
FROST: Flexible Round-Optimized
Schnorr Threshold Signatures

and Extensibility to EdDSA

Chelsea Komlo1,2 Douglas Stebila1 Ian Goldberg1

1 University of Waterloo 2 Zcash Foundation

NIST Workshop on Multi-Party Threshold Schemes, November 2020



Threshold Signatures: Joint Public
Key, Secret-Shared Private Key

Signing Set

Secret Share 1

Secret Share 2

Secret Share 3

Public Key (1,2,3)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 2 / 19



Threshold Signatures: Joint Public
Key, Secret-Shared Private Key

Signing Set

Secret Share 1

Secret Share 2

Secret Share 3

Public Key (1,2,3)

The full secret is
never reconstructed!
Participants perform
signing using only
their secret share.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 2 / 19



Contributions of FROST
I Two-round Schnorr threshold signing protocol, or single-round

with preprocessing

I Signing operations are secure when performed concurrently,
improving upon prior similar schemes.

I Signing can be performed with a threshold t number of signers,
where t can be less than the number of possible signers n.

I Secure against an adversary that controls up to t − 1 signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 3 / 19



Contributions of FROST
I Two-round Schnorr threshold signing protocol, or single-round

with preprocessing

I Signing operations are secure when performed concurrently,
improving upon prior similar schemes.

I Signing can be performed with a threshold t number of signers,
where t can be less than the number of possible signers n.

I Secure against an adversary that controls up to t − 1 signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 3 / 19



Contributions of FROST
I Two-round Schnorr threshold signing protocol, or single-round

with preprocessing

I Signing operations are secure when performed concurrently,
improving upon prior similar schemes.

I Signing can be performed with a threshold t number of signers,
where t can be less than the number of possible signers n.

I Secure against an adversary that controls up to t − 1 signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 3 / 19



Contributions of FROST
I Two-round Schnorr threshold signing protocol, or single-round

with preprocessing

I Signing operations are secure when performed concurrently,
improving upon prior similar schemes.

I Signing can be performed with a threshold t number of signers,
where t can be less than the number of possible signers n.

I Secure against an adversary that controls up to t − 1 signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 3 / 19



Tradeoffs Among Constructions

I Number of Signing Rounds: Required network rounds to
generate one signature.

I Robust: Can the protocol complete when participants
misbehave?

I Required Number of Signers: Can a signature be created by
just t participants, or are all n needed?

I Parallel Secure: Can signing operations be done in parallel
without a reduction in security (Drijvers attack)?

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 4 / 19



Tradeoffs Among Constructions

I Number of Signing Rounds: Required network rounds to
generate one signature.

I Robust: Can the protocol complete when participants
misbehave?

I Required Number of Signers: Can a signature be created by
just t participants, or are all n needed?

I Parallel Secure: Can signing operations be done in parallel
without a reduction in security (Drijvers attack)?

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 4 / 19



Tradeoffs Among Constructions

I Number of Signing Rounds: Required network rounds to
generate one signature.

I Robust: Can the protocol complete when participants
misbehave?

I Required Number of Signers: Can a signature be created by
just t participants, or are all n needed?

I Parallel Secure: Can signing operations be done in parallel
without a reduction in security (Drijvers attack)?

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 4 / 19



Tradeoffs Among Constructions

I Number of Signing Rounds: Required network rounds to
generate one signature.

I Robust: Can the protocol complete when participants
misbehave?

I Required Number of Signers: Can a signature be created by
just t participants, or are all n needed?

I Parallel Secure: Can signing operations be done in parallel
without a reduction in security (Drijvers attack)?

