
Key Feedback Mode: a Keystream Generator
with Provable Security

Johan H̊astad∗

NADA, Royal Inst. of Technology
SE-10044 Stockholm, Sweden

Mats Näslund†

Communications Security Lab
Ericsson Research

SE-16480 Stockholm, Sweden

October 11, 2000

Abstract

We propose a key feedback mode of operation for the AES algorithm Ri-
jndael (or any other block cipher), giving efficient synchronous keystream
generators. We show that if the block cipher possesses simple proper-
ties, normally accepted to exist in any secure block cipher, then also the
generator is secure.

1 Introduction

For confidentiality, the strongest notion of security that we can hope to achieve
in practice is so called semantic security : whatever computational information
that can be non-trivially derived from an encryption, E(m), should also be
possible to obtain even without E(m). This notion was put forward in the
seminal work by Goldwasser and Micali [9]. In the asymmetric case, we know
that semantic security is impossible by deterministic systems, but [9] showed
how to achieve it by probabilistic means. For (symmetric) block ciphers, we
can easily see that the most obvious way of using it, Electronic Codebook Mode
(ECB), is not semantically secure either. For instance, it is possible to determine
relations between certain parts of a message, such as whether one part is a
permutation of the another or not.

For this and other reasons, alternative modes of operation to ECB have
been suggested, the most common being Cipher Block Chaining (CBC), Output

∗johanh@nada.kth.se
†mats.naslund@era-t.ericsson.se

1

Feedback Mode (OFB), and Cipher Feedback Mode (CFB). The purpose of CBC
is to remove the obvious weaknesses of ECB, but it is perhaps not immediately
clear that it removes all weaknesses. However, in [1], Bellare et al. show that
if the block cipher is in a sense “ideal”, then the concrete security of CBC is as
good as might hope.

The two remaining modes, OFB and CFB, are interesting as they provide
means of using the block cipher as a key stream generator or stream cipher. A
stream cipher is from a theoretical point easy to analyze as the only property
needed from the key stream to give a semantic security is pseudo randomness :
it should be computationally infeasible to distinguish, with non trivial success
rate, the key-stream from a completely random stream of the same length.
Therefore, it is natural to ask: how can a block cipher be deployed to produce
pseudo random key streams? Does OFB/CFB provide security in this sense?

To begin with, it is natural to assume that the underlying block cipher in
question is, by itself, secure. That is, under a reasonable attack model such as
known/chosen plaintexts, a successful attack retrieving the key requires about
2n work, where n is the keysize. If so, the block cipher is a one-way function:
given the key, it is easy to compute the cipher text block, but given only cipher
text blocks, it is hard to go backwards and find key. In the remainder of the
paper we shall therefore assume that the block cipher we use (e.g. the AES
algorithms Rijndael, [17, 3]) is one-way in this sense—any candidate found not
to be one-way will certainly not be selected.

Constructing provably secure cryptosystems and pseudo random generators
based on the presumed one-way properties of number-theoretic problems has
achieved a lot of attention, [2, 9] being among the first in a long line of works
from the 1980’s. In the more classical, symmetric cryptography case, not much
appears to have been done. Although it can be shown (in a theoretical sense)
that any one-way function can be used to build a pseudo random generator,
[10], such constructions are far too complex to have any practical implications.
Moreover, it is easy to give examples of functions that although they might be
one-way, they fail miserably in giving a pseudo random generators when used in
CFB or OFB modes. In this paper we propose a new mode of encryption, Key
Feedback Mode. It is slightly more complex than OFB/CFB, but on the other
hand, we can actually prove that if the block cipher used is secure in a reasonable
sense, then the mode indeed produces pseudo-random bit streams. Specifically,
we give a quantitative relation between the workload needed to distinguish the
keystream from true randomness, to the workload needed to retrieve the secret
key.

The basic ingredients in our construction are complexity-theoretical results
that have been known for little over a decade and are mainly due to works of
Blum and Micali [2], Levin [12], and Goldreich and Levin [8]. The contribution
of this paper is a highly optimized version of these results, which enables us to
derive results for practical values of the parameters (key sizes) involved. In fact,
whereas previous results were only applicable for key sizes of a few thousand bits
or more, our method starts to be effective somewhere in the range 100–150 bits,
and at 256 bits (or more), the results are quite strong. As a concrete example,

2

we can show that if we base our construction on a 256-bit block cipher, f , and
generate 1Gbit of keystream, then an attack that correctly distinguishes this
keystream from a truly random 1Gbit string with success rate 2−32, gives an
attack on the block cipher that is at least 225 times more successful then one
would expect for a “perfect” cipher, see §2.4.3.

Except for the aforementioned work in [1], there does not appear to be
much previous theoretical work relating security of modes of block ciphers to
the security of the cipher itself. Besides CBC, [1] also studies some different
counter modes (see discussion in §3.3).

The paper is organized as follows. We first give some preliminary back-
ground in §2, briefly describing the theoretical results upon which the actual
construction (presented in §2.4) is built. We then give a formal proof of secu-
rity, §2.4.2. Some estimates of efficiency in practical implementations appear in
§3.1.3, and a few “non-mathematical” attacks are discussed in §3.2.

2 Description

2.1 Notation

The length of binary string x is denoted |x|, and by {0, 1}n we denote the set
of x such that |x| = n. We write Un for the uniform probability distribution on
{0, 1}n. Except otherwise noted, log refers to logarithm in base 2, and ln is the
natural logarithm.

We remind the reader of the two most fundamental concepts in cryptography
and the theory of pseudo-randomness.

A one-way function is a function f so that f is polynomial time computable,
but for any probabilistic, polynomial time algorithm, I, any c > 0 and suffi-
ciently large n,

Pr[f(I(f(x))) = f(x)] ≤ 1
nc ,

probability over x ∈ Un and I’s random choices.
Secondly, we say that two probability distributions D1, D2, on strings of

length n are (computationally) δ(n)-distinguishable, if there is an efficient prob-
abilistic algorithm, A, such that

| Pr
y∈D1

[A(y) = 1]− Pr
y∈D2

[A(y) = 1]| ≥ δ(n).

Here, δ(n) is called the advantage of A. If no such A exist, D1, D2 are called
δ(n)-indistinguishable. The reader familiar with statistical tests may think of A
as such, trying to decide which distribution it sees as input. Note though that
what A actually does is completely unspecified—any feasible test is permitted.
Finally, a sequence of distributions distributions {Dn}n≥1, where Dn has sup-
port on {0, 1}n, is said to be pseudo-random if for any c > 0 and sufficiently
large n, Dn is n−c-indistinguishable from Un.

