

IEEE Computer, vol. 43, no. 6 (June, 2010) , pp. 79-81

Adding Attributes to Role-Based Access Control
D. Richard Kuhn, National Institute of Standards and Technology

Edward J. Coyne, Science Applications International Corp.

Timothy R. Weil, Raytheon Polar Services Company

Merging the best features of RBAC and attribute-based systems can provide effective access control for
distributed and rapidly changing applications.

Role-based access control (D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Controls,” Proc. 15th Ann.
Nat’l Computer Security Conf., NSA/NIST, 1992, pp. 554-563; R. Sandhu et al., “Role-Based Access
Control Models,” Computer, 29(2), 1996, pp. 38-47), also known as RBAC, provides a popular model for
information security that helps reduce the complexity of security administration and supports review of
permissions assigned to users. This feature is critical to organizations that must determine their risk
exposure from employee IT system access.

RBAC has frequently been criticized for the difficulty of setting up an initial role structure and for
inflexibility in rapidly changing domains. A pure RBAC solution may provide inadequate support for
dynamic attributes such as time of day, which might need to be considered when determining user
permissions. To support dynamic attributes, particularly in large organizations, a “role explosion” can
result in thousands of separate roles being fashioned for different collections of permissions. Recent interest
in attribute-based access control (ABAC) suggests that attributes and rules could either replace RBAC or
make it more simple and flexible.

ROLE-BASED ACCESS CONTROL
A US standard defined in ANSI/INCITS 359-2004, Information Technology—Role Based Access

Control, RBAC controls all access through roles assigned to users. Each role assigns a collection of
permissions to users. RBAC assumes that, in most applications, permissions needed for an organization’s
roles change slowly over time, but users may enter, leave, and change roles rapidly.

Hierarchical structure
For efficiency, roles can be structured hierarchically so that some roles inherit permissions from others.

RBAC simplifies access control compared with the administrative burden that would be required for a
direct mapping from individual users to access control lists attached to resources. Once roles with their
permissions have been defined, user provisioning simply requires that office staff assign users to roles as
authorized by management.

RBAC is also well suited to separation-of-duty requirements, where no single individual has all
permissions needed for critical operations such as expenditure of funds. Proper operation of RBAC requires
that roles fall under a single administrative domain or have a consistent definition across multiple domains,
so distributed applications might be challenging.

Although RBAC implementations differ, many provide at least basic features of the RBAC standard.
Several proposals for revising the standard have been introduced (N. Li, J. Byun, and E. Bertino, “A
Critique of the ANSI Standard on Role-Based Access Control,” IEEE Security & Privacy, Nov. 2007, pp.
41-49) and evaluated with respect to the rationale for design decisions in the current standard (D.F.
Ferraiolo, D.R. Kuhn, and R. Sandhu, “RBAC Standard Rationale: Comments on a Critique of the ANSI
Standard on Role-Based Access Control,” IEEE Security & Privacy, Nov. 2007, pp. 51-53).

Committee CS1.1 within the InterNational Committee for Information Technology Standards (INCITS)
has initiated a revision with the goal of extending its usefulness to more domains, particularly distributed
applications.

Attribute-based access control
Although ABAC has no clear consensus model to date, the approach’s central idea asserts that access

can be determined based on various attributes presented by a subject (A.H. Karp, H. Haury, and M.H.
Davis, “From ABAC to ZBAC: the Evolution of Access Control Models,” tech. reportHPL-2009-30, HP
Labs, 21 Feb. 2009). Rules specify conditions under which access is granted or denied. For example, a

IEEE Computer, vol. 43, no. 6 (June, 2010) , pp. 79-81

bank might allow access if the subject is a teller working between the hours of 7:30 am and 5:00 pm, or the
subject is a supervisor or auditor working those same hours who also has management authorization.

This approach might be more flexible than RBAC because it does not require separate roles for relevant
sets of subject attributes, and rules can be implemented quickly to accommodate changing needs. The
trade-off for this flexibility is the complexity of cases that must be considered: for n Boolean attributes or
conditions using attributes, there are 2n possible combinations. Authentication of attributes could be
distributed and based on the authority that issues a particular attribute, such as a firm vouching for a
subject’s employment status. Negotiation between parties must establish trust in attributes and ensure that
parties use the same definition for attributes.

COMBINING RBAC AND ABAC
RBAC and ABAC have their particular advantages and disadvantages. While ABAC may require up to

2n rules for n attributes, attempting to implement the same controls in RBAC could, in a worst case, require
2n roles, one for each possible combination of attributes. Generally speaking, RBAC trades up-front role
structuring effort for ease of administration and user permission review, while ABAC makes the reverse
trade-off: it is easy to set up, but analyzing or changing user permissions can be problematic.

Determining RBAC role structure, a process known as role engineering (E.J. Coyne, Role Engineering,
Artech House, 2008), could take many months, but once completed it is easy to determine who has what
permissions. ABAC makes it easy to specify access rules, but to determine the permissions available to a
particular user a potentially large set of rules might need to be executed in exactly the same order in which
the system applies them. This can make it impossible to determine risk exposure for a given employee
position.

Can these two models be combined to take advantage of both their strengths?
Table 1 summarizes possible combination strategies and options for integrating attributes with RBAC

(RBAC-A). Options 0 and 2 are undefined but included for completeness; options 1 and 3, which have no
user ID in the access decision, might appear unusual but could be used in public facilities where attributes
or roles determine anonymous users’ access.

