
Securing DNSSEC Keys via Threshold ECDSA
From Generic MPC

Kris Shrishak

TU Darmstadt, Germany

November 6, 2020
NIST Workshop on Multi-Party Threshold Schemes 2020

Based on work published at ESORICS’20
with Anders Dalskov, Marcel Keller, Claudio Orlandi and Haya Shulman

This work

Threshold ECDSA for DNS zone signing

- Key security for DNSSEC

- Generic way of doing threshold ECDSA (signing and key gen)

- Support for lots of different threat models

- As fast, or faster, than previous work

1 / 20

This work

Threshold ECDSA for DNS zone signing

- Key security for DNSSEC

- Generic way of doing threshold ECDSA (signing and key gen)

- Support for lots of different threat models

- As fast, or faster, than previous work

1 / 20

Outline

DNS and DNSSEC

Threshold signatures for DNSSEC

Outline

DNS and DNSSEC

Threshold signatures for DNSSEC

DNS

DNS is a protocol for mapping names to addresses

Client DNS Server

https://ducks.de
198.51.100.43

“Where is ducks.de.?”“It’s at 198.51.100.43”

HTTP GET /

Host: ducks.de

2 / 20

DNS

DNS is a protocol for mapping names to addresses

Client DNS Server

https://ducks.de
198.51.100.43

“Where is ducks.de.?”“It’s at 198.51.100.43”

HTTP GET /

Host: ducks.de

2 / 20

DNS

DNS is a protocol for mapping names to addresses

Client DNS Server

https://ducks.de
198.51.100.43

“Where is ducks.de.?”“It’s at 198.51.100.43”

HTTP GET /

Host: ducks.de

2 / 20

DNS

DNS is a protocol for mapping names to addresses

Client DNS Server

https://ducks.de
198.51.100.43

“Where is ducks.de.?”“It’s at 198.51.100.43”

HTTP GET /

Host: ducks.de

2 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNS Insecurity
Poisoning/Spoofing is possible

First answer is accepted

Client ISP DNS Server

https://ducks.de

198.51.100.43

Adversary
198.51.100.123

ducks.de.? ducks.de.?

198.51.100.123

HTTP GET /

Host: ducks.de

3 / 20

DNSSEC

DNSSEC fixes this problem

- Data integrity: data was not changed in transit

- Origin authentication: data originated from the owner

4 / 20

DNS in practice

Azure DNS

Cloudflare

UltraDNS

ducks.de

cuteswans.de

DNS Operators Domains

5 / 20

DNSSEC deployment issues

Studies 12 have found that

- Some operators use the same key for all domains

- E.g., one key shared by > 132 000 domains

- Default is 1024-bit RSA

- Most keys 1024-bit, with ∼10K domains use 512-bit RSA
- The majority of keys were not rotated in a 21-month period
- Some providers use different keys but share the modulus

1A Longitudinal, End-to-End View of the DNSSEC Ecosystem (USENIX ’17)
2One Key to Sign Them All Considered Vulnurable: Evaluation of DNSSEC in the Internet (NSDI ’17)

6 / 20

DNSSEC deployment issues

Studies 12 have found that

- Some operators use the same key for all domains

- E.g., one key shared by > 132 000 domains

- Default is 1024-bit RSA

- Most keys 1024-bit, with ∼10K domains use 512-bit RSA
- The majority of keys were not rotated in a 21-month period
- Some providers use different keys but share the modulus

1A Longitudinal, End-to-End View of the DNSSEC Ecosystem (USENIX ’17)
2One Key to Sign Them All Considered Vulnurable: Evaluation of DNSSEC in the Internet (NSDI ’17)

6 / 20

DNSSEC deployment issues

Studies 12 have found that

- Some operators use the same key for all domains

- E.g., one key shared by > 132 000 domains

- Default is 1024-bit RSA

- Most keys 1024-bit, with ∼10K domains use 512-bit RSA
- The majority of keys were not rotated in a 21-month period
- Some providers use different keys but share the modulus

