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e.g. x — |x|° is a valuation
R = field of real numbers. for any 0 € R with 0 < ¢ < 1.
C = field of complex numbers.

These valuations are equivalent:

The function x — |x] positive powers of each other.
from C to R is a valuation on C: They have the same unit disks:
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defined by 0 — 0; x — 1 if x # 0.
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A nonequivalent nontrivial
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Q = field of rational numbers.

The function x — |x|

from Q to R is a valuation on Q.

Same as previous x — |x|, but
restricts C inputs to be in Q.

A nonequivalent nontrivial
valuation on Q: define |0|3 = 0,

‘X|3 — 378 if x = £2%2335% ...

e.g. 0|3 =1/9; |-7/3|; =3.

e 0|3 =0.

e x #0 = |x|3 > 0.

o [xyl3 = [xl3lyls

o Ix+yls < Ixls + Iyls
Even better: < max{|x|3,

yl3}.

For x € Q, define |x|co = |Xx

X|p=p P if x ==
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Infinite-
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log 6

[ag



1al numbers.

x|

/aluation on Q.

x — |x|, but
to be in Q.

ontrivial
efine |0|3 = 0,

Flyls.
x{|x|3, |y|3}-
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Infinite-dimension:

(log |x|co, log |X]2,

log |x|co log |x|2 I

log 2 —log?2 (

0 0 0
[skip x = 0: log O
0 0 0
og 2 —log?2 (
og 3 0 -
og 4 —log4 Q
ogb 0 0
log 6 —log2 -

lagain don't
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For x € Q, define |x|oo = |X|;

X|p = p P if x =£22335%5 ...
X | [X|loo |X|2 |X|3 |X|5 ... product
—2 | 2 1/21 1 o1
—111 1 1 1 o1
0(0c 0 0 O . 0
1|1 1 1 1 o1
2 | 2 1/21 1 o1
3|3 1 1/31 1
414 1/41 1 1
515 1 1 1/5...1
66 1/21/31 1
|[don't forget x = 2/3 etc.]

Infinite-dimensional lattice ¢

(log [x|oo, log |X]|2, log |x|3, .-

log |X|oo log |x|2 log |x|3 log

log 2

—log?2 0 0
0 0 0 0
[skip x = 0: log 0 not defin
0 0 0 0
og 2 —log2 0 0
og 3 0 —log3 0
og 4 —log4 0 0
ogb 0 0 — |
log 6 —log2 —log3 0

lagain don't forget 2/-
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log |x|co log |x|2 log|x|3 log |x]|5 ...
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0 0 0 0

[skip x = 0: log 0 not defined]

0 0 0 0
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og 4 —log4 0 0
ogb 0 0 —logh ...
log 6 —log2 —log3 0
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log |x|o log |x|2 log|x|3 log |x]|5 ...

log 2 —log2 0 0

0 0 0 0

[skip x = 0: log 0 not defined|]

0 0 0 0

og 2 —log2 0 0

og 3 0 —log3 0

og 4 —log4 0 0
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log |x|o log |x|2 log|x|3 log |x]|5 ...

log 2 —log2 0 0

0 0 0 0

[skip x = 0: log 0 not defined]

0 0 0 0

og 2 —log2 0 0

og 3 0 —log3 0

og 4 —log4 0 0
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log |x|eo log |x|2 log|x|3 log |x]|5 ...

log 2 —log2 0 0

0 0 0 0

[skip x = 0: log 0 not defined]

0 0 0 0

og 2 —log2 0 0

og 3 0 —log3 0

og 4 —log4 0 0
ogb 0 0 —logh ...
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This lattice, the set of vectors
(log |X|oo, log |Xx]|2, log |x|3,...), is
(log?2, —log2,0,0,0,...)Z +
(log3,0,—10g3,0,0,...)Z +
(log5h,0,0,—logh,0,...)Z +
(log7,0,0,0, —log7,...)Z

.- - where
Z={.,-2,-1012, ...}
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(lOg ‘X‘OOrlog ‘X‘21 lOg ‘X‘31 . ) (Og ‘X‘oo,lOg X‘Q, |Og ‘X‘3, .. .), 1S
2,—log?2,0,0,0,...)Z +
log | x log [x|> log|x|3 log |x|5 ... (log
& [Xloo o8 x|z log [x(3 Tog (log3,0,—10g3,0,0,...)Z +
| (logh,0,0, —logh,0,...)Z +
og2  —log2 0 0 (log7,0,0,0,—log7,...)Z
0 0 0 0 =+ | --- where
[skip x = 0: log 0 not defined] Z—{ .,-2-1,012. 1}
0 0 0 0
og 2 —log?2 0 0 X = £2%23%35% ... maps to
og 3 0 —log3 0 (log |X|co, log |x|2, log |Xx]|3,...) =
ogd —log4 O 0 ~ (log2,—10g2,0,0,0,...)e +
og5 0 0 —log5 ... (log3,0, —1l0g3,0,0,...)e3 +
log 6 —log2 —log3 0 (logh,0,0, —logh,0,...)es
(log7,0,0,0, —log7,...)e7 +

lagain don't forget 2/3 etc.]
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(log5h,0,0, —logh,0,...
(

