
Thresholdizing DSA,

Schnorr, EdDSA,

HashEdDSA,….

Nigel Smart

KU Leuven

Why would you want to thresholdize a signature?

• You want better key control for high value applications

• You want quorum approval

• ….

Most applications allow you to pick which threshold signature you want to use.

In which case the choice is obvious…

Schnorr, Schnorr, Schnorr and then Schnorr

Nigel Smart, imec-COSIC2

Thresholdizing Signatures

But sometimes you have a legacy, or regulatory, reason to use a specific
signature scheme

Sometimes you want to thresholdize to secure a library

• Think like an Unbound vHSM application

In the latter case you also want to validate the algorithm is the same as the non-
thresholdized one.

Lets see these issues for different (elliptic curve based) signature schemes…

Nigel Smart, imec-COSIC3

Thresholdizing Signatures

Key Gen: Q = [x] P

Sign: r= f([k] P)

s = (H(m) + x r)/k mod q

Lot of work recently on new threshold implementations

• Complex due to the k inversion in signing

No “nice” security proof (DSA is an old algorithm, not surprising)

As long as the threshold k is random, threshold code is equivalent to non-

threshold code (if correct)

If k is not random loads of nonce-attacks over the last 20 years.

Nigel Smart, imec-COSIC4

DSA

Key Gen: Q = [x] P

Sign: r= f([k] P)

s = (k – x * H(m | r)) mod q

Almost trivial to produce actively secure threshold version

Nice security proof (forking Lemma)

As long as the threshold k is random, threshold code is equivalent to non-

threshold code (if correct)

If k is not random loads of nonce-attacks over the last 20 years.

Nigel Smart, imec-COSIC5

Schnorr

Key Gen: Q = [x] P

Sign: k = H’(x || M)

r= f([k] P)

s = (k – x * H(m | r)) mod q

Almost trivial to produce actively secure threshold version (its Schnorr)

Nice security proof (forking Lemma, its Schnorr)

As k is deterministic if implemented correctly you cannot have nonce-attacks

From a code-audit point of view should a threshold version be functionally
equivalent to a non-threshold version?

• The problem would be evaluating H’ to get a thresholded k.

Nigel Smart, imec-COSIC6

EdDSA [Slightly modified to show similarity]

Key Gen: Q = [x] P

Sign: k = H’(x || H’’(M))

r= f([k] P)

s = (k – x * H(m | r)) mod q

Almost trivial to produce actively secure threshold version (its Schnorr)

Nice security proof (forking Lemma, its Schnorr)

As k is deterministic if implemented correctly you cannot have nonce-attacks

From a code-audit point of view should a threshold version be functionally
equivalent to a non-threshold version?

• The problem would be evaluating H to get a thresholded k.

Nigel Smart, imec-COSIC7

HashEdDSA [Slightly modified to show similarity]

Nigel Smart, imec-COSIC8

The Non-Problem With H’ in EdDSA

H’ is introduced to avoid the bad nonce attacks

The verifier cannot check whether you generate k in this way

So why bother trying to emulate the EdDSA standard exactly?

• Get the parties to generate the shared k in a way which is secure

• Ensure that as long as one party has enough entropy the k is protected

against nonce-attacks

• No one will notice in any way

Nigel Smart, imec-COSIC9

The Problem With H’ in EdDSA

This is fine in practice (or a theoretical version of practice) but this is not the same

algorithm

A code auditor/testing lab would never sign off you had implemented a threshold

version of EdDSA

So a true thresholdized implementation which could be audited would need to

generate k between the parties

This would seem to imply a need for a MPC-like implementation of H’

But H’ could be on a very long message k = H’(x || M)

Nigel Smart, imec-COSIC10

The Problem With H’ (but not H’’) in HashEdDSA

In HashEdDSA things can be slightly simpler…

k = H’(x || H’’(M))

H’’ is applied to a public message

• So H’’ can be applied in the clear

• x is kind of small

• So H’ is really on a small input, so could be done in a secure manner

Nigel Smart, imec-COSIC11

Summary

Nice Security

Proof

Resistance to

Nonce Attacks

Trivial to

Thresholdize

(no cheating)

Trivial to

Thresholdize

(with cheating)

DSA

Schnorr

EdDSA

HashEdDSA

Nigel Smart, imec-COSIC12

Summary

Nice Security

Proof

Resistance to

Nonce Attacks

Trivial to

Thresholdize

(no cheating)

Trivial to

Thresholdize

(with cheating)

DSA

Schnorr

EdDSA

HashEdDSA
 /

Key Gen: Q = [x] P

Sign: k = H’(x || H’’(M))

r= f([k] P)

s = (k – x * H(m | r)) mod q

Step 1: Notice if you secret share x and k in some actively secure LSSS based

generic MPC over GF(q) then computation of r and s is trivial

Indeed active security of the generic MPC implies you don’t need the ZKPoKs

needs for traditional Schnorr threshold signatures

Nigel Smart, imec-COSIC13

Thresholdizing HashEdDSA

k = H’(x || H’’(M))

Step 2: Compute H’’(M) in the clear.