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 4 / 19



Tradeoffs Among Constructions

Num. Rounds Robust Num. Signers Parallel Secure
Stinson Strobl 4 Yes t Yes
Gennaro et al. 1 w/ preprocessing No n No

FROST 1 w/ preprocessing No t Yes

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 5 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



Single-Party Schnorr Signing and Verification

Signer Verifier
(x,Y)← KeyGen()

(m,Y)

k
$
← Zq

R = gk ∈ G

c = H(R ,Y ,m)

z = k + c · x

(m, σ = (R , z))

c = H(R ,Y ,m)

R ′ = gz · Y−c

Output R ?
= R ′

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 6 / 19



FROST Keygen

I Can be performed by either a trusted dealer or a Distributed Key
Generation (DKG) Protocol

I The DKG is an n-wise Shamir Secret Sharing protocol, with each
participant acting as a dealer

I After KeyGen, each participant holds secret share si and public
key Yi (used for verification during signing) with joint public key Y .

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 7 / 19



FROST Keygen

I Can be performed by either a trusted dealer or a Distributed Key
Generation (DKG) Protocol

I The DKG is an n-wise Shamir Secret Sharing protocol, with each
participant acting as a dealer

I After KeyGen, each participant holds secret share si and public
key Yi (used for verification during signing) with joint public key Y .

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 7 / 19



FROST Keygen

I Can be performed by either a trusted dealer or a Distributed Key
Generation (DKG) Protocol

I The DKG is an n-wise Shamir Secret Sharing protocol, with each
participant acting as a dealer

I After KeyGen, each participant holds secret share si and public
key Yi (used for verification during signing) with joint public key Y .

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 7 / 19



FROST Sign

I Can be performed in two rounds, or optimized to single round with
preprocessing

I We show here with a signature aggregator, but can be performed
without centralized roles

I Centralized roles are used for coordination and don’t have access
to privilaged information; trusted to not perform a
denial-of-service.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 8 / 19



FROST Sign

I Can be performed in two rounds, or optimized to single round with
preprocessing

I We show here with a signature aggregator, but can be performed
without centralized roles

I Centralized roles are used for coordination and don’t have access
to privilaged information; trusted to not perform a
denial-of-service.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 8 / 19



FROST Sign

I Can be performed in two rounds, or optimized to single round with
preprocessing

I We show here with a signature aggregator, but can be performed
without centralized roles

I Centralized roles are used for coordination and don’t have access
to privilaged information; trusted to not perform a
denial-of-service.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 8 / 19



FROST Preprocess

Participant i Commitment Server

((dij , eij), . . . )
$
← Z∗q × Z

∗
q

(Dij ,Eij) = (gdij , geij)

Store ((dij ,Dij), (eij ,Eij), . . . )

((Dij ,Eij), . . . )

Store ((Dij ,Eij), . . . )

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 9 / 19



FROST Preprocess

Participant i Commitment Server

((dij , eij), . . . )
$
← Z∗q × Z

∗
q

(Dij ,Eij) = (gdij , geij)

Store ((dij ,Dij), (eij ,Eij), . . . )

((Dij ,Eij), . . . )

Store ((Dij ,Eij), . . . )

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 9 / 19



FROST Preprocess

Participant i Commitment Server

((dij , eij), . . . )
$
← Z∗q × Z

∗
q

(Dij ,Eij) = (gdij , geij)

Store ((dij ,Dij), (eij ,Eij), . . . )

((Dij ,Eij), . . . )

Store ((Dij ,Eij), . . . )

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 9 / 19



FROST Preprocess

Participant i Commitment Server

((dij , eij), . . . )
$
← Z∗q × Z

∗
q

(Dij ,Eij) = (gdij , geij)

Store ((dij ,Dij), (eij ,Eij), . . . )

((Dij ,Eij), . . . )

Store ((Dij ,Eij), . . . )

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 9 / 19



FROST Preprocess

Participant i Commitment Server

((dij , eij), . . . )
$
← Z∗q × Z

∗
q

(Dij ,Eij) = (gdij , geij)

Store ((dij ,Dij), (eij ,Eij), . . . )

((Dij ,Eij), . . . )

Store ((Dij ,Eij), . . . )

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 9 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

“binding value” to
bind signing shares

to `, m, and B

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

This step cannot
be inverted by

anyone who does
not know (di, ei).

