
Stateful HBS Backups
Revising 208

John Kelsey, NIST, Nov 2024

Stateful HBS Review

Stateful HBS

• Big Picture
• Digital signatures based on hash functions
• No other hardness assumptions

• Advantages
• Small, fast PQ signatures
• High confidence vs cryptanalysis

• Disadvantages
• Tricky to implement and use securely
• Backups are a big problem

Building Block: One-Time Signatures
• Public key signature scheme

• Keygen()  PK, SK
• Sign(SK, M)  sig
• Verify(PK, M, sig)  True/False

• One-time*
• Sign two messages with same key  leak signing key
• Anyone who sees both sigs can forge messages!

*This creates all the operational headaches with stateful HBS

Merkle Tree

• Generate 2d one-time keys
• Hash them all together in a data structure

called a Merkle tree
• Publish the root of the tree

• This is the hash of all the leaf values
and commits to all of them

• Can produce a path from any
leaf value to root

• Path is d hashes long

Stateful HBS: One-Time Sigs + Merkle Tree

Public key = Merkle tree root + some metadata

To sign:
• Choose an unused one-time key
• Create one-time sig from that key
• Create Merkle tree path from that key to root
• Signature = Merkle tree path + one-time sig

To verify:
• Use one-time sig + message  one-time public key
• Verify Merkle tree path back to root

Two level trees

• Setup (keygen):
• Generate 210 one time keys
• Put into Merkle tree
• Root plus metadata = public key of scheme

• Each key can sign a new Merkle tree root
• 210 one-time keys
• This allows a total of 220 one-time signatures

• LMS and XMSS both have options to allow this
• CNSA guidance does NOT allow it

Stateful HBS is Stateful!

The key thing to remember about these schemes is:

…they are secure as long as a key never signs two messages!

• Implementation must keep track of one-time keys used so far
• That’s the “state”

• If this state is repeated, we reuse a key
• And attackers can forge signatures from us

SP 800-208 and Backups

The Backup Problem

• High-value system with long lifetime
• Example: Firmware signing
• Want to keep keys in HSM
• Problem: HSM could die

• Disaster destroys HSM
• HSM stops working
• Someone steals HSM
• PIN for HSM lost/forgotten
• HSM has known security flaw and is out of service

Need to be able to sign firmware updates for whole system lifetime.

SP 800-208 Solution

• Use a two-level tree
• Top HSM generates first tree
• Each data HSM generates second-level tree
• Top HSM key signs root of data HSM tree

• Use the data HSMs to sign actual data
• Discard top HSM or keep a few keys

to create new data HSMs

• MANY data HSMs
• As long as one works, system keeps running

Why doesn’t this work?

Problem: HSM could die
• Disaster destroys HSM
• HSM stops working

• If we run out of HSMs while system is still in use, major problem!

• Someone steals HSM
• PIN for HSM lost/forgotten
• HSM has known security flaw and is out of service

• 30 years is a long time, vendors can go out of business

Requirements and constraints
• Must recover from device failure
• No way to know how many devices will be needed
• Move between vendors over time

• Minimal changes to 208
• Ideally avoid forcing anyone to use some patented thing
• Data always signed using HSM

Our Approach: Overview

Three basic operations
• Setup:

• Generate keys and set up system
• Produce public and private key material

• Provision:
• Set up a data HSM to be able to sign data
• Must ensure we never provision two HSMs with same key material

• Sign:
• Data HSM signs data on demand

Our Approach: Overview (2)

• Setup:
• Could happen in software or hardware
• Store private key data for provisioning
• Need to ensure provisioning can happen even if devices fail

• Provision:
• Use private key data from setup
• Procedural defenses required here
• Always end up with data HSM

• Sign:
• Signing data only happens on HSM

Scheme #1: Extending the 208 Technique

• Setup:
• Generate top-level key
 2d one-time keys
• PK = root + metadata
• Store each one-time key to allow provisioning

• Provision:
• Have data HSM generate second-level key
 2d one-time keys
• Choose next top-level one-time key to sign root
• Procedural defenses must prevent reuse of top-level one-time keys

Scheme #1 Pros and Cons

Advantages of two-level scheme
• Minimal change to 208

• No change to requirements for data HSM

• Interoperable-–just have to comply with LMS/XMSS standard

Disadvantages:
• Two level keys  much bigger signatures
• Doesn’t fit with CNSA guidance

Scheme #2: One-Level Signatures
• Setup:

• Generate 2d random seeds, S[0..2^d-1]
• Use each to generate 2d one-time keys
• Construct Merkle tree
 PK = root + metadata
• Store each seed to allow provisioning

• Provision:
• Choose which seed to load into data HSM
• Procedural defenses must prevent reuse of seed
• HSM uses seed to generate bottom d layers of Merkle tree
• Transfer rest of Merkle tree path into HSM to allow signatures

Scheme #2 Pros and Cons
Advantages:
• Works with CNSA guidance
• Much shorter signatures

Disadvantages:
• Bigger changes to 208

• Data HSMs must be changed!

• Interoperability harder
• Need to import a seed and do the right thing with it
• If HSM follows LMS/XMSS guidance on keygen this will work

Procedural defenses

For both schemes:
• Setup produces black of secret data for provisioning
• Provisioning step must ensure no reuse of keys
• How can we do this?

Note: Procedural defenses can’t be verified by a lab

Procedural defenses: ideas
• Each provisioning key/seed assigned to one date

• Never provision two HSMs on same day
• Could also provision by date + location

• Store provisioning keys on HSM
• Must have way to back up or re-provision HSM
• Procedural defenses, again

• Use distributed database
• Keep track of used provisioning keys/seeds

Questions

• Is there some reason this won’t work?

• How hard will these be to allow in 208?

• Will these meet industry need?

	Stateful HBS Backups�Revising 208
	Stateful HBS Review
	Stateful HBS
	Building Block: One-Time Signatures
	Merkle Tree
	Stateful HBS: One-Time Sigs + Merkle Tree
	Two level trees
	Stateful HBS is Stateful!
	SP 800-208 and Backups
	The Backup Problem
	SP 800-208 Solution
	Why doesn’t this work?
	Requirements and constraints
	Our Approach: Overview
	Our Approach: Overview (2)
	Scheme #1: Extending the 208 Technique
	Scheme #1 Pros and Cons
	Scheme #2: One-Level Signatures
	Scheme #2 Pros and Cons
	Procedural defenses
	Procedural defenses: ideas
	Questions