.- - where

)
)
)

0g7,0,0,0,—log7,...)Z
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e leaving out the weight wo
produce infinitely many sh
log vectors (e.g., length <
e want “the product formul:

I, Ixlv=1; >, log|x|y :

e this particular power |x|,

a probability interpretatior
(matches “Haar measure”
on the “completion™); etc
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an {00, 2, 3}-unit
=1, |x|]7 =1, ...
2432
‘3-smooth’” .

1its can focus on S-logs:

3 | X[ oo, log | X2, log |x]3)
oup +243Z 0 lattice
log2,0)Z +
—log3)Z.

S for more S-units.
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Prime element p of R:

e R — pR closed under mult;

e pR#R (i.e, p & R*);
O pR # {O} (i.e., P # O)

{oo}-integers Z have prime
elements {::2, +3, £5, 47, ..

e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}

3,

uniquely as u223¢35% ... where
uecZ* e, c€40,1,2,...}.

Log: nonnegative combination of

(
(

og2,—log2,0,0,...);
0g3,0,—1log3,0,...);

etc. u disappears in log vector.

11

{0,2,3
prime el
2,3 € (2



3}-integer
21, ...

3}-unit
=1, ...

cus on S-logs:

x|2, log |x|3)
Z to lattice

_|_

e S-units.
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Prime element p of R:

e R — pR closed under mult;

e pR=%R (ie., p¢& R*);

e pR £ {0} (i.e., p #0).

{00 }-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}
uniquely as u22335% ... where
uecZ* e, c{0,1,2,...}.

Log: nonnegative combination of
(log?2, —log2,0,0,...);

(log 3,0, —1log3,0,...);

etc. u disappears in log vector.

11

{0, 2, 3}-integers
prime elements {4
2,3 € (24322)%; 1
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Prime element p of R:

e R — pR closed under mult;

e pR=%R (ie., p¢& R*);

e pR £ {0} (i.e., p#0).
{oo}-integers Z have prime
elements {::2, ::3, ::5, ::7, .. .},
e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}
uniquely as u223¢35% ... where
uec”Z* e, c€40,1,2,...}.

Log: nonnegative combination of

(
(

og2,—log2,0,0,...);
0g3,0,—1log3,0,...);

etc. u disappears in log vector.

11

{0, 2, 3}-integers 24327 |,
prime elements {45, £7, ...
2,3 € (24342Z)*: no longer |




Prime element p of R:

e R — pR closed under mult;

e pR=%R (ie., p¢& R*);

e pR £ {0} (i.e., p #0).

{00 }-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}
uniquely as u223¢35% ... where
uecZ* e, c{0,1,2,...}.

Log: nonnegative combination of
(log?2, —1log2,0,0,...);

(log 3,0, —1log3,0,...);

etc. u disappears in log vector.

11

{0, 2, 3}-integers 22327 have
prime elements {45, +7,...}.
2,3 € (2434Z)*: no longer prime!
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Prime element p of R:

e R — pR closed under mult;

e pR=%R (ie., p¢& R*);

e pR £ {0} (i.e., p #0).

{00 }-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}
uniquely as u223¢35% ... where
uecZ* e, c{0,1,2,...}.

Log: nonnegative combination of
(log?2, —1log2,0,0,...);

(log 3,0, —1log3,0,...);

etc. u disappears in log vector.

11

{0, 2, 3}-integers 22327 have
prime elements {45, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

12



11

Prime element p of R: {0, 2, 3}-integers 22327 have

e R — pR closed under mult; prime elements {45, £7,...}.

e pR#R (ie.,, p & RY); 2,3 € (2434Z)*: no longer prime!
* PR 7105 (ie. p#0). Can write any x € 2434Z — {0}
{oo}-integers Z have prime uniquely as ub® 7 - - - where
elements {::2, +3, £5, 47, .. .}, U < (22322)*, €p C {0, 1,2, .. }
e, {2,3,5,7,...}Z%. ey 40232

Can write any x € Z — {0} u logs: integer combination of
uniquely as u22335% ... where (log2, —log2,0,...),

uecl* e, €40,1,2,...}. (log 3,0, —log3,...).

Log: nonnegative combination of
(log?2, —1log2,0,0,...);

(log 3,0, —1log3,0,...);

etc. u disappears in log vector.




Prime element p of R:

e R — pR closed under mult;

e pR=%R (ie., p¢& R*);

e pR £ {0} (i.e., p #0).