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



FROST Sign

Signer i Signature Aggregator
B = ((1,D1,E1), . . . , (t ,Dt ,Et))

(m,B)

ρ` = H1(`,m,B), ` ∈ S

R =
∏
`∈S

D` · (E`)
ρ`

c = H2(R ,Y ,m)

zi = di + (ei · ρi) + λi · si · c

zi

Publish σ = (R , z =
∑

zi)

Signature format
and verification
are identical to

single-party Schnorr.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 10 / 19



Protocol Complexity

I Per-signer bandwidth overhead for signing scales linearly relative
to the number of signers (because of B).

I Total bandwidth overhead scales quadratically

I Network round complexity remains constant, assuming
centralized commitment storage and signature aggregation

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 11 / 19



Protocol Complexity

I Per-signer bandwidth overhead for signing scales linearly relative
to the number of signers (because of B).

I Total bandwidth overhead scales quadratically

I Network round complexity remains constant, assuming
centralized commitment storage and signature aggregation

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 11 / 19



Protocol Complexity

I Per-signer bandwidth overhead for signing scales linearly relative
to the number of signers (because of B).

I Total bandwidth overhead scales quadratically

I Network round complexity remains constant, assuming
centralized commitment storage and signature aggregation

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 11 / 19



FROST Compatibility with EdDSA

I Signature Verification: FROST can produce non-deterministic
signatures comptabible with EdDSA verification.

I Deterministic Signatures: Deriving the nonce via a hash of the
secret key and message is not secure for schemes with
non-interactive nonce generation (FROST, Gennaro et al., MuSig,
etc).

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 12 / 19



FROST Compatibility with EdDSA

I Signature Verification: FROST can produce non-deterministic
signatures comptabible with EdDSA verification.

I Deterministic Signatures: Deriving the nonce via a hash of the
secret key and message is not secure for schemes with
non-interactive nonce generation (FROST, Gennaro et al., MuSig,
etc).

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 12 / 19



EdDSA-Style Determinism is not Straightforward
in a Threshold Setting

I Complexity: To safely ensure determinism, additional factors
beyond each participant’s secret and the message would be
required (such as a counter), but increases complexity.

I Statefulness is Required, Regardless: Even in a setting where
determinism is possible, state must be maintained by signers
between rounds.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 13 / 19



EdDSA-Style Determinism is not Straightforward
in a Threshold Setting

I Complexity: To safely ensure determinism, additional factors
beyond each participant’s secret and the message would be
required (such as a counter), but increases complexity.

I Statefulness is Required, Regardless: Even in a setting where
determinism is possible, state must be maintained by signers
between rounds.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 13 / 19



FROST Network Requirements

I KeyGen requires a trusted, authenticated channel for distributing
secret shares.

I Signing can be performed over a trustless public channel.

I We assume a reliable enough network connection to successfully
complete the protocol with at least t signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 14 / 19



FROST Network Requirements

I KeyGen requires a trusted, authenticated channel for distributing
secret shares.

I Signing can be performed over a trustless public channel.

I We assume a reliable enough network connection to successfully
complete the protocol with at least t signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 14 / 19



FROST Network Requirements

I KeyGen requires a trusted, authenticated channel for distributing
secret shares.

I Signing can be performed over a trustless public channel.

I We assume a reliable enough network connection to successfully
complete the protocol with at least t signers.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 14 / 19



Real-World Applications

I Use in cryptocurrency (Zcash) protocols for signing transactions

I Consideration for standardization by CFRG.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 15 / 19



Real-World Applications

I Use in cryptocurrency (Zcash) protocols for signing transactions

I Consideration for standardization by CFRG.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 15 / 19



Takeaways
I FROST improves upon prior schemes by defining a single-round

threshold signing protocol (with preprocessing) that is secure in a
parallelized setting.

I The simplicity and flexibility of FROST makes it attractive to
real-world applications.