Table 1. Combination strategies and options for integrating attributes with RBAC

Option U R A Model Permission mapping
0 0 0 0 undefined ―
1 0 0 1 ABAC-basic A1, ... , An → perm
2 0 1 0 undefined ―
3 0 1 1 ABAC-RBAC hybrid R, A1, ... , An → perm
4 1 0 0 ACLs U → perm
5 1 0 1 ABAC-ID U, A1, ... , An → perm
6 1 1 0 RBAC-basic U → R → perm
7 1 1 1 RBAC-A, dynamic roles U, A1, ... , An → R → perm
8 1 1 1 RBAC-A, attribute-centric U, R, A1, ... , An → perm
9 1 1 1 RBAC-A, role-centric U→ R → A1, ... , An → perm

* U = user/subject ID; R = role; A = attributes

Broadly speaking, there are three RBAC-A approaches to handle the relationship between roles and
attributes, all retaining some of the administrative and user permission review advantages of RBAC while
allowing the access control system to work in a rapidly changing environment:

•	 Dynamic roles. Attributes such as time of day are used by a front-end module to determine the
subject’s role, retaining a conventional role structure but changing role sets dynamically (R. Fernandez,
Enterprise Dynamic Access Control Version 2 Overview, US Space and Naval Warfare Systems Center, 1 Jan.
2006; http://csrc.nist.gov/rbac/EDACv2overview.pdf). Some implementations of dynamic roles might let
the user’s role be fully determined by the front-end attribute engine, while others might use the front
end only to select from among a predetermined set of authorized roles.

•	 Attribute-centric. A role name is just one of many attributes. In contrast with conventional RBAC, the
role is not a collection of permissions but the name of an attribute called role. This approach’s main

http://csrc.nist.gov/rbac/EDACv2overview.pdf

IEEE Computer, vol. 43, no. 6 (June, 2010) , pp. 79-81

drawback is the rapid loss of RBAC’s administrative simplicity as more attributes are added. It also
suffers from potential problems with ABAC when determining the risk exposure of a particular
employee position.

•	 Role-centric. Attributes are added to constrain RBAC. Constraint rules that incorporate attributes can
only reduce permissions available to the user, not expand them. Some of ABAC’s flexibility is lost
because permission sets are still constrained by role, but the system retains the RBAC capability to
determine the maximum set of user-obtainable permissions. As an aside, developers explicitly
designed the formal model for RBAC, introduced in 1992, to accommodate additional constraints
being placed on a role.

The dynamic-roles RBAC-A model allows implementation as a layer atop an existing RBAC structure.
Attribute-centric RBAC-A, as defined here, is less a true RBAC system because access is not controlled by
roles formed from sets of permissions.

PERMISSION CONSTRAINTS
Implementing the role-centric RBAC-A scheme requires changing the RBAC standard to constrain the

set of permissions available during a user’s session. In the current standard all permissions are available
depending on the user’s active roles. Clearly, the subject must avoid receiving any permission not
authorized for the active role or restricted by the attribute-based constraints.

The permissions in this approach will be the intersection of P and R, where P is the set of permissions
assigned to the subject’s active roles and R is the set of permissions specified by the applicable ABAC
rules. The user’s role set therefore determines the maximum set of available permissions, supporting the
principle of least privilege and allowing easy review of user permissions.

Combined design
We use a combined design rather than a pure system because, in general, some user attributes are

relatively static—such as position, skill set, or office location—while others, such as time of day, are
dynamic. Developing a role structure based on the more static attributes can avoid awkward designs that
might result from purely one choice or another.

For example, consider a system with 10 attributes, four of which are static and six dynamic. This set of
attributes could result in 210 roles or 210 ABAC rules. Establishing a role structure based on the four static
and six dynamic attributes means a maximum of 16 roles and 64 rules, a significant improvement over the
1,024 roles or rules that could be considered using only RBAC or only ABAC.

Determining maximum permissions
Applying the role-engineering effort to the relatively static attributes, and encapsulating these

components of access decisions in roles, can reduce the number of dynamic rules dramatically. A combined
design thus retains advantages of RBAC, such as ease of user provisioning and the ability to quickly
determine the maximum permissions available to each user—critical in determining risk exposure while
preventing a “role explosion” to cover every possible contingency for permission sets that might be
required by users.

We believe this is an appropriate trade-off that will retain the benefits of RBAC while extending its
utility to today’s important distributed applications. In response to comments received over the five-year
life of the current RBAC standard, INCITS CS1.1 is developing a policy-enhanced RBAC standard to
accommodate importation of arbitrary constraints, including attributes of all types. This enhanced model
will maintain the advantages of RBAC while providing a mechanism for including attributes in access-
control decisions. For more information, see http://csrc.nist.gov/groups/SNS/rbac/rbac-standard­
revision.html.

D. Richard Kuhn is a computer scientist at the National Institute of Standards and Technology. Contact him at
kuhn@nist.gov.

Edward J. Coyne is a senior security engineer at Science Applications International Corp. Contact him at

ed.coyne@va.gov.

Timothy R. Weil is an information security manager at Raytheon Polar Services Company. Contact him at

Timothy.Weil.Contractor@usap.gov

mailto:Timothy.Weil.Contractor@usap.gov
mailto:ed.coyne@va.gov
mailto:kuhn@nist.gov
http://csrc.nist.gov/groups/SNS/rbac/rbac-standard

IEEE Computer, vol. 43, no. 6 (June, 2010) , pp. 79-81

Certain software products are identified in this document, but such identification does not imply
recommendation by the US National Institute of Standards and Technology or other agencies of the US
government, nor does it imply that the products identified are necessarily the best available for the purpose.

Mike Hinchey, editor of the Software Technologies column, is codirector at Lero—the Irish Software Engineering Research Centre. Contact him at
mike.hinchey@lero.ie.

Role-based access control, Dynamic roles, Adding and managing attributes, Controlling permissions,
attribute based access control

mailto:mike.hinchey@lero.ie