1A Longitudinal, End-to-End View of the DNSSEC Ecosystem (USENIX ’17)
2One Key to Sign Them All Considered Vulnurable: Evaluation of DNSSEC in the Internet (NSDI ’17)

6 / 20

DNSSEC in practice

DNSSEC

- Should use ECDSA instead of RSA

- Shorter signatures reduce the chance of packet fragmentation 1

- Support multiple name servers

- better availability and DDoS protection 2

- new standard 3 requires zone owner interaction while relinquishing key control

1RFC 6781 recommends 1024-bit RSA for this reason
2See 2016 Dyn attacks
3RFC 8901: Multi-Signer DNSSEC Models

7 / 20

DNSSEC in practice

DNSSEC

- Should use ECDSA instead of RSA

- Shorter signatures reduce the chance of packet fragmentation 1

- Support multiple name servers

- better availability and DDoS protection 2

- new standard 3 requires zone owner interaction while relinquishing key control

1RFC 6781 recommends 1024-bit RSA for this reason
2See 2016 Dyn attacks
3RFC 8901: Multi-Signer DNSSEC Models

7 / 20

Outline

DNS and DNSSEC

Threshold signatures for DNSSEC

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC

8 / 20

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC

8 / 20

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC

8 / 20

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC

8 / 20

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC

8 / 20

Threshold signatures for DNSSEC

Zone signing with Threshold ECDSA
[sk]← Share(sk)

ISP [sk]

[sk]

[sk]

DNS Operators

ducks.de.?

MPC

1.2.3.4

Sigsk(1.2.3.4||ducks.de)

Threshold signing should not be much more expensive than regular DNSSEC
8 / 20

ECDSA

s = k−1(H(M) + sk · rx)

9 / 20

ECDSA

s = k−1(H(M) + sk · rx)

9 / 20

Threshold ECDSA

s = H(M)[k−1] + [sk · k−1] · rx

10 / 20

Threshold ECDSA signing in 3 phases

s = H(M)[k−1] + [sk · k−1] · rx

Preprocessing:
Key independent

Preprocessing:
Key independent
Message independent

Online phase

DNS Operators

MPC

[k−1][sk′] = [sk · k−1]
s, rx

11 / 20

Threshold ECDSA signing in 3 phases

s = H(M)[k−1] + [sk · k−1] · rx

Preprocessing:
Key independent

Preprocessing:
Key independent
Message independent

Online phase

DNS Operators

MPC

[k−1][sk′] = [sk · k−1]
s, rx

11 / 20

Threshold ECDSA signing in 3 phases

s = H(M)[k−1] + [sk · k−1] · rx

[k−1]

[k−1]

[k−1]

Preprocessing:
Key independent

Preprocessing:
Key independent
Message independent

Online phase

DNS Operators

MPC

[k−1][sk′] = [sk · k−1]
s, rx

11 / 20

Threshold ECDSA signing in 3 phases

s = H(M)[k−1] + [sk · k−1] · rx

[k−1], [sk−1]

[k−1], [sk−1]

[k−1], [sk−1]

Preprocessing:
Key independent

Preprocessing:
Key independent
Message independent

Online phase

DNS Operators

MPC

[k−1][sk′] = [sk · k−1]
s, rx

11 / 20

Threshold ECDSA signing in 3 phases

s = H(M)[k−1] + [sk · k−1] · rx

[k−1], [sk−1], M

[k−1], [sk−1], M

[k−1], [sk−1], M

Preprocessing:
Key independent

Preprocessing:
Key independent
Message independent

Online phase

DNS Operators

MPC

[k−1][sk′] = [sk · k−1]
s, rx

11 / 20

Threshold ECDSA signing

s = H(M)[k−1] + [sk · k−1] · rx

Problems: How do we compute

1. [k−1]

2. rx

12 / 20

Threshold ECDSA signing

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute [k−1]?

Main difficulty with threshold ECDSA

13 / 20

Threshold ECDSA signing

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute [k−1]?

