t/l:

E(FIdeal) ≈ q 2−t (14)

2 l + 1
2−tE(FGCM) ≈ q

2
13 2−bE(FChained) ≈ q .
6

In terms of q, the expected number of forgeries is linear for an ideal MAC, quadratic for GCM, and cubic
for a chained MAC.

The most common MACs in practice are the chained MACs HMAC and CBC-MAC. The expected number
of forgeries is significantly higher for these MACs than for an ideal MAC, even for values of q and t well
within the domain of typical usage.

If a chained MAC is used with a tag of length less than about b − 2 lg q bits, then a tag-guessing strategy
will be more effective at producing multiple forgeries than the attack described in Section 2.1. Thus, in
situations in which a relatively high forgery probability is acceptable but it is desirable to keep the expected
number of forgeries low, chained MACs are suitable. In contrast, the expected number of forgeries for GCM
is ql times higher than that for an ideal MAC, making it less attractive for use with short tags. The value
of q can be kept low by limiting the amount of data processed under any given key, though the cost of key
establishment restricts the usefulness of this strategy.

For larger tags, however, GCM does better than a chained MAC. GCM has fewer expected forgeries than
< 2t−b/2a chained MAC whenever l < q2t−b . The second inequality follows from our limitation that q

is below the birthday bound of 2b/2. When the chained MAC is CMAC using the AES block cipher, then
b = 128. With a tag size t = 96 bits, GCM has fewer expected forgeries even when the number of 128-bit
blocks l in each message is up to 232 .

In our analysis, HMAC-MD5 has identical characteristics to CMAC because it also has b = 128. HMAC
SHA1 provides more security against multiple forgery attacks because it uses b = 160 bits of internal state.
With a tag size t = 96 bits, GCM has fewer expected forgeries than HMAC-SHA1 even when the number
of 128-bit blocks l in each message is up to 216 . However, we have not yet optimized our attack to take
advantage of the multiple internal collisions that can occur in HMAC. The actual security of HMAC with
respect to these attacks will decrease as the message length increases.

6 Conclusions

Many MACs are vulnerable to multiple forgery attacks, including the commonly used chained MACs
HMAC and CBC-MAC, and MACs using xor-universal hashing with additive encryption, like GCM. The

6

vulnerability of these MACs is captured by the expected number of forgeries E(F). The vulnerability of
the chained MACs grows faster than that of GCM as the number of messages that are protected grows. For
typical parameters, GCM provides better resistance against repeat forgery attacks. However, when short
authentication tags are used, chained MACs are less vulnerable.

Several commentators have noted GCM’s vulnerability to multiple forgery attacks. However, we are aware
of no similar complaints against HMAC, CMAC, or any other CBC-MAC variants. This disparity suggests
that multiple forgery attacks are more of a theoretical concern than a practical one.

References

[1] D. McGrew and J. Viega, The Galois/Counter Mode of Operation (GCM), Submission to NIST Modes
of Operation Process, January 2004.

[2] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, RFC 2104,
IETF Request for Comments, 1997.

[3] M. Bellare, J. Kilian, P. Rogaway. The Security of the Cipher Block Chaining Message Authentication
Code. J. Comput. Syst. Sci. 61(3). pg. 362-399 (2000).

[4] B. Preneel, P. van Oorschot, On the security of iterated Message Authentication Codes, IEEE Trans
actions on Information Theory, 45, 1999.

[5] K. Brincat and C. J. Mitchell, New CBC-MAC forgery attacks, Information Security and Privacy, ACISP
2001, Springer-Verlag (LNCS 2119), Berlin (2001).

[6] N. Ferguson,	 Collision Attacks on OCB, unpublished manuscript, 2002. Available online at
http://www.cs.ucdavis.edu/ rogaway/ocb/links.htm.

[7] M. Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Au
thentication, NIST Special Publication 800-38B, May, 2005.

[8] U.S. National Institute of Standards and Technology, The Advanced Encryption Standard. Federal
Information Processing Standard (FIPS) 197, 2002.

7

http:http://www.cs.ucdavis.edu

	Introduction
	Chained MACs
	Multiple forgery attack

	Multiple forgery attacks on GCM
	Expected number of forgeries
	Universal Hashing
	Chained MACs

	Comparison
	Conclusions