{00 }-integers Z have prime
elements {::2, ::3, ::5, ::7, . .},
e, {2,3,5,7,...}Z%.

Can write any x € Z — {0}
uniquely as u223¢35% ... where
uecZ* e, c{0,1,2,...}.

Log: nonnegative combination of

(
(

og2,—log2,0,0,...);
0g3,0,—1log3,0,...);

etc. u disappears in log vector.
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{0, 2, 3}-integers 22327 have

prime elements {45, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

i.e. u€e +243%

u logs: integer combination of
(log2, —log2,0,...),
(log3,0,—log3,...).

He T - - - logs: combine
(log5,0,0, —logh, ...);
(log7,0,0,0,—log7,...)
etc.




lement p of R:

R closed under mult;

R (i.e., p & R®);

{0} (i.e., p #0).

egers Z have prime

> {::2, ::3, ::5, ::7, .. .},
3,5,7,...}YZ*.

e any x € Z — {0}
as u2°23<35% ... where
ep €{0,1,2,...}.

nnegative combination of
log2,0,0,...);
—log3,0,...);

Isappears In log vector.
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{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5%7¢7 - - . where
u € (24342)*, e, <4{0,1,2,...}.

.e. uc +243%
u logs: integer combination of

(
(

og2,—log2,0,...),
0g3,0,—log3,...).

Hhe5T7¢7 - - - logs: combine

(
(

0g5,0,0,—logh,...);
0g7,0,0,0,—log7,...);

etc.

12

The 4th
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{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

i.e. u€ +243%

u logs: integer combination of
(log2, —log2,0,...),
(log3,0,—log3,...).

HeTT - - - logs: combine
(log5,0,0, —logh, ...);
(log7,0,0,0,—log7,...)
etc.

12

The 4th cyclotom

i+ the usual v/—1
Q(i)=Q+ Qiis
the “field of Gaus:
the “"4th cyclotom

e.g. 3/11 — 2i/5 ¢
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{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5%7¢ - - - where
u € (24342)*, e, <4{0,1,2,...}.

.e. u € +243%,
u logs: integer combination of

(
(

og2,—log2,0,...),
0g3,0,—log3,...).

Hhe5T7¢7 - - - logs: combine

(
(

0g5,0,0,—logh,...);
0g7,0,0,0,—log7,...);

etc.

12

The 4th cyclotomic field

I

the usual v/—1 in C.

Q(/) = Q4+ Qi is a field:

t
t

ne “‘field of Gaussian ration

ne “4th cyclotomic field" .

e.g. 3/11 — 2i/5 € Q(i).



{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

i.e. u€e +243%
u logs: integer combination of

(
(

og?2,—log2,0,...),
0g3,0,—log3,...).

He57¢7 - - - logs: combine

(
(

0g5,0,0, —logh,...);
0g7,0,0,0,—log7,...);

etc.

12

The 4th cyclotomic field

I: the usual v/—1 in C.
Q(/) = Q+ Qi is a field:

the “4th cyclotomic field".
e.g. 3/11 —2i/5 € Q(i).

the “field of Gaussian rationals’;

13



{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

i.e. u€e +243%
u logs: integer combination of

(
(

og?2,—log2,0,...),
0g3,0,—log3,...).

He57¢7 - - - logs: combine

(
(

0g5,0,0, —logh,...);
0g7,0,0,0,—log7,...);

etc.

12

The 4th cyclotomic field

I: the usual v/—1 in C.
Q(/) = Q+ Qi is a field:

the “field of Gaussian rationals’;

the “4th cyclotomic field".
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, .)

13



{0, 2, 3}-integers 22327 have
prime elements {+5, +7,...}.
2,3 € (2434Z)*: no longer prime!

Can write any x € 2434Z — {0}
uniquely as ub5®7¢7 - - - where
u € (24342)*, e, <4{0,1,2,...}.

i.e. u€e +243%

u logs: integer combination of
(log2, —log2,0,...),
(log3,0,—log3,...).

HheT7¢7 - - logs: combine
(log5,0,0, —logh, ...);
(log7,0,0,0,—log7,...)
etc.

12

13
The 4th cyclotomic field

I: the usual v/—1 in C.
Q(/) = Q+ Qi is a field:

the “field of Gaussian rationals’;

the “4th cyclotomic field".
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, .)

Fact: Each x € Q(/)*

factors uniquely as r [ [ ,cp p
where r € {1,i,—1, —i};
P={1+1i32+i2—1i,...}
each ep Is an integer.



Lintegers 2434Z have
ements {::5, +/, .. }
!ZBZZ)*; no longer prime!

e any x € 24347 — {0}
as ub*>7¢7 - .- where
32Z)* e, €{0,1,2,...}.