Step 3: Use the generic MPC system to compute H’

• And this is where the fun starts….

• In the standard H’ is SHA512 or SHAKE256

Note: Techniques which follow will also work for EdDSA, but much less efficient if M is very long

Nigel Smart, imec-COSIC14

Thresholdizing HashEdDSA

So the MPC-ified H’ will take shared input in GF(q), i.e. x

It takes some public `bits’ from H(m)

It applies a bit-oriented hash function SHA512 or SHAKE256

Takes the bit outputs in the MPC domain and maps them to a shared output

value k in GF(q)

Nigel Smart, imec-COSIC15

The Function H’

SHA512 and SHAKE256 are more efficient when implemented via Garbled-

Circuit protocols (e.g. Yao or HSS).

• Note only makes sense in full threshold setting given current MPC

technology

x and k live mod q, so best implemented using LSSS based protocols (e.g.

SPDZ etc

So we need to translate between the LSSS world, the GC world, and then back

to the LSSS world

Nigel Smart, imec-COSIC16

The Tricky Bit

Nigel Smart, imec-COSIC17

[x]q

+ H’’(M)

Apply SHA

256 or

SHAKE 512

using GC

[k]q

LSSS World GC World

[x]2

[k]2

Nigel Smart, imec-COSIC18

[x]q

+ H’’(M)

Apply SHA

256 or

SHAKE 512

using GC

[k]q

LSSS World GC World

[x]2

[k]2

daBit Protocol

daBit Protocol

Nigel Smart, imec-COSIC19

[x]q

+ H’’(M)

Apply SHA

256 or

SHAKE 512

using GC

[k]q

LSSS World GC World

[x]2

[k]2

daBit Protocol

daBit Protocol

Slow Part of the

Whole Thing

Nigel Smart, imec-COSIC20

[x]q

+ H’’(M)

Apply SHA

256 or

SHAKE 512

using GC

[k]q

LSSS World GC World

[x]2

[k]2

daBit Protocol

daBit Protocol

These components are

all implemented in the

SCALE-MAMBA system

The problem is we needed to move from the LSSS world to the
GC world as the hash function was not friendly to the LSSS
world

Fix: Pick a different hash function

• Luckily for use in STARKs etc people have designed
efficient hash functions which work natively for data mod q

• Best in class is Rescue

Replacing SHA512/SHAKE256 for H’ with a Rescue based
implementation makes a big difference…

Nigel Smart, imec-COSIC21

Rescue to the Rescue

Nigel Smart, imec-COSIC22

Run Times

HashEd25519 +

SHA512

HashEd25519 +

Rescue

HashEd448 +

SHAKE256

HashEd448 +

Rescue

Shamir(3,1) 1406 ms 7 ms 1887 ms 14 ms

Shamir(4,1) 1792 ms 9 ms 2515 ms 14 ms

Shamir(5,1) 2190 ms 11 ms 2925 ms 15 ms

Shamir(5,2) 2195 ms 15 ms 2959 ms 17 ms

Note run times for Ed448 depend on the size of the context field (see the standard for what this is)

We give the runtimes for the smallest context field possible above.

See the paper for the full details: https://eprint.iacr.org/2020/214.pdf

https://eprint.iacr.org/2020/214.pdf

Is functional equivalence with the non-threshold version important?

• Even if it cannot be detected during normal usage?

Should basic primitives be also standardized which are MPC-friendly?

• MPC-friendly block ciphers, hash functions etc

• These are being used increasingly in MPC + ZK + Blockchain applications

When designing basic primitives (e.g. signatures in future) should threshold
possibilities be taken into account?

• What does this mean for the ongoing PQC “competition”?

Nigel Smart, imec-COSIC23

Questions for Standards…

Nigel Smart, imec-COSIC24

Sorry I am Not Around to

Take Questions…..