I Determinism should be a recommendation, not a requirement for
threshold signatures, as it requires statefulness and increased
complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.
Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 16 / 19

https://crysp.uwaterloo.ca/software/frost


Takeaways
I FROST improves upon prior schemes by defining a single-round

threshold signing protocol (with preprocessing) that is secure in a
parallelized setting.

I The simplicity and flexibility of FROST makes it attractive to
real-world applications.

I Determinism should be a recommendation, not a requirement for
threshold signatures, as it requires statefulness and increased
complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.
Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 16 / 19

https://crysp.uwaterloo.ca/software/frost


Takeaways
I FROST improves upon prior schemes by defining a single-round

threshold signing protocol (with preprocessing) that is secure in a
parallelized setting.

I The simplicity and flexibility of FROST makes it attractive to
real-world applications.

I Determinism should be a recommendation, not a requirement for
threshold signatures, as it requires statefulness and increased
complexity.

Find our paper and artifact at https://crysp.uwaterloo.ca/software/frost.
Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 16 / 19

https://crysp.uwaterloo.ca/software/frost


Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Security against Drijvers
Without ρ` = H1(`,m,B), an adversary could produce a c∗ such that:

c∗ = H(R∗,Y ,m∗) =
k∑

i=1

H(Ri ,Y ,mi) =
∑

ci for some (Ri ,mi), . . .

After sending receiving the victim’s zi for each (Ri ,mi), the adversary can
produce a valid forgery σ∗ = (R∗, z), as

z =
∑

di + ei + λt · st ·
∑

ci =
∑

di + ei + λt · st · c∗

The binding factor in FROST makes each zi strongly tied to (mi ,Ri).

z =
∑

di + (ei ∗ ρi) + λt · st ·
∑

ci

Resulting in an invalid signature: R∗ , gz · Y−c

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 17 / 19



Extras: Provable Security

I We prove the EUF-CMA security of an interactive variant of
FROST, then extend to plain FROST.

I FROST-Interactive generates the binding value ρi via a one-time
VRF to allow for parallelism in our simulator.

I Recall that plain (non-interactive) FROST generates ρi via a hash
function.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 18 / 19



Extras: Provable Security

I We prove the EUF-CMA security of an interactive variant of
FROST, then extend to plain FROST.

I FROST-Interactive generates the binding value ρi via a one-time
VRF to allow for parallelism in our simulator.

I Recall that plain (non-interactive) FROST generates ρi via a hash
function.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 18 / 19



Extras: Provable Security

I We prove the EUF-CMA security of an interactive variant of
FROST, then extend to plain FROST.

I FROST-Interactive generates the binding value ρi via a one-time
VRF to allow for parallelism in our simulator.

I Recall that plain (non-interactive) FROST generates ρi via a hash
function.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 18 / 19



Sign(m)→ (m, σ)

1. For each i ∈ S, SA sends Pi (m,B).

2. Each Pi validates m, and then checks D`,E` ∈ G
∗,∀(D`,E`) ∈ B.

4. Each Pi computes ρ` = H1(`,m,B), ` ∈ S, and derives R =
∏

`∈S D` · (E`)
ρ` , and

c = H2(R ,Y ,m).

5. Each Pi computes zi = di + (ei · ρi) + λi · si · c.

6. Each Pi securely deletes ((di ,Di), (ei ,Ei)) and returns zi to SA.

7.a SA re-derives ρi = H1(i,m,B) and Ri = Dij · (Eij)
ρi for i ∈ S, and subsequently

R =
∏

i∈S Ri and c = H2(R ,Y ,m).

7.b SA verifies each response by checking gzi
?
= Ri · Yi

c·λi for each signing share zi , i ∈ S,
aborting/reporting if the equality does not hold. If the equality does not hold, identify
and report the misbehaving

7.c SA computes z =
∑

zi and publishes σ = (R , z) along with m.

Chelsea Komlo, Douglas Stebila, Ian Goldberg FROST November 2020 19 / 19