Main difficulty with threshold ECDSA

13 / 20

Threshold ECDSA signing

From [k] to [k−1] using a trick due to Bar-Ilan and Beaver4

1. Suppose we have ([k], [b], [c]) with c = k · b
2. Open [c]

3. Compute c−1[b] = [(k · b)−1b] = [k−1]

Computing [k−1] is the most expensive part of signing

4Non-cryptographic fault-tolerant computing in constant number of rounds of interaction (PODC ’89)
14 / 20

Threshold ECDSA signing

From [k] to [k−1] using a trick due to Bar-Ilan and Beaver4

1. Suppose we have ([k], [b], [c]) with c = k · b

2. Open [c]

3. Compute c−1[b] = [(k · b)−1b] = [k−1]

Computing [k−1] is the most expensive part of signing

4Non-cryptographic fault-tolerant computing in constant number of rounds of interaction (PODC ’89)
14 / 20

Threshold ECDSA signing

From [k] to [k−1] using a trick due to Bar-Ilan and Beaver4

1. Suppose we have ([k], [b], [c]) with c = k · b
2. Open [c]

3. Compute c−1[b] = [(k · b)−1b] = [k−1]

Computing [k−1] is the most expensive part of signing

4Non-cryptographic fault-tolerant computing in constant number of rounds of interaction (PODC ’89)
14 / 20

Threshold ECDSA signing

From [k] to [k−1] using a trick due to Bar-Ilan and Beaver4

1. Suppose we have ([k], [b], [c]) with c = k · b
2. Open [c]

3. Compute c−1[b] = [(k · b)−1b] = [k−1]

Computing [k−1] is the most expensive part of signing

4Non-cryptographic fault-tolerant computing in constant number of rounds of interaction (PODC ’89)
14 / 20

Threshold ECDSA signing

From [k] to [k−1] using a trick due to Bar-Ilan and Beaver4

1. Suppose we have ([k], [b], [c]) with c = k · b
2. Open [c]

3. Compute c−1[b] = [(k · b)−1b] = [k−1]

Computing [k−1] is the most expensive part of signing

4Non-cryptographic fault-tolerant computing in constant number of rounds of interaction (PODC ’89)
14 / 20

Secure Computation over Elliptic Curves

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute rx?

where
(rx , ry) = R = k · G

15 / 20

Secure Computation over Elliptic Curves

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute rx?

where
(rx , ry) = R = k · G

15 / 20

Secure Computation over Elliptic Curves

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute rx?

where
(rx , ry) = R = k · G

15 / 20

Secure Computation over Elliptic Curves

Need to compute s = [k−1](H(M) + [sk] · rx)

Problem how do we compute rx?

where
(rx , ry) = R = k · G

15 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

[k] 〈k〉

〈k〉R = k · G

local conversion

Open(〈k〉)

16 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

[k] 〈k〉

〈k〉R = k · G

local conversion

Open(〈k〉)

16 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

[k] 〈k〉

〈k〉R = k · G

local conversion

Open(〈k〉)

16 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

[k] 〈k〉

〈k〉R = k · G

local conversion

Open(〈k〉)

16 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

[k] 〈k〉

〈k〉R = k · G

local conversion

Open(〈k〉)

16 / 20

Secure Computation over Elliptic Curves

Let [k] denote an additive sharing of k over Zp

Let 〈k〉 denote a sharing of k · G .

Supports all the usual suspects

- Addition/constant addition

- Constant scalar mult: a · 〈x〉 = 〈a · x〉
- Constant point mult: [a] · X = 〈a · x〉, where X = x · G (note that x may be

unknown).