3

2.2 Pseudo Random Generators from One-way Function

As discussed, a block cipher running in a mode producing a secure key stream
generator is really a pseudo random generator (henceforth abbreviated PRG).
We therefore need to construct such a device. Suppose we have a one-way
function, that in addition is a permutation, i.e. for each n, f is a one-to-one
correspondence {0, 1}n → {0, 1}n. Furthermore, suppose that we have a family
of 0/1-functions, B = {br}, br(x) ∈ {0, 1}, with the property that given f(x) and
a randomly chosen br, br(x) is computationally indistinguishable from a random
0/1 coin toss. (I.e. predicting br(x), non-negligibly exceeding the trivial guessing
strategy’s success rate of 1/2 is infeasible.) Then, the following construction,
due to Blum and Micali [2], shows how to construct a PRG.

Choose x0, r (the seed), let xi+1 = f(xi), output g(x0, r) = br(x1), br(x2), . . .
as the generator output.

Theorem 1 (Blum-Micali, ’86). Suppose there is an efficient algorithm D
that distinguishes (with non-negligible advantage) g(x, r) from a completely ran-
dom string. Then, there is an efficient algorithm P that given r, f(x) predicts
br(x) with non-negligible advantage.

We shortly give proof of this theorem for the specific case of the generator
constructed in this paper, see §2.4.2. A set of functions, B as above, is called
a (family of) hard-core functions for f . This can be depicted as in the figure
below.

easyx, r - f(x), r

br(x)

?
easy

����������
hard

Notice that for the theorem to say anything, it is really necessary that f is
a one-way function. If not, we can predict br(x) from r, f(x) by first inverting
f and we would not get any contradiction.

For the above theorem it is important that f is a permutation. The problem
if it is not, is that xi might then after a few iterations of f become restricted
to a small subset of the domain of f . Possibly, f could be easy to invert on
that small subset. If f is not a permutation, but f behaves like a random
function, however, then it can be shown (see Theorem 3) that after a moderate
number of iterations, f is still one-way even when restricted to this set of inputs.
Assumptions along these lines have been proposed by Levin [12] and are in fact
necessary and sufficient of the existence of pseudorandom generators.

In summary, from a theoretical standpoint, this leaves us with the question:
which one-way functions (if any) have hard-cores, and if so, what do these hard-
cores look like?

4

2.3 The Goldreich-Levin Theorem

In 1989, Goldreich and Levin [8], proved that any one-way function (not only
permutations) have hard-cores1. Perhaps surprisingly, the hard-cores they found
are also extremely simple to describe. If r, x are binary strings of length n, let
ri (and xi) denote the ith bit of r (and x), fixing an order left-to-right, or right-
to-left. The set B = {br} consists of 2n functions, each indexed by such a string
r and br(x) is defined as

br(x) , r1 · x1 + r2 · x2 + · · ·+ rn · xn mod 2,

that is, the inner product mod 2.

Theorem 2 (Goldreich-Levin, ’89). Suppose there is an efficient algorithm
A, that given r, f(x) for randomly chosen r, x, distinguishes (with non-negligible
advantage) br(x) from a completely random bit. Then there exists an efficient
algorithm B, that inverts f(x) on random x with non-negligible probability.

(A proof is given in §2.4.2.) So, if f is believed to be a one-way function,
the existence of such A would be a contradiction. Note that the model is that
adversary, trying to predict br(x), gets both f(x) and r for random r. Thus,
a proof of security implies that in a practical application, r should be random,
but need not be kept secret.

So far, the construction above gives one pseudo-random output bit, br(x),
per application of the function f . Even if f is fairly easy to compute, it is
obvious that computing br will in practice be negligible compared to computing
f . As established already in [8], one way to improve efficiency would therefore
be to extract more than one bit at a time.

Indeed, it turns out that instead of outputting a single inner product mod-
ulo 2, it is possible to output as many as m ∈ O(log n) (where n = |x|) brs,
corresponding to multiplying the binary vector x by a random m × n binary
matrix, R. We denote the set of all such matrices Mm, and the corresponding
functions {Bm

R | R ∈ Mm}. That is,

Bm
R (x) =

r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n
...

...
...

rm,1 rm,2 · · · rm,n

·

x1

x2
...

xn

mod 2.

It is clear that from a theoretical point of view, outputting ∼ log n bits is, in
general, the best we can hope for. To give a security proof in practice with a
real function f we need an exact analysis keeping track of all constants and that
careful analysis is the bulk of this paper.

1We again stress that this does not automatically imply that a PRG can be built from
any one-way function, as the construction by Blum and Micali only works for one-way per-
mutations. It is true that PRGs can be built from any one-way function, but without the
permutation assumptions, the construction no longer becomes practical, [10].

5

2.4 The Construction

As described above we have a general construction given any one-way function.

Definition 1. Let n, and m,L, λ be integers such that L = λm and let f :
{0, 1}n → {0, 1}n. The generator BMGLn,m,L(f) stretches n + nm bits to L
bits as follows. The input is interpreted as x0 and R ∈ Mm. Let xi = f(xi−1),
i = 1, 2, . . . , λ and let the output be {Bm

R (xi)}λ
i=1.

Our goal is to see how secure this generator is given an assumption about
the difficulty of inverting f . We first define security in terms of a distinguisher.

Definition 2. Let D be a probabilistic algorithm which takes an input from
{0, 1}L and has binary output. Let pr be the probability that D outputs 1 on
a random input and pG the probability that it outputs 1 on the output from a
generator G. We then say that D is a (L, T, δ)-distinguisher for G if D runs in
time T and pG ≥ pr + δ. If there is no (L, T, δ)-distinguisher for G then it is
said to be (L, T, δ)-secure.

Our definition of a distinguisher is only stated for the case of distinguishing
random bits from the output of a generator. We note that there are more general
situations where the distinguisher is trying to distinguish two distributions A
and B and also that it can be given an element of a third distribution C, which
might be coupled with A and/or B, as an aid. We do not give the formal
definition of this concept at this moment.

Though we will not here make any particular assumption on the running
time of the distinguisher, it is interesting to note that “practical” distinguishers
are almost always faster than the generator undergoing the test (excluding poor
generators such as linear congruential ones). This can be verified by anyone
having experience with tests similar to Diehard, [15], or those proposed by
Knuth [11].

The next section exactly relates the difficulty of inverting an iterated function
f to the possibility of distinguishing the output of BMGLn,m,L(f) from random
bits. When f is a cryptographic function such as a block-cipher or hash-function,
then under the commonly used additional assumption of “random behavior” of
f , we can bring things one step further, relating the security of BMGLn,m,L(f)
more directly to the difficulty of inverting f itself. We first define our measure
of success.

Definition 3. For a function f : {0, 1}n → {0, 1}n, let f (i)(x) denote f iterated
i times, f (i)(x) , f(f (i−1)(x)), f (0)(x) , x.

Let A be a probabilistic algorithm which takes an input from {0, 1}n and has
output in the same range. We then say that A is a (T, δ, i)-inverter for f if
when given y = f (i)(x) for an x chosen uniformly at random, in time T with
probability δ it produces z such that f(z) = y.

Note the the value z might be on the form f (i−1)(x′) but this is not required.
It is interesting to investigate what happens for a random function.

