Threshold Schnorr with
Stateless Deterministic Signing

Francois Garillot, Yashvanth Kondi, Payman Mohassel, Valeria Nikolaenko
Novi/Facebook Northeastern University Facebook Novi/Facebook

Schnorr: Practical Issues

SchnorrSign(sk, m) :
;o Zq
R=r-G
e = H(R||m)
s=r—sk-e
o= (s,e)

output o

Schnorr: Practical Issues

SchnorrSign(sk, m) :

- Fresh randomness needed to sign
1 on every invocation

R=r-G
e = H(R||m)
s=r—sk-e
o= (s,e)

output o

Schnorr: Practical Issues

SchnorrSign(sk, m) :

- Fresh randomness needed to sign
1 on every invocation

R=r-G

e = H(R||m) Even a tiny amount of bias can
s=r—sk-e completely wreck security

o= (s,e)

output o

Schnorr: Practical Issues

SchnorrSign(sk, m) :

- Fresh randomness needed to sign
1 on every invocation

R=r-G
e = H(R||m) Even a tiny amount of bias can
s=r—sk-e completely wreck security
o= (s,e)
output ¢ In practice: bad PRGs, software

bugs, etc. Reliable entropy Is scarce!

Schnorr: Practical Issues

SchnorrSign(sk, m) :

- Fresh randomness needed to sign
1 on every invocation

R=r-G
e = H(R||m) Even a tiny amount of bias can
s=r—sk-e completely wreck security
o= (s,e)
output ¢ In practice: bad PRGs, software

bugs, etc. Reliable entropy Is scarce!

Solution: de-randomize r

Nailve Derandomization

Canonical solution is via a Pseudorandom Generator (PRG)
- Invoke for each new nonce

However the state of the PRG must be updated reliably —
security Is very sensitive to this

This creates a new practical hurdle, eg. state Is usually
backed up on secure storage where frequent reliable
updates may not be possible

We therefore require derandomization to be stateless

Deterministic Signing

DetSign(sk, k, m) :
r = F(m)
R=r-G
e = H(R||m)
s=r—sk-e
o= (S,e)

output o

Deterministic Signing

Sampled during key generation
DetSign(sk,lg nm) :

r = F(m)

R=r-G

e = H(R|[m)

s=r—sk-e

o= (S,e)
output o

Deterministic Signing

Sampled during key generation
DetSign(sk,lg nm) :

F Is a pseudorandom function
R=7r-G eg. AES, or SHA as in EADSA
e = H(R||m)

s=r—sk-e

o= (s,e)

output o

The problem we asked was:

How can we build a threshold signing protocol
for Schnorr that is deterministic and stateless?

The problem we asked was:

How can we build a threshold signing protocol
for Schnorr that is deterministic and stateless?

l.e. after a one-time distributed key generation
phase, parties interactively sign messages without
sampling new randomness or updating their state

The problem we asked was:

How can we build a threshold signing protocol

for Schnorr that is deterministic and stateless?

l.e. after a one-time distributed key generation
phase, parties interactively sign messages without
sampling new randomness or updating their state

Implicit: deterministic nonce derivation

Challenge

e “Naive” derandomization of threshold Schnorr:
direct application of single party derandomization.
Works for semi-honest adversaries

* Nalve scheme completely broken by an adversary
that deviates from the protocol (‘rewinding’ attack)

* Malicious setting: commit to kK, prove correct
nonce derivation (applying PRF(k,m))

Towards a solution

Two very different settings:

* Honest majority: simple protocol with replicated secret
sharing (small number of parties)

* Dishonest majority:

“throw zero-knowledge proofs at it” [Goldreich-Micali-
Wigderson 87]

Dishonest Majority

* Non-linear signing equation: reminiscent of
Threshold ECDSA

* Unlike ECDSA, this problem is trivial with semi-
honest adversaries

* Before “fully malicious”, we ask: can we interpolate
a meaningful intermediate between semi-honest and

malicious?

Covert Model

* |Introduced by Aumann and Lindell (TCC 07, JoC ’10)
e Sits between semi-honest and fully malicious security

* Quantified over arbitrarily cheating adversaries, but a
cheating adversary can statistically evade detection
with noticeable probability (eg. 10%)

 Reasonable in many scenarios (eg. business-to-
business, among parties that know each other)

Covert 2P Signing

* Protocol intuition: “watchlist” technigue. Alice
derives nonce as a linear combination of n PRFs,
Bob obliviously checks n-1 of them.

* Even for 90% deterrence, only marginally slower
than semi-honest

* One extra curve point transmitted compared to SH,
rounds unchanged (i.e. two)

* Likely usable in any setting where SH is feasible

Malicious nP Signing

 We adapt Zero-knowledge from Garbled Circuits

[Jawurek-Kerschbaum-Orlandi 13] to prove these
statements

 GCs are lightweight, efficient for small Boolean circuits
like AES
* Novel techniques for:

- GC labels -> Elliptic curve point translation (almost for
free)

- Preprocessing Committed Oblivious Transfer (only
PRF evaluations online)

In Summary

* We study Schnorr with stateless deterministic threshold signing

» Alternatively, EADSA where nonce derivation is by adding PRF
outputs

» | andscape (relative to semi-honest, which is trivial):
- Honest majority: = SH for few parties
- Covert two-party: = SH for reasonable deterrence (90%)

- All-but-one malicious: within order of magnitude of OT-based
threshold ECDSA (100s of KB, estd. milliseconds/low tens of
ms for 256-bit curve)

Thanks!

(paper coming soon)

