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Schnorr: Practical Issues

SchnorrSign(𝗌𝗄, m) :
r ← ℤq

R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Fresh randomness needed to sign 
on every invocation

Even a tiny amount of bias can 
completely wreck security

Solution: de-randomize r

In practice: bad PRGs, software 
bugs, etc.  Reliable entropy is scarce!



Naive Derandomization
• Canonical solution is via a Pseudorandom Generator (PRG) 

- invoke for each new nonce


• However the state of the PRG must be updated reliably— 
security is very sensitive to this


• This creates a new practical hurdle, eg. state is usually 
backed up on secure storage where frequent reliable 
updates may not be possible


• We therefore require derandomization to be stateless
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Deterministic Signing

DetSign(𝗌𝗄, k, m) :
r = 𝖥k(m)
R = r ⋅ G
e = H(R∥m)
s = r − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Sampled during key generation

F is a pseudorandom function
eg. AES, or SHA as in EdDSA
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The problem we asked was:

i.e.  after a one-time distributed key generation 
phase, parties interactively sign messages without 
sampling new randomness or updating their state

How can we build a threshold signing protocol 
for Schnorr that is deterministic and stateless?

Implicit: deterministic nonce derivation



Challenge

• “Naive” derandomization of threshold Schnorr: 
direct application of single party derandomization. 
Works for semi-honest adversaries


• Naive scheme completely broken by an adversary 
that deviates from the protocol (‘rewinding’ attack)


• Malicious setting: commit to k, prove correct 
nonce derivation (applying PRF(k,m))



Towards a solution

• Honest majority: simple protocol with replicated secret 
sharing (small number of parties)


• Dishonest majority:  
“throw zero-knowledge proofs at it” [Goldreich-Micali-
Wigderson 87]

Two very different settings:



Dishonest Majority

• Non-linear signing equation: reminiscent of 
Threshold ECDSA 


• Unlike ECDSA, this problem is trivial with semi-
honest adversaries


• Before “fully malicious”, we ask: can we interpolate 
a meaningful intermediate between semi-honest and 
malicious? 



Covert Model
• Introduced by Aumann and Lindell (TCC ’07, JoC ’10)


• Sits between semi-honest and fully malicious security


• Quantified over arbitrarily cheating adversaries, but a 
cheating adversary can statistically evade detection 
with noticeable probability (eg. 10%)


• Reasonable in many scenarios (eg. business-to-
business, among parties that know each other)



Covert 2P Signing
• Protocol intuition: “watchlist” technique. Alice 

derives nonce as a linear combination of n PRFs, 
Bob obliviously checks n-1 of them.


• Even for 90% deterrence, only marginally slower 
than semi-honest


• One extra curve point transmitted compared to SH, 
rounds unchanged (i.e. two)


• Likely usable in any setting where SH is feasible



Malicious nP Signing
• We adapt Zero-knowledge from Garbled Circuits 

[Jawurek-Kerschbaum-Orlandi 13] to prove these 
statements


• GCs are lightweight, efficient for small Boolean circuits 
like AES


• Novel techniques for:

- GC labels -> Elliptic curve point translation (almost for 

free)

- Preprocessing Committed Oblivious Transfer (only 

PRF evaluations online)



In Summary
• We study Schnorr with stateless deterministic threshold signing


• Alternatively, EdDSA where nonce derivation is by adding PRF 
outputs


• Landscape (relative to semi-honest, which is trivial):


- Honest majority: ≈ SH for few parties


- Covert two-party: ≈ SH for reasonable deterrence (90%)


- All-but-one malicious: within order of magnitude of OT-based 
threshold ECDSA (100s of KB, estd. milliseconds/low tens of 
ms for 256-bit curve)



Thanks!
(paper coming soon)