6

Theorem 3. Let A be an algorithm that tries to invert a black box function
f : {0, 1}n → {0, 1}n, and makes T calls to the oracle for f . If A is given
y = f (i)(x) for a random x, then the probability (over the choice of f and x)
that A finds a z such that f(z) = y is bounded by T (i + 1)2−n. On the other
hand, there is an algorithm that using at most T oracle calls outputs a correct
z except with probability (1− (i + 1)2−n)T−i.

Proof sketch. For the lower bound on the required number of oracle calls, con-
sider the process of computing f (i)(x) and let W be the i values at which f is
computed in this process. If an inverter does not compute f at any w ∈ W ,
there is no correlation between the inverter and and the evaluation process. If
the inverter makes T calls to f(w), the probability of doing this for a w ∈ W is
at most (i + 1)T2−n and this can be formalized.

For the upper bound consider the following inverter. It is given y = f (i)(x).
Start by setting x0 = 0n and xj = f(xj−1) for j = 1, 2, Continue this
process until either xj = y (and it is done) or xj is a value it has seen previously.
In the latter case it changes xj to a random value it has not seen previously
and continues. Each value it sees is a random value and if it ever gets one of
the i + 1 values in W , it finds the y within at most i additional evaluations of
f . The probability of not finding such a good value in the T − i first steps is at
most (1− (i + 1)2−n)T−i.

We would therefore expect that the best achievable time over success ratio
to invert a random, iterated function is about 2n/i. Another argument that this
is the “correct” complexity can be seen from [5]. Our concern the size of the
image, Im(f (i)(x)). In [5] it is shown that if f is a randomly chosen function,
then the expected size of Im(f (i)(x)) is (1− τi)2n, where τ0 = 0, τi = e−1+τi−1 .
A Taylor expansion shows that 1− τi is Θ(1/i).

The one-way functions, f , we will here consider are symmetric block-encryption
functions viewed as encryption of a fixed message. Thus, the input to f is the
key and the output is the cipher-text. (Alternatively, a cryptographic hash-
function can be used as f , in which case input-output are taken in the obvious
way.)

Definition 4. A σ-secure one-way function is an efficiently computable func-
tion, f(x), that maps n-bit strings to n-bit strings, such that the average time
over success ratio for inverting the ith iterate is σ2n/i. That is, f cannot be
(T, δ, i)-inverted for any T/δ < σ2n/i.

A block cipher is σ-secure, if the mapping fp(k), for known plaintext p, is a
σ-secure one-way function of the key to the ciphertext.

(If a hash-function is used, σ-security is defined in a completely analogous
way.) In the sequel we can now for concreteness think of f as Rijndael, [3].
Preferably, if there was an attack on BMGLn,m,L(f), we would like do draw
direct conclusions from this as to the security of f . However, since the con-
struction iterates f , and the fs we will use are not necessarily permutations, we
cannot do this directly. Nevertheless, since one normally assumes that block-
ciphers and hash-functions behave like random functions, we would naturally

7

also assume that Theorem 3 remains true for such f . A parameter of central
interest is the success over time ratio which for a random function (and pre-
sumably also for our f) by Theorem 3 is about 2n/i after the function has been
iterated i times. Hence, for our “practical” choices of f , we expect them to be
1-secure in the above terminology.

2.4.1 The New Mode of Operation

Using a block cipher f = fp(k) as above in the BMGLn,m,L(f) construction,
we now view as our new mode of operation for that cipher. As can be seen, it
is in some sense a “dual” and more elaborate version of OFB. By duality we
refer to the fact that the feedback is to the key, not to the plaintext block. The
output generation is therefore by necessity a bit more complex as it does not
(and in fact cannot) use the ciphertext output block directly. The mode, which
we assign the working title KFB (Key Feedback mode) can thus be viewed as
follows

p

?

k - f

�6

?

R - Bm
R

?
output key stream

The role of the initialization vector in OFB (the “IV ”) is taken by the output
generation matrix R (the plaintext p may be chosen as a constant), and the
initial value of k is the key to our cryptosystem. As for OFB, the IV need not
be kept secret, but must be random. The number of bits needed for our IV
may at this point seem very large. We shall later discuss ways of significantly
reducing the size, while still keeping a provable security. To start with though,
we assume it is of “full” size.

Also note that in practice, the speed is a bit lower than for OFB, the extra
overhead being dominated by the need to perform the key schedule for each
“block” of output keystream. We return to efficiency/implementation issues
later.

We next formally prove the security of the mode.

2.4.2 Security of the generator

Our objective is to show that if BMGLn,m,L(f) is not (L, T, δ)-secure for “prac-
tical” values of L, T, δ, then there is also a practical attack on the underlying
one-way function (block cipher) f . In particular, we show the following theorem:

8

Theorem 4. Suppose that G = BMGLn,m,L(f) is based on an n-bit function
f , computable by E operations, and that G produces L bits in time S. Suppose
this generator can be (L, T, δ)-distinguished. Then, setting δ′ = δm

2L , there is an
integer i ≤ L/m , λ such that f can be (T ′, δ′/4, i)-inverted, where T ′ equals

δ′−1(2n + 1)2m+2(n[2m + T + 1 + log(2n + 1) + 2 log δ′−1] + E).

In particular, the time over success ratio is about n2m−12mL2δ−2T . For any
µ ∈ (0, 1), the value of i can, with probability at least (1 − µ)log λ, be found in
time 3

2λ2δ−2(T + S) log λ ln µ−1.

This result can in principle be obtained directly from the original works by
Blum-Micali and Goldreich-Levin, but here we are interested in a tight result and
hence we have to be more careful than in [8] were, basically, any polynomial time
reduction from the inverting f to distinguishing the generator would be enough.
Optimizations of the original proof also appeared in [13]. In the remainder of
the paper, we shall treat operations on n-bit strings (such as taking their bit-
wise XOR), as elementary, taking constant time. The first step is the lemma
below.

Lemma 5. Let L = λm. Suppose that BMGLn,m,L(f) runs in time S(L). If
this generator is not (L, T (L), δ)-secure, then there is an algorithm P (i), 1 ≤
i ≤ L/m that, using T (L) + S(L) operations, given f (i)(x), R, distinguishes
Bm

R (f (i−1)(x)) from Um with advantage δ′ ≥ δm
2L .

P (i) depends on an integer i, and for any 0 < µ < 1, using 3
2λ2δ−2 log λ(T (L)+

S(L)) ln µ−1 operations, i can be found with probability at least (1− µ)log λ.

The proof uses an optimized version of the so called universality of the next-
bit-test, by Yao [20], see also [2].

