
 i

Key Derivation using Pseudorandom
Functions (SP 800-108) Validation System

(KBKDFVS)

Updated: January 4, 2016
Original: March 22, 2012

Sharon S. Keller

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

 ii

Modifications

• 1-1-16 – Removed TDES 2 Key references because it’s no longer compliant
beginning 1-1-16. (See SP800-131A Revision 1).

 iii

TABLE OF CONTENTS
1 Introduction ... 1
2 Scope... 1
3 Conformance ... 1
4 Definitions and Abbreviations .. 2

4.1 Definitions ... 2
4.2 Abbreviations ... 2

5 Design Philosophy of SP800-108 KDF Validation System 3
6 The Key Derivation Using Pseudorandom Functions (SP800-108KDF)
Validation System (KBKDFVS) Test .. 3

6.1 Configuration Information... 4
6.2 The Validation Test ... 6

6.2.1 The Validation Test for KDF in Counter Mode 6
6.2.2 The Validation test for KDF in Feedback Mode 7
6.2.3 The Validation test for KDF in Double-Pipeline Iteration Mode ... 8

Appendix A References .. 9
Appendix B Tested Components of SP 800-108 ... 10

B.1 SP800-108 Algorithmic Specifications ... 10
B.2 Additional Requirements of SP800-108 ... 10

 1

1 Introduction
This document, Key Derivation Using Pseudorandom Functions (SP 800-108KDF)
Validation System (KBKDFVS), specifies the procedures involved in validating
implementations of the three key derivation functions found in SP800-108. The three key
derivation functions include KDF in Counter Mode, KDF in Feedback Mode, and KDF in
Double-Pipeline Iteration Mode. Each KDF in SP 800-108 uses a key to generate a key.
Therefore the abbreviation used for these KDFs is KBKDF (Key Based Key Derivation
Function). The testing encompasses IUTs that implement SP 800-108, Recommendation
for Key Derivation Using Pseudorandom Functions [1]. The KBKDFVS is designed to
perform automated testing on Implementations Under Test (IUTs).

This document defines the purpose, the design philosophy, and the high-level description
of the validation process for each key derivation function. It includes specifications for
tests that make up the KBKDFVS. The requirements and administrative procedures to be
followed by those seeking formal validation of an implementation of SP800-108 are
presented. The requirements described include a specification of the data communicated
between the IUT and the KBKDFVS, the details of the tests that the IUT must pass for
formal validation, and general instruction for interfacing with the KBKDFVS.

A set of KDF test vectors is available on the
http://csrc.nist.gov/groups/STM/cavp/index.html website for testing purposes.

2 Scope

This document specifies the tests required to validate implementations of SP 800-108 for
conformance to the key derivation functions (KDF). When applied to an Implementation
Under Test (IUT), the KBKDFVS provides testing to determine the correctness of the
implementation of the KDF specifications. As detailed in the Recommendation, three
KDFs are described in SP800-108: KDF in Counter Mode, KDF in Feedback Mode and
KDF in Double-Pipeline Iteration Mode. A separate validation test suite has been
designed for each KDF. The validation testing verifies that an IUT has implemented the
components of the KDF according to the specifications in the Recommendation. The
requirements of NIST SP 800-108 addressable at the algorithm level and indicated by
shall statements that are tested by the validation suite are listed in Appendix B.

3 Conformance

The successful completion of the tests contained within the KBKDFVS is required to
claim conformance to SP800-108. Testing for the cryptographic module in which a
KDF(s) is implemented is defined in FIPS PUB 140-2, Security Requirements for
Cryptographic Modules. [2]

 2

4 Definitions and Abbreviations

4.1 Definitions

DEFINITION MEANING

CST laboratory Cryptographic Security Testing laboratory that operates the
KBKDFVS

Key Derivation Function A function for generating keying material

4.2 Abbreviations

ABBREVIATION MEANING

CMAC Block Cipher-based MAC Algorithm

CMACVS CMAC Validation System

FIPS Federal Information Processing Standard

h An integer whose value is the length of the output of the PRF in bits

HMAC Keyed-Hash Message Authentication
Code

HMACVS HMAC Validation System

IUT Implementation Under Test

KI A key derivation key. For a key derivation, KI is used (along with
other data) to derive keying material KO