17 / 20

Threshold ECDSA signing in 3 phases

Key independent pre-processing

1. Use triples ([k], [b], [c]) to compute [k−1]

2. 〈k〉 = cnv([k])

Message independent pre-processing

1. [sk′] = [sk · k−1] = [sk] · [k−1]

Signing (input is (〈k〉, [sk′],M))

1. (rx , ry) = R = Open(〈k〉)
2. [s] = H(M) · [k−1] + rx · [sk′]

3. s = Open([s]), output (rx , s)

Key generation just generate random [x] and pk = Open(cnv([x]))

18 / 20

Threshold ECDSA signing in 3 phases

Key independent pre-processing

1. Use triples ([k], [b], [c]) to compute [k−1]

2. 〈k〉 = cnv([k])

Message independent pre-processing

1. [sk′] = [sk · k−1] = [sk] · [k−1]

Signing (input is (〈k〉, [sk′],M))

1. (rx , ry) = R = Open(〈k〉)
2. [s] = H(M) · [k−1] + rx · [sk′]

3. s = Open([s]), output (rx , s)

Key generation just generate random [x] and pk = Open(cnv([x]))

18 / 20

Threshold ECDSA signing in 3 phases

Key independent pre-processing

1. Use triples ([k], [b], [c]) to compute [k−1]

2. 〈k〉 = cnv([k])

Message independent pre-processing

1. [sk′] = [sk · k−1] = [sk] · [k−1]

Signing (input is (〈k〉, [sk′],M))

1. (rx , ry) = R = Open(〈k〉)
2. [s] = H(M) · [k−1] + rx · [sk′]

3. s = Open([s]), output (rx , s)

Key generation just generate random [x] and pk = Open(cnv([x]))

18 / 20

Threshold ECDSA signing in 3 phases

Key independent pre-processing

1. Use triples ([k], [b], [c]) to compute [k−1]

2. 〈k〉 = cnv([k])

Message independent pre-processing

1. [sk′] = [sk · k−1] = [sk] · [k−1]

Signing (input is (〈k〉, [sk′],M))

1. (rx , ry) = R = Open(〈k〉)
2. [s] = H(M) · [k−1] + rx · [sk′]

3. s = Open([s]), output (rx , s)

Key generation just generate random [x] and pk = Open(cnv([x]))

18 / 20

Threshold ECDSA signing in 3 phases

Key independent pre-processing

1. Use triples ([k], [b], [c]) to compute [k−1]

2. 〈k〉 = cnv([k])

Message independent pre-processing

1. [sk′] = [sk · k−1] = [sk] · [k−1]

Signing (input is (〈k〉, [sk′],M))

1. (rx , ry) = R = Open(〈k〉)
2. [s] = H(M) · [k−1] + rx · [sk′]

3. s = Open([s]), output (rx , s)

Key generation just generate random [x] and pk = Open(cnv([x]))

18 / 20

Benchmarks
Comparison with prior work

LAN WAN

n Sign(ms) KeyGen(ms) Sign(ms) KeyGen(ms)

Rep3 3 2.78 1.45 367.87 291.32
Shamir 3 3.02 1.39 1140.09 486.82
Mal. Rep3 3 3.45 1.57 1128.01 429.47
Mal. Shamir 3 4.43 1.89 2340.53 485.11
MASCOT 2 6.56 4.32 2688.92 2632.07
MASCOT– 2 3.61 4.41 729.08 2654.59

DKLS 2 3.58 43.73 234.37 1002.97
Unbound 2 11.33 315.96 490.73 1010.98
Kzen † 2 310.71 153.87 14441.83 7237.93

†: Implementation of [GG18] Fast Multiparty Threshold ECDSA with Fast Trustless Setup (CCS ’18)

19 / 20

Benchmarks
Throughput

LAN WAN

Tuples per sec. Sign (ms) Tuples per sec. Sign (ms)

Rep3 922.27 2.49 715.54 247.13
Shamir 1829.69 2.37 402.88 271.80
Mal. Rep3 914.65 2.52 309.76 245.14
Mal. Shamir 1792.30 2.91 172.87 416.60
MASCOT 380.19 4.82 31.98 756.34
MASCOT– 700.94 2.75 68.31 258.85

20 / 20

	DNS and DNSSEC
	Threshold signatures for DNSSEC