Proof. For simplicity let us refer to our generator simply as G. Let D be an
algorithm that uses S(L) operations and distinguishes the output of G from a
random L-bit string with advantage δ. Define the hybrid distributions Hi, i =
0, 1, . . . , λ, on {0, 1}L as follows. First, x0, R are randomly chosen in {0, 1}n ×
Mm. Next, the first im bits of Hi are obtained as outcomes of random coin-
flips. Then, to generate bits im + 1, im + 2, . . . , L, we apply the generator by
setting xj = f (j)(x0), j ≥ i, and let the jth m-bit block of Hi be Bm

R (xj).
Observe that H0 equals the distribution of outputs of G, and that Hλ is the

uniform distribution on {0, 1}L. By assumption, D distinguishes H0 and Hλ

with advantage δ, so from the triangle follows the existence of an i, 0 ≤ i < λ, for
which D distinguishes Hi from Hi+1 with advantage at least δ/λ. We postpone
the discussion how to find such an i for the moment.

The algorithm P (i) (depending on i) now works as follows. On input (r, y =
f (i)(x), R) ∈ {0, 1}m × {0, 1}n × Mm it produces an element by first flipping
im coins, appending r, and then iteratively applying f,Bm

R λ − i times as in
the generator construction. Call the generated element z and observe that if r
is random, then z is an element from Hi+1, whereas if r = Bm

R (f (i−1)(x)), z is

9

from Hi. P (i) then feeds z to D and answers the same as D does. Clearly, P (i)

distinguishes with the same advantage as D distinguishes Hi and Hi+1.
To find the right i, we perform a binary search and evaluate the alternatives

by sampling. Due to sampling errors the quality of the found i can not be
guaranteed to be exactly as good as the i in the existence proof above. Assume
for notational simplicity that λ is a power of 2.

It must either be the case that D distinguishes between H0, Hλ/2, or, be-
tween Hλ/2,Hλ with advantage at least δ/2. In general, for j = 1, . . . , log λ,
there musty be an lj ∈ [0..2j−1] such that D distinguishes H lj2−jλ,H(lj+1)2−jλ

with advantage at least δj , 2−jδ. We determine an lj that does almost this
well. The problem of finding the best lj is that we have sampling errors. Let t
be a parameter.

Set l0 , 0. Repeat for j = 1, . . . , log λ. We run D t times on H(2lj−1+1)2−j
,

H(2lj−1)2−j
, H(2lj−1+2)2−j

and record the number of 1-answers as c, cl and cr,
respectively. If |cr − c| ≥ |c− cl| we set lj = 2lj−1 + 1 and otherwise lj = 2lj−1.

We say that the j iteration above is successful if for the lj found we have
that D distinguishes H lj2−jλ and H(lj+1)2−jλ, with advantage at least (1 −
2j−(log λ+1))δj . If all iterations are successful, this gives us δlog λ as claimed.
Note, that by assumption we start in a successful situation. We now estimate
the probability that we are successful in iteration j.

Given success up to iteration j − 1, we know that for the true probabilities
pl and pr of D of outputting 1 on H lj−12−(j−1)λ and H(lj−1+1)2−(j−1)λ we have
|pl−pr| ≥ (1−2(j−1)−(log λ+1))δj−1. Now assume that one of of the two choices
for lj is bad. Let p be the probability that D outputs 1 on H(2lj−1+1)2−jλ.
Clearly it is enough to estimate the probability that lj = 2lj−1 in the case when
pl−pr ≥ (1−2(j−1)−(log λ+1))δj−1, and pl−p < (1−2j−(log λ+1))δj . We have to
estimate the probability that S = cl + cr − 2c is positive. Clearly the expected
value of this is t(pl + pr − 2p) which by the above assumption equals

t(pr − pl) + 2t(pl − p) > t2j−1−(log λ+1)δj−1 =
tδ
2λ

.

Setting t = 1
2λ2δ−2ln µ and applying a Chernoff bound, the error is bounded by

µ. To analyze the running time is straightforward since we have t calls to G for
each step in binary search.

We now reprove the theorem of Goldreich and Levin trying to be careful
with our estimates and construction.

Theorem 6. Suppose there is an algorithm, P , that using T operations given
R distinguishes Bm

R (x) from random strings of length m with advantage at least
ε where ε is given. Then we can in time

(2n + 1)ε−22m(2m + log((2n + 1)ε−2) + 1 + T)n

produce a list of (2n + 1)2mε−2 values such that the probability that x appears
in this list is at least 1/2.

10

Before we give the proof, some additional preliminaries. Let bin(i) be the
map that sends the integer i, 0 ≤ i < 2m to its binary representation as an
m-bit string.

In the sequel, we perform some computations in F2k , the finite field of 2k

elements, represented as Z2[t]/(q(t)) where q(t) is a polynomial of degree k,
irreducible over Z2. (Computationally, for the practical values of k that will be
of interest to us, we may assume that such q is available by table look-up and if
really needed, we can easily find a q with an expected number of k4 operations.)
Viewing F2k as a vector space over F2, for any γ =

∑k−1
i=0 γiti ∈ F2k , we let

in the natural way bin(γ) denote the vector (γ0, . . . , γk−1) corresponding to γ’s
representation over the standard polynomial basis. Note also that bin(γ) can
be interpreted as a subset of [0..k − 1] in the obvious way.

Lemma 7. Fix any x ∈ {0, 1}n. For m < k, from m + k randomly chosen
a0, . . . , am−1 and b0, . . . , bk−1 ∈ {0, 1}n, it is possible in time mk32k + m + k
to generate a set of s = 2k uniformly distributed, pairwise independent matrices
R1, . . . , Rs ∈ Mm. Furthermore, there is a collection of m × (m + k) matrices
{Mj}2

k

j=1 and a vector z ∈ {0, 1}m+k such Bm
Rj (x) = Mjz for all j.

The construction is similar to that of Rackoff in his proof of the Goldreich-
Levin theorem, see [6, 7].

Proof. Choose randomly and independently m strings, a0, a1, . . . , am−1 and k
strings b0, . . . , bk−1, each of length n. The jth matrix, Rj is now defined by
{ai}, {bl}, and an element αj ∈ F2k as follows. Its ith row, Rj

i , 0 ≤ i < m, is
defined by

Rj
i , ai ⊕

(

⊕l∈bin(αj ·ti)bl
)

,

where αj is the lexicographically jth element of F2k (this is simply the lexico-
graphically jth binary string), and the multiplication, αj · ti, is carried out in
F2k , and ⊕ is bitwise addition mod 2.

Clearly the matrices are uniformly distributed, since the ai and bl are chosen
at random. To show pairwise independence it suffices to show that an XOR of
any subset of elements from any two matrices is unbiased. Since the columns
are independent, it is enough to show that the XOR of any non-empty set of
rows from two distinct matrices Rj1 and Rj2 is unbiased. Take such a set of
rows, S1 ⊂ Rj1 , and S2 ⊂ Rj2 . We may actually assume that S1 = S2 = S, say,
since otherwise, the a-vectors makes the XOR uniformly distributed. Thus, the
XOR can be written

⊕i∈S ⊕l∈bin((αj1+αj2)·ti) bl,

but this is the same as

⊕l∈bin((αj1+αj2)·(
P

i∈S ti))bl,

which is unbiased if, and only if, bin((αj1 + αj2) · (
∑

i∈S ti)) 6= 0. However,
∑

i∈S ti 6= 0, and as αj1 6= αj2 , αj1 + αj2 6= 0 too, so we have two nonzero
elements and hence their product is nonzero.