KO Keying material that is derived from a key derivation key KI and
other data

KBKDF Key Based Key Derivation Function – KDFs that use a key in the
computation

KDF Key Derivation Function

L An integer specifying the length of the derived keying material KO in
bits, which is represented as a binary string when it is an input to a
key derivation function

 3

MAC Message Authentication Code

PRF Pseudorandom Function

r An integer, smaller or equal to 32, whose value is the length of the
binary representation of the counter i when i is an input in counter
mode or (optionally) in feedback mode and double-pipeline iteration
mode of each iteration of the PRF

5 Design Philosophy of SP800-108 KDF Validation System

The KBKDFVS is designed to test conformance to the specifications for each of the
KDFs specified in NIST SP 800-108 rather than provide a measure of a product’s
security. The validation tests are designed to assist in the detection of accidental
implementation errors, and are not designed to detect intentional attempts to misrepresent
conformance. Thus, validation should not be interpreted as an evaluation or endorsement
of overall product security.

The KBKDFVS has the following design philosophy:

1. The KBKDFVS is designed to allow the testing of an IUT at locations
remote to the KBKDFVS. The KBKDFVS and the IUT communicate
data via REQUEST and RESPONSE files. The KBKDFVS also generates
SAMPLE files to provide the IUT with an example of the format required
by the RESPONSE file.

2. The testing performed within the KBKDFVS utilizes statistical sampling
(i.e., only a small number of the possible cases are tested); hence, the
successful validation of a device does not imply 100% conformance with
the Recommendation.

6 The Key Derivation Using Pseudorandom Functions
(SP800-108KDF) Validation System (KBKDFVS) Test

The KBKDFVS tests the implementation for its conformance to SP 800-108.

When applied to an IUT, the KBKDFVS provides testing to determine the correctness of
the implementation of the KDF specifications. A separate validation test suite has been
designed for each KDF. The validation test suite for each KDF verifies that an IUT has
implemented the components of the KDF according to the specifications in the
Recommendation.

 4

6.1 Configuration Information

To initiate the validation process of the KBKDFVS, a vendor submits an application to
an accredited laboratory requesting the validation of its implementation of one or more of
the key derivation functions detailed in SP 800-108. The vendor’s implementation is
referred to as the IUT. The request for validation includes background information
describing the IUT, along with information needed by the KBKDFVS to perform the
specific tests. More specifically, the request for validation includes:

1. Cryptographic algorithm implementation information

 a. Vendor Name;

 b. Implementation Name;

 c. Implementation Version;

 d. Indication if implementation is software, firmware, or hardware;

 e. Processor and Operating System with which the IUT was tested if the IUT
is implemented in software or firmware;

 f. Brief description of the IUT or the product/product family in which the
IUT is implemented by the vendor (2-3 sentences); and

2. Configuration information for the KBKDFVS tests.

 a. The KDF(s) implemented:

 i. KDF in Counter Mode

 ii. KDF in Feedback Mode

 iii. KDF in Double-Pipeline Iteration Mode

3. If KDF in Counter Mode is implemented:

a. r- length of the binary representation of the counter i. Possible values are
8, 16, 24, or 32 bits.

b. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

c. L-length of the derived keying material K0 in bytes – Enter all that apply:

 5

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

d. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90,
an Approved RNG, N/A – Out of the scope of the algorithm
implementation

e. Order of the fixed input data: Does the IUT support the counter coming
before, in the middle, and/or after the fixed input data?

4. If KDF in Feedback Mode is implemented:

a. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

b. L-length of the derived keying material K0 in bytes – Enter all that apply:

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

c. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90A,
an Approved RNG, N/A – Out of the scope of the algorithm
implementation

d. Does the IUT support the counter being used as an input? If yes,

i. r- length of the binary representation of the counter i. Possible
values are 8, 16, 24, or 32 bits.

ii. Does the IUT support the counter coming before and/or after the
iteration variable and/or after the fixed input data?

5. If KDF in Double-Pipeline Iteration Mode is implemented:

a. Pseudo-random functions supported by the IUT

 i. CMAC AES 128, 192, 256

 ii. CMAC TDES 3

 iii. HMAC SHA1, SHA224, SHA256, SHA384, SHA512

 6

b. L-length of the derived keying material K0 in bytes – Enter all that apply:

i. A minimum and maximum value for full block lengths supported

ii. A minimum and maximum value for partial block lengths supported

c. Method(s) supported to generate K: SP800-56A, SP800-56B, SP800-90A,
an Approved RNG, N/A – Out of the scope of the algorithm
implementation

d. Does the IUT support the counter being used as an input? If yes,

i. r- length of the binary representation of the counter i. Possible
values are 8, 16, 24, or 32 bits.

ii. Does the IUT support the counter coming before and/or after the
iteration variable and/or after the fixed input data?