11

Notice that if we know
∑

i alixi and
∑

i blixi mod 2 for all al, bl (a total
of m + k bits), then by the linearity of the above construction, we also know
the matrix-vector products Rjx for all j. It is easy to check that they can be
calculated as described. If zl denotes the lth choice for the m+ k bits, then one
zl will as claimed determine all the matrix products by setting Mj = [Im|Bj],
where Im is the m ×m identity matrix and Bj is the m × k matrix whose ith
row is bin(αj · ti).

The requirement m < k is really not essential for the applications we have
in mind for the lemma. We will only use it to guarantee the existence of at least
2k matrices with the above properties. Technically, if k < m, we can carry out
the same details, replacing k by m + 1 in the proof and then simply not use the
2m+1 − 2k “extra” matrices. However, as will be seen, the interesting uses of
the lemma is when k > m.

Before we go on, recall that any function g : {0, 1}m → {−1, 1} can be
expressed as a linear combination over the orthonormal set of functions {χu(z) =
(−1)〈u,z〉2}, where 〈u, z〉2 =

∑m−1
i=0 uixi mod 2. More precisely,

g(z) =
2m−1
∑

u=0

(−1)〈z,u〉2 ĝu, (1)

where ĝu , Ev[χu(v)g(v)] = 2−m ∑

v(−1)〈u,v〉2g(v). In other words, this is the
discrete Fourier series expansion of g.

Recall that the Fourier transform of 2t elements can be computed in time
t2t by the following observations:

ĝu =
2t−1−1
∑

v=0

(−1)〈u,v〉2g(v) +
2t−1
∑

v=2t−1

(−1)〈u,v〉2g(v), (2)

and if u′ = u + 2t−1 then similarly:

ĝu′ =
2t−1−1
∑

v=0

(−1)〈u,v〉2g(v)−
2t−1
∑

v=2t−1

(−1)〈u,v〉2g(v), (3)

neglecting the constant factor 2−t. We thus compute two sub-transforms of
half the size by conditioning on the most significant bit of v, and from the
sign, determined by the msb of u, we can combine the solution for the two
subproblems. For convenience, we shall therefore sometimes change the range
of function from {0, 1} to {−1, 1} in the natural way.

Lemma 8. Let P be an algorithm, mapping pairs Mm × {0, 1}m → {−1, 1},
whose running time is T , let Rj ,Mj be the matrices generated as described in
Lemma 7 and let S be an arbitrary matrix in Mm.

In time 2m+k(2m+k+T) it is possible to compute 2m+k values, c1, . . . , c2m+k

such that for at least one l,

cl = Ej [P (Rj + S,Bm
Rj (x))].

12

The value of l is independent of S.

(The role of the matrix S may seem unclear at this point, but will be explained
shortly.)

Proof. First run P on all the 2m+k possible inputs of form (Rj +S, r) and record
the answers: {P (Rj + S, r)}. A fixed value of l above corresponds to a value of
the m + k bits zl in Lemma 7. Let us assume that zl is the correct choice, i.e.
Bm

Rj (x) = Mjzl. Then, by construction,

cl ,
2k−1
∑

j=0

P (Rj + S, Mjzl) =
2k−1
∑

j=0

2m−1
∑

r=0

P (Rj + S, r)∆(r,Mjzl), (4)

where ∆(r, r′) = 1 if r = r′ and 0 otherwise. The naive way to calculate this
number would require time 22k+m and we want to do better using the Fast
Fourier transform. First note that

∆(r, r′) = 2−m
∑

α⊆[0..m−1]

(−1)〈r⊕r′,α〉2 .

This implies that the sum (4) equals

cl = 2−m
∑

j,r,α

P (Rj + S, r)(−1)〈r⊕Mjzl,α〉2

= 2−m
∑

j,α

(−1)〈Mjzl,α〉2
∑

r

P (Rj + S, r)(−1)〈r,α〉2 .

Let Q(j, α) be the inner sum. Fix a value of j. The different α-values then
correspond to a Fourier transform and hence the 2m different Q(j, α) can be
calculated in time m2m. Thus, all the numbers Q(j, α) can be computed in
time m2k+m. Finally we have

cl =
∑

j,α

(−1)〈Mjzl,α〉2Q(j, α) =
∑

j,α

(−1)〈zl,MT
j α〉2Q(j, α),

where MT
j is the transpose. Comparing this to (1), (2), and (3) above, this is

just a rearrangement of a standard Fourier-transform of size 2k+m and can be
computed with (k + m)2k+m operations. The lemma follows.

Now we prove that we can compute useful information about x.

Lemma 9. Suppose2 that N2m > mk3. Let P, T, x be as in Theorem 6 and let
t be a parameter such that 2k = tε−2 for some k ≥ m. Then for any set of N
vectors {vi}N

i=1 ⊂ {0, 1}n we can in time 2m+k(2m + k + T + 1)N produce a set
of lists {b(j)

i }N
i=1, j = 1, 2, . . . , 2k+m such that with probability 1/2 we have for

at least one j, 〈x, vi〉2 = b(j)
i , except for at most N

2t of the N possible values of
i.

2This is reasonable for the values we will consider.

13

Proof. Start by randomly generating the 2k matrices {Rj} as described in
Lemma 7. Now repeat the process below for each i = 1, . . . , N .

Select a random string si ∈ {0, 1}m, and let Si be the m× n matrix defined
by Si , si ⊗ vi (the outer product3). Notice that by linearity

(Rj + Si)x = Rjx + si〈vi, x〉2, (5)

which is Bm
Rj (x) if 〈vi, x〉2 = 0, and a random string otherwise.

As described in Lemma 8, we now compute the values {ci
l}.

ci
l = 2−k

2k−1
∑

j=0

P (Rj + Si,Mjzl).

Focus on the correct choice for l. If 〈vi, x〉2 = 0, then ci
l is the outcome of a

uniform random, pairwise independent sample of the distinguisher P on inputs
of the form {P (R, Bm

R (x))}. On the other hand, if 〈vi, x〉2 = 1, it is a sample of
{P (R, u)} over random u.

Let p1 be the probability that P outputs 1 on (R, Bm
R (x)) and p2 the prob-

ability that it outputs 1 on (R, u). We can without loss of generality4 assume
that p2 = 1

2 so that p1 ≥ 1
2 + ε. Let p , (1 + ε)/2. Then we would simply

guess that 〈vi, x〉2 = 0 if ci
l ≥ p and 〈vi, x〉2 = 1 otherwise. The choice is correct

unless the average of 2k pairwise independent Boolean variables is at least ε/2
away from its mean. By Chebychev’s inequality the probability this happens is
bounded by 2−kε−2 = t−1.

This implies that for the correct value of l the expected number of errors
is N/t, and by Markov’s inequality, with probability at least at 1/2 it is below
2N/t. Trying all these alternatives for l gives the lists described in the lemma.

The total running time is now 2k[2m(2m + k + T)N + mk3] + m + k, which
by the assumption on m, k, N is at most 2k+m(2m + k + T + 1)N .

Let us next establish Theorem 6.

Proof of Theorem 6. We apply Lemma 9 with t = 2n + 1, N = n, and set the
vectors {vi}n

i=1 to be the unit vectors so that 〈vi, x〉2 gives xi, the ith bit of x.
With probability 1/2 one of the lists give all the inner-products correctly and
hence determine x.

We use this to establish Theorem 4.

Proof of Theorem 4. First we apply Lemma 5 to get an i for which we have an
algorithm that when given f (i)(x) runs in time S(L) + T (L) and distinguishes
Bm

R (f (i−1)(x)) from random bits with advantage at least δ′ , δm
2L . Since δ′ is

an average over all x we need to do some work before we can apply Theorem 6.
3(Si)k,l = (si)k · (vi)l
4If not, modify P to P ′(R, r) = P (R, r) with prob. 1/2 and P ′(R, r) = 1 − P (R, r′), for

r′ ∈ Um, otherwise. This will reduce the distinguishing advantage, but only by a factor 2.

14

For each x we have an advantage δx and we know that the expected value
of δx is at least δ′. Let G , {x | δx ≥ δ′/2}, the set of good x. We proceed as
follows.

Choose a random value of j ≥ 1 where a specific value j0 is chosen with
probability 2−j0 . If 2−j0 ≥ δ′/2 then we apply Theorem 6 with ε = 2−j0 while
if 2−j0 < δ′/2 we give up. Let px = 1 if we by this retrieve x, 0 otherwise.

To analyze this procedure, first observe that for x ∈ G, the preconditions for
Theorem 6 are satisfied if δx ≥ 2−j0 ≥ δ′/2, and in this case the algorithm finds
x with probability at least 1/2. The above condition is true with probability
(over j0) at least δx − δ′/2. For x /∈ G we accept the possibility of failure, but
still E[px] ≥ 0. This implies that the overall probability of success is

Ex[px] ≥ 1
2

Ex∈G [δx − δ′/2] Prx[x ∈ G] ≥ 1
2

Ex[δx − δ′/2] ≥ δ′/4.

To evaluate the expected running time, we have

Claim 10. The expected running time of the algorithm in Theorem 6, when run
with parameter ε = 2−j with probability 2−j provided 2−j ≥ δ′/2, is bounded by

δ′−1(2n + 1)n2m+2(2m + T + 1 + log(2n + 1) + 2 log δ′−1)

in our previous notation.

Proof. We need to bound the expected value, when ε = 2−j with probability
2−j , of tε−22m(2m+log (tε−2)+T +1)N (where N = n, t = 2n+1) truncating
at j0−1, where j0 is the smallest integer satisfying 2−j0 < δ′/2. Rewriting this,
collecting powers of ε−1 and log ε−1 we get

tN2m([2m + T + 1 + log t]ε−2 + ε−2 log ε−2).

First note that

Eε[ε−2] =
j0−1
∑

j=1

2j < 2j0 ≤ 4δ′−1.

Then

Eε[ε−2 log ε−2] ≤ 4δ′−1 log(2δ′−1) ≤ 6δ′−1 log(δ′−1)

for δ′ “of interest” (say δ′ ≤ 1/4). Thus the expected running time is as claimed.

We then finally need to try all candidate x in the list, applying f to each.
The expected length of the list is

(2n + 1)2m Eε[ε−2] = 4(2n + 1)2mδ′−1.

Adding this gives the running total time as stated.

15

Some values of j above will turn out to be more profitable than others and
the above algorithm can be optimized by a preprocessing stage that finds the
best j; one for which Prx[δx ∈ [2−j , 2−j+1)] is fairly large. Since we are only
analyzing the time for a single inversion we omit the details.

Instead of applying Lemma 9 with the unit vectors we can, as suggested in [7],
use it with {vi} describing the words of an error correcting code. (Similar ideas
appears in [12].) If we have code words of length N , containing n information
bits, and we are able to efficiently correct e errors we get:

Theorem 11. Fix x. Suppose there is an algorithm, P , that using T operations
given R distinguishes Bm

R (x) from random strings of length m with advantage
ε where ε is given. Suppose further we have a linear error correcting code, C,
with n information bits, N message bits that is able to correct e errors in time
TC . Then we can in time

N
e

ε−22m+1([2m + log(Nε−2/e) + T + 2]N + TC)

produce a list of 2m+1N
e ε−2 numbers such that the probability that x appears in

this list is at least 1/2.

Proof. We apply Lemma 9 with t = 2N/e and {vi}N
i=1 as the row vectors of the

generator matrix for C. This produces 2m+1N
e ε−2 vectors {cj} ⊂ {0, 1}N , such

that with probability at least 1/2, one cj is at Hamming distance at most e from
the correct codeword corresponding to x. Running the decoding algorithm on
each cj then produces a list as claimed.

In much the same way as the proof of Theorem 4, this translates to the
quality of the inverter.

Theorem 12. Suppose we have a linear error correcting code with n informa-
tion bits, N message bits that is able to correct e errors in time TC and that
G = BMGLn,m,L(f) is based on an n-bit function f , computable by E opera-
tions, and that G produces L bits in time S. If G can be (L, T, δ)-distinguished
then, with δ′ = δm

2L , there is an i ≤ L/m , λ such that f can be (T ′, δ′/4, i)-
inverted where T ′ equals

δ′−1 N
e

2m+3 (

[2m + T + log(N/e) + 2 log δ′−1 + 2]N + E + TC
)

.

In particular, the time over success ratio is about N2

e m−12mL2δ−2(T + TC/N).
For any µ ∈ (0, 1), the value of i can, with probability at least (1 − µ)log λ, be
found in time 3

2λ2δ−2 log λ(T + S) ln µ−1.

2.4.3 A Concrete Example

What does all this say? Suppose that we want to generate L = 230 bits (1Gbit)
of key stream, using a good block-cipher f , applying our construction with
m = 40.

16

Corollary 13. Consider G = BMGL256,40,230(f) where f is a block-cipher or
hash-function (with key/block length 256) and where f is computable by E oper-
ations, and assume that G runs in time S ∼ EL/m. If G can be (230, T, 2−32)-
distinguished, then there is an i < 230/40 so that f can be (T ′, δ′, i)-inverted
where δ′ ≈ 2−59, and the running time T ′ is composed of approximately 2116

applications of the distinguisher, about 2109 applications of f and about 2124 ad-
ditional operations. The value of i can be found (with probability at least 0.65)
using about 2121 applications of G and the distinguisher.

Making the additional assumption that T ≤ S, the pre-processing to find i is
about 2152, and once i has been found, the time over success ratio is about 2208.
In light of Definition 4, f can not be 2−25-secure.

Recall that we would normally expect f to be 1-secure.