6.2 The Validation Test

A separate file is generated for each supported key derivation type. For example, if an
IUT supports the KDF using Counter Mode and the KDF using Feedback Mode, two files
will be generated:

KDFCTR_gen.req and

KDFFeedback_gen.req.

6.2.1 The Validation Test for KDF in Counter Mode

Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC
AES128, PRF=HMAC SHA224. Within each PRF section, there is a section for each
“Counter Location” supported. Within each “Counter Location” section, there is a
section for each r length supported. Within each r length supported, the test provides 10
sets of data for each L length specified. Four L lengths are specified including a
minimum and maximum length divisible by h and a minimum and maximum length not
evenly divisible by h. Therefore a total of 40 sets of data per PRF/Counter Location/rlen
is generated. The set of data includes a count (this is a count of the test values and is not
the counter used in the data to be MACed), an L and a randomly generated KI.

If the counter location is before or after the fixed input data, then the IUT supplies the
fixed input data string length (in bytes), the fixed input data string value and the KO. If
the counter location is in the middle of the input data, then the IUT supplies the lengths of
the data before and after the counter, the value of the input string before the counter, the

 7

value of the input string after the counter and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified
in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and
the values supplied by the KBKDFVS. The KBKDFVS will generate the string to be
MACed by using the IUT supplied information. If the IUT supports the counter location
before or after the fixed input data, the IUT supplies the FixedInputData. If the IUT
supports the counter location is in the middle of the input data, then the IUT supplies the
value of the input string before the counter and the value of the input string after the
counter. The KBKDFVS uses this information and the binary representation of i using
the rlen information located in the section, and then concatenates the information in the
order specified by the Counter location. This string is then MACed with the PRF
algorithm specified resulting in the KO. The KBKDFVS compares the IUT’s KO value to
the KBKDFVS KO value to see if they are the same. If they are, then it can be
determined that the KDF is implemented correctly according to the Recommendation. If
the values do not match, the IUT has an error in it. During the validation of the IUT, if
an error occurs, the count, the variable and the values that don’t match are stored in the
log file. The laboratory uses this information to assist the vendor in debugging their IUT.

6.2.2 The Validation test for KDF in Feedback Mode
Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC
AES128, PRF=HMAC SHA224. The counter is optional in the data to be MACed. If the
counter is not used, the PRF supported sections are the only sections in the files. If the
counter is used, within each PRF section, there is a section for each “Counter Location”
supported. Within each “Counter Location” section, there is a section for each r length
supported.

For each combination of PRF (if no counter is used in the data to be MACed) or for each
combination of PRF/Counter Location/rlen (if counter is used), the test provides 10 sets
of data for each L length specified. Four L lengths are specified including a minimum
and maximum length divisible by h and a minimum and maximum length not evenly
divisible by h. Therefore a total of 40 sets of data per PRF/{Counter Location/rlen} is
generated to the IUT. The set of data includes a count (this is a count of the test values
and is not the counter used in the data to be MACed), an L, a randomly generated KI, an
IV length in bits, and an IV.

The IUT supplies the fixed input data string length (in bytes), the fixed input data string
value and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified
in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and
the values supplied by KBKDFVS. The KBKDFVS will generate the string to be
MACed by using the FixedInputData supplied by the IUT, and the IV, for the first round,

 8

or the previous KO value for subsequent rounds. If the counter is used in the data to be
MACed, the KBKDFVS will generate the binary representation of i using the rlen
information located in the section, and concatenating the information in the order
specified. This string is then MACed with the PRF algorithm specified resulting in the
KO. The KBKDFVS compares the IUT’s KO value to the KBKDFVS KO value to see if
they are the same. If they are, then it can be determined that the KDF is implemented
correctly according to the Recommendation. If the values do not match, the IUT has an
error in it. During the validation of the IUT, if an error occurs, the count and the values
that don’t match are stored in the log file. The laboratory uses this information to assist
the vendor in debugging their IUT.

6.2.3 The Validation test for KDF in Double-Pipeline Iteration Mode
Within each request file, there is a section for each PRF supported, i.e., PRF=CMAC
AES128, PRF=HMAC SHA224. The counter is optional in the data to be MACed. If the
counter is not used, the PRF supported sections are the only sections in the files. If the
counter is used, within each PRF section, there is a section for each “Counter Location”
supported. Within each “Counter Location” section, there is a section for each r length
supported.

For each combination of PRF (if no counter is used in the data to be MACed) or for each
combination of PRF/Counter Location/rlen (if counter is used), the test provides 10 sets
of data for each L length specified. Four L lengths are specified including a minimum
and maximum length divisible by h and a minimum and maximum length not evenly
divisible by h. Therefore a total of 40 sets of data per PRF/{Counter Location/rlen} is
generated to the IUT. The set of data includes a count (this is a count of the test values
and is not the counter used in the data to be MACed), an L, and a randomly generated KI.

The IUT supplies the fixed input data string length (in bytes), the fixed input data string
value and the KO.

The values generated by the IUT are stored in the RESPONSE file in the format specified
in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KBKDFVS will verify the correctness of the KO using the inputs from the IUT and
the values supplied by KBKDFVS. The KBKDFVS will generate the string to be
MACed by using the FixedInputData supplied by the IUT. If the counter is used in the
data to be MACed, the KBKDFVS will generate the binary representation of i using the
rlen information located in the section, and then concatenate the information in the order
specified. This string is then MACed with the PRF algorithm specified resulting in the
KO. The KBKDFVS compares the IUT’s KO value to the KBKDFVS KO value to see if
they are the same. If they are, then it can be determined that the KDF is implemented
correctly according to the Recommendation. If the values do not match, the IUT has an
error in it. During the validation of the IUT, if an error occurs, the count and the values
that are in error are stored in the log file. The laboratory uses this information to assist the
vendor in debugging their IUT.

 9

Appendix A References

[1] Recommendation for Key Derivation Using Pseudorandom Functions
(Revised), Special Publication 800-108, National Institute of Standards and
Technology, October 2009.

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-
2, National Institute of Standards and Technology, May 2001.

http://csrc.nist.gov/publications/nistpubs/800-108/SP800-108_Revision.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

 10

Appendix B Tested Components of SP 800-108

The KBKDFVS validation testing for SP 800-108 tests all the algorithmic specifications,
components, features, and functionalities specified in the Special Publication. In addition
to these algorithmic conditions, the validation testing also addresses additional
requirements identified as “shall” statements in the Special Publication that are applicable
at the algorithm level.

B.1 SP800-108 Algorithmic Specifications

The following sections of SP 800-108 contain the algorithmic specifications:

4 Pseudorandom Function (PRF)
5 Key Derivation Functions
5.1 KDF using Counter Mode
5.2 KDF using Feedback Mode
5.3 KDF using Double-Pipeline Iteration Mode.

The validation test suite for SP 800-108 tests the requirements in each of these sections.

B.2 Additional Requirements of SP800-108

There is one additional requirement that is identified by a “shall” statement in SP 800-
108 that is addressable at the algorithm level and therefore is tested by the KBKDFVS.

Section Shall Statement CAVP testing
7.4 Input Data Encoding The encoding method shall define

a one-to-one mapping from the
set of all possible input
information for that data field to a
set of the corresponding binary
strings.

CAVS requires the IUT to
supply the fixed input data,
the Label, the Context, and
the binary representation
of L. CAVS then checks
that the Label, Context and
L are included in the fixed
input data. Because the
specific order of these
components is not specified
in the special publication,
this is not checked

	1 Introduction
	2 Scope
	3 Conformance
	4 Definitions and Abbreviations
	4.1 Definitions
	4.2 Abbreviations

	5 Design Philosophy of SP800-108 KDF Validation System
	6 The Key Derivation Using Pseudorandom Functions (SP800-108KDF) Validation System (KBKDFVS) Test
	6.1 Configuration Information
	6.2 The Validation Test
	6.2.1 The Validation Test for KDF in Counter Mode
	6.2.2 The Validation test for KDF in Feedback Mode
	6.2.3 The Validation test for KDF in Double-Pipeline Iteration Mode

	Appendix A References
	Appendix B Tested Components of SP 800-108
	B.1 SP800-108 Algorithmic Specifications
	B.2 Additional Requirements of SP800-108