Proof. Apply Theorem 4, setting µ = ln(4/3)
ln λ . Since G iterates f i = L/m

times, Theorem 3 suggests that the best possible time over success ratio would
be about 2231, which contradicts any belief that f is 2−25-secure.

Comment: The assumption S = EL/m is natural as the output generation
should not be significantly more expensive than computing f . The assumption
T ≤ S is, again, motivated by considering “practical” tests a la Diehard or those
by Knuth.

If more than a single inversion is to be performed, it is possible to improve the
above Corollary by using a good error correcting code and applying Theorem 12
instead. In particular, using a certain Goppa-code, see [14], for the same n,L,m
and assumed distinguisher performance as above, once the value of i is found,
we can reduce the workload per inversion by approximately a factor of 8. Still,
the pre-processing time needed to find i is not affected by the use of the code,
and the achieved time-over-success ratio for a single inversion is more or less
the same and we here omit further details.

A smaller m gives higher security. Let us see how security varies with m, δ:

Corollary 14. Consider G = BMGL256,4,230(f) (generating 1Gbit, extracting
4 bits per iteration of f) where f is computable by E operations. If G can be
(230, T, 2−40)-distinguished, then there is an i < 228 so that f can be (T ′, δ′, i)-
inverted where δ′ > 2−71, and the running time T ′ is composed of approximately
292 applications of the distinguisher, about 284 applications of f and about 299

additional operations. The value of i can be found (with probability at least 0.65)
using about 2143 applications of G and the distinguisher.

Making the additional assumption that T ≤ S, the time to find i is about
2179, and once i is found, the time over success ratio is about 2197. In light of
Definition 4, f can not be 2−32-secure.

The proof is as above. We give another example in the next section where
we discuss methods of reducing the IV -size and how they affect security.

17

3 Discussion

3.1 Issues

3.1.1 Choice of f

The two obvious alternatives are to use conjectured very strong one-way func-
tions which are either given by encryption functions or one-way hash-functions.
(Due to the overhead of the key-schedule, the latter will in practice be a bit more
efficient.) It would be advantageous to use one which supports a combination
of block- and key-size of 256 bits (as Rijndael can do).

Note that the one-way function we are suggesting to use is to have a fixed
message, p, and let the input be the encryption key, k, and the output the
cipher-text. In some sense it would be better to have the mapping from clear-
text to crypto-text as our f since it is a permutation, i.e. iterate fk(p) rather
than fp(k). This would also eliminate the need to perform the key-scheduling on
each iteration. The problem is that this is by definition not a one-way function
since anybody that can compute it can also invert it. We are unable to get any
provable properties when f is used in this way.

3.1.2 Number of bits output per application of f

We would for efficiency reasons like to output as many bits as possible per
application of f . On the other hand, we cannot output too many, if we are to
relate the security of f to the proof of security for the generator. The effect of
varying m is clearly visible in the above theorems.

One problem with a large value of m is that size of the seed grows with m,
we discuss this issue below.

3.1.3 Efficiency

The output generation, consisting of computing the m inner products mod 2
should not be critical issue for the performance. It is true that most micro pro-
cessors do not have an instruction to compute inner products between registers,
but it is quite easy to implement this operation fairly efficient. One possible
way could be to do the following.

We assume a 32-bit architecture. Precompute a 256-byte table, tab, where
tab[i] holds the remainder modulo 2, of the number of 1s in the binary rep-
resentation of i. Let ∧,⊕, and � denote bitwise AND, XOR, and right shift,
respectively. The inner product of two 8-word (i.e. 256 bit) vectors r[],x[] is
done by

c = 0;
for i = 1 to 8 do

c = c ⊕ (r[i] ∧ x[i]);
c = c ⊕ (c � 16);
c = c ⊕ (c � 8);
return tab[c ∧ 255];

18

That is, about 40 instructions suffices. Alternatively, the table look-up in
the last line can be replaced by a “table” of size 16, stored in an integer:

c = c ⊕ (c � 4);
return (6996hex � (c ∧ 15)) ∧ 1;

Using a block cipher, each iteration then requires one key set-up and one encryp-
tion. Looking at the performance evaluations for Rijndael, see e.g. [4], speeds
of several Mb/s seem well within range.

For some quick tests, we used a rather naive, completely non-optimized C-
implementation of RC6, [18], and extracted m = 32 bits per iteration. We
achieved speeds somewhat below 1Mbit/s on a standard PC.

3.1.4 Size of Initialization Data

To determine an m× n matrix to be used as part of the seed, we need nm bits.
We note that it is possible to reduce this to only n bits by choosing matrices R
as follows. Consider the finite field of 2n elements. Binary strings of length n
are interpreted as elements of this field in the natural way. The function hA(x),
mapping this field to itself, defined by x 7→ Ax, can be represented as a matrix
multiplication by a boolean n× n matrix, A′, where A′ is uniquely determined
by n bits (and the irreducible polynomial representing the field). Now define
a function rA(x) by selecting any fixed set of m bits of Ax. This was in [16]
shown to give hard core functions. That is, independently of m, n bits are
always enough to specify the m-bit output function (as long as m ≤ n).

There is however a drawback with this construction. In our current reduction
we can show that a distinguisher for Bm

R (x) with advantage δ, essentially enables
us to predict 〈vi, x〉2 with the same advantage. This is then amplified using
Lemma 7. Since the set of possible A suggested above is more restrictive, we
are not able to prove the equivalent of Lemma 7 with this space of matrices. Still,
it is possible to get the same kind of reduction, but the only way (we know) of
doing this is via the so called Computational XOR-Lemma, [19]. Unfortunately,
involving this lemma reduces the δ-advantage of the distinguisher to a 2−mδ-
advantage for the predictor for 〈vi, x〉2. Nevertheless, for small m, when small
seeds are of interest, this could be a possible trade-off one is willing to make.

Moreover, for a fixed desired security level and seed-size, we can to some ex-
tent now choose m to achieve this. Specifically, doing the same kind of argument
as in §2.4.3 we can show that

Corollary 15. Consider BMGL256,8,230(f) where we choose the matrix R as
above (i.e. as 8 rows out of an 256 × 256 matrix determined by an element
of F2256), rather than as random 8 × 256 matrices. If G can be (230, T, 2−32)-
distinguished, then there is an i < 227 so that f can be (T ′, δ′, i)-inverted where
δ′ ≈ 2−70, and the running time T ′ is composed of approximately 2101 applica-
tions of the distinguisher, about 293 applications of f and about 2108 additional
operations. The value of i can be found (with probability at least 0.65) using
about 2142 applications of G and the distinguisher.

19

Making the additional assumption that T ≤ S, the pre-processing to find i is
about 2176, and once i has been found, the time over success ratio is about 2205.
In light of Definition 4, f can not be 2−25-secure.

Comparing this to m = 40 and the general way of seeding, we obtain the
same level of security but reduce the seed size from 1312 to 64 bytes. The price
we pay is the need to reduce m to 8, leading to a slow-down by an estimated
factor of 2 to 3 times (we need 5 times more applications of f to generate the
same length of the stream, but on the other hand, the output generation itself
is now 5 times as fast).

An alternative, suggested in [8], is to pick R as a random Toeplitz matrix in
which case n + m− 1 bits are sufficient. Also in this case we only know how to
prove security through the computational XOR-lemma and hence also in this
case we lose a factor 2m in security for a fixed m.

3.2 Specific Attacks

Though we have proven security in a very general model, there are a few specific
attacks whose effectiveness could be interesting to study in detail.

Exhaustive Key- and Internal State Search. Any key stream generator is
of course vulnerable to this attack. Our proof above states that to some
extent, such attacks are the only ones. A key length of 256 (or even 128)
will thwart such attempts for the foreseeable future.

Chosen IV s. We again refer to our formal analysis in the proofs above where
we allow “experiments” with the generator in this fashion. Our proof
model is that the R-matrix is chosen at random, but in practice, the only
“bad” IV would one where R has a row consisting of all zeros as plaintext
bits would then leak. Of course, if the same key is used twice, at least the
part of the IV corresponding to the plaintext block should be replaced as
otherwise, the key stream will be identical.

Cycle Shortening. A worry might be that the generator produces short cy-
cles. However, if we have a cycle of length L, then we clearly also have an
(L,O(L), 1/2)-distinguisher and thus also an attack of f . Moreover, if we
believe f to behave randomly, the expected cycle length is on the order
2n/2.

3.3 Comparison to Counter Mode

One method to make a pseudorandom generator from a one-way function is to
use it in counter mode where the keystream is computed as f(c), f(c + 1), . . .
where c is the secret key. Bellare et al., [1], show that if f is a pseudo random
permutation (PRP), then running f in counter mode gives a provably secure
cipher. Thus, based on this a assumption they get a very simple and efficient
generator.

20

Our assumpiton, that f ’s behavior with respect to inversion is similar to
that of a random function, is much weaker and hence it is not surprising that
our construction is more complex and gives a less efficient generator.

One can argue that in the above mentioned result about countermode you
essentially assume that your primitive has the required property (being random)
while we have to produce randomness from the weaker property of being hard
to invert.

Since our assumptions are strictly weaker we would expect that a cautious
user who does not have extreme demands on the speed of the generator would
find it a very useful alternative.

3.4 Other Properties

Error robustness. In many applications, in particular over unreliable trans-
mission media such as wireless, certain modes of operation (e.g. CBC)
might be disqualified due to error propagation: a single bit-error intro-
duced by the transmission medium destroys one entire block or more of
the decrypted plaintext. KFB, like OFB, does not have this property and
is error robust: errors are confined to the bits in which they occur.

Synchronization. Like OFB, the mode requires sender/receiver synchroniza-
tion of the key stream.

Key stream advance/rewind. Some applications such as encryption in packet
switched networks, where reordering of packets may be introduced by the
transmission mechanism are facilitated if a “random access” feature is
present. That is, if it possible to directly (in constant time) jump to any
given location within the key-stream. Typically, so called counter mode
has this property, but unfortunately, KFB does not. It seems difficult to
modify the mode in a way that enables such jumps in the stream, without
sacrificing the provable properties.

4 Intellectual Property Issues

As far as we have been able to tell, neither the Blum-Micali, nor the Goldreich-
Levin construction are covered by patents. Of course, since the block-cipher, f ,
can be more or less freely chosen, one should be aware that many block ciphers
are patented. In the specific case of the AES algorithm, this should not not be
a problem.

The authors of this paper have no patent or IPR claims related to the con-
struction proposed here.

5 Summary and Conclusions

We have given a suggestion of a new mode of operation for the AES algorithm
Rijndael (or any other block cipher), giving a key stream generator with provable

21

security properties, that we believe also in practice will give an excellent trade-off
between strong cryptographic security and efficiency. We acknowledge the fact
that the construction is less efficient than, say OFB, and may not be applicable
to high speed, real time applications. However, in many situations where a high
confidence in security is desired, the efficiency of the new mode will be fully
acceptable, as practical tests have shown.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway: A Concrete Security
Treatment of Symmetric Encryption: Analysis of the DES Modes of Oper-
ation. Proceedings of the 38th IEEE FOCS, 1997.

[2] M. Blum and S. Micali: How to Generate Cryptographically Strong Se-
quences of Pseudo-random Bits. SIAM Journal on Computing, 13, no 4,
1986, 850–864.

[3] J. Daemen and V. Rijmen: AES Proposal: Rijndael. Available at [17].

[4] B. Gladman: Implementation Experiences with AES Candidate Algorithms.
Proceedings, 2nd Advanced Encryption Standard Candidate Conference,
1999, pp. 7–14.

[5] P. Flajolet and A. Odlyzko: Random Mapping Statistics. Proceedings,
Eurocrypt ’89, LNCS 434, pp. 329–354, Springer-Verlag.

[6] O. Goldreich: Foundations of Cryptography (Fragments of a Book).
Available on-line at http://philby.ucsd.edu/cryptolib.html (Theory
of Cryptography Library)

[7] O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness. Springer-Verlag 1999.

[8] O. Goldreich and L. A. Levin: A Hard Core Predicate for any One Way
Function. Proceedings, 21st ACM STOC, 1989, pp. 25–32.

[9] S. Goldwasser and S. Micali: Probabilistic Encryption. Journal of Computer
and System Sciences 28 (1984), 270–299.

[10] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby: Pseudo Random
Number Generators from any One-way Function. SIAM Journal on Com-
puting, 28 (1999), 1364–1396.

[11] D. Knuth, Seminumerical algorithms, (2 ed.), Volume 2 of The art of com-
puter programming, Addison-Wesley, 1982.

[12] L. Levin: One-way Functions and Pseudorandom Generators. Combina-
torica 7 (1987), 357-363.

22

[13] L. Levin: Randomness and Non-determinism. J. Symb. Logic, 58(3),
1102–1103, 1993.

[14] F. J. MacWilliams and N. J. A. Sloane: The Theory of Error Correcting
Codes. North-Holland, 1977.

[15] G. Marsaglia: The Diehard statistical Tests.
http://stat.fsu.edu/˜geo/diehard.html

[16] M. Näslund: Universal Hash Functions & Hard-Core Bits. Proceedings,
Eurocrypt ’95, LNCS 921, pp. 356–366, Springer Verlag.

[17] National Institute of Standards and Technology:
The Advanced Encryption Standard (AES) Homepage.
http://csrc.nist.gov/encryption/aes/aes home.htm

[18] R. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin: The RC6 Block
Cipher. Available at [17].

[19] U. V. Vazirani and V. V. Vazirani: Efficient and Secure Pseudo-Random
Number Generation. Proceedings, 25th IEEE FOCS, 1984, pp. 458–463.

[20] A. C. Yao: Theory and Applications of Trapdoor Functions. Proceedings,
23rd IEEE FOCS, 1982, pp. 80–91.

23