+243%

nteger combination of
log2,0,...),
—log3,...).

- logs: combine
0, —logh,...);
0,0, —log7,...);
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The 4th cyclotomic field

i: the usual v+/—1 in C.
Q(/) = Q-+ Qi is a field:

the “field of Gaussian rationals”:

the “4th cyclotomic field" .
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, o.)

Fact: Each x € Q(/)*

factors uniquely as r [ [ ,cp p
where r € {1,i,—1, —i};
P={1+1i32+i2—1i,...}
each ep Is an integer.
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etc. (Tc
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The 4th cyclotomic field

I: the usual v/—1 in C.
Q(/) = Q+ Qi is a field:

the “field of Gaussian rationals”;

the “4th cyclotomic field".
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, .)

Fact: Each x € Q(/)*

factors uniquely as r [ [ ,cp p
where r € {1,i,—1, —i};
P={1+1i32+i2—1i,...}
each ep Is an integer.

13

la+ bil]* = a% + E

For each p € P: h
and |p|? is a prim
or the square of a

p=1+41
p = 3:
p=2-+1
p=2—1
p=":
p=11:
p=3-+2i
p=3—2I:

etc. (To fully defi
also handle 1,/, —
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The 4th cyclotomic field

i: the usual v+/—1 in C.
Q(/) = Q-+ Qi is a field:

the “field of Gaussian rationals”:

the “4th cyclotomic field" .
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, o.)

Fact: Each x € Q(/)*

factors uniquely as r [ [ ,cp p
where r € {1,i,—1, —i};
P={1+1i32+i2—1i,...}
each ep Is an integer.

13

la+ bi|? = a*> + b? for a, b

For each p € P: have p € Z
and |p|? is a prime not in 3
or the square of a prime in :

p=1+1 p
p=3: p
p=2+1 p
p=2—1 p
p=T: Pl
p = 11: pl°
p=3-+2i p|4
p=3—2i: p|?

etc. (To fully define P,
also handle 1,7/, —1, —/ mult



The 4th cyclotomic field

I: the usual v/—1 in C.
Q(/) = Q+ Qi is a field:

the “field of Gaussian rationals’:

the “4th cyclotomic field".
e.g. 3/11 —2i/5 € Q(i).

(More generally, Q(a) means the
smallest field containing Q, .)

Fact: Each x € Q(/)*

factors uniquely as r [ [ ,cp p
where r € {1,i,—1, —i};
P={1+1i32+i2—1i,...}
each ey Is an integer.

13

14
la+ bil]? = a®> 4+ b® for a, b € R.
For each p € P: have p € Z + Zi,
and |p|? is a prime not in 3 + 4Z
or the square of a prime in 3+4Z:

p=1+] p|? = 2.
p = 3: p|? =09.
p=2-+1 p2:5.
p=2—1 p2:5.
p=T: p|* = 49.
p=11: p|? = 121.
p=3+2i p|? = 13.
p=3-—2i p|? = 13.

etc. (To fully define P,
also handle 1,/, —1, —i multiples.)



cyclotomic field

sual v/ —1 in C.
R+ Qi 1s a field:
d of Gaussian rationals”;

- cyclotomic field” .

1 —2i/5 € Q(i).

enerally, Q(a) means the
field containing Q, a.)

ich x € Q(/)*

iniquely as r || ,cp p
cd{l,i,—1,—i};
+1,3,24+10,2—1,...};
IS an Integer.
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la+ bi|? = a®> + b® for a, b € R.

For each p € P: have p e Z + Zi,
and |p|? is a prime not in 3 + 4Z

or the square of a prime in 3+4Z:

p=1+1 p2:2
p =3 pl? =09
D=2+ pl? =5
p=2—1 p2:5
p="T: p|* = 49.
p=11: p|? = 121.
p=3+2i p|? = 13.
p=3—2i p|? = 13.

etc. (To fully define P,
also handle 1,/, —1, —/ multiples.)
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la+ bil]? = a®> 4+ b® for a, b € R.

For each p € P: have p € Z + Zi,
and |p|? is a prime not in 3 + 4Z

or the square of a prime in 3+4Z:

p=1+] p|? =2
p = 3: pl2 =9
D=2+ p|? =5
p=2—1I p2:5
p=T: pl* =49
p=11: p|? =121
p=3+2i p|? = 13.
p=3-—2i p|? = 13.

etc. (To fully define P,
also handle 1,/, —1, —/ multiples.)

14

Standard powers «

nontrivial valuatio

X|oo = |X]%. (Wa

Is a valuation: x —

X

X X X X X X X

| 4j = 27 L+,
3=9"%. (So
o4 = 572+,
o—j =572,

7 = 497¢7

11 = 1217 €11
342; = 137 53+2
3_pj = 13732

Etc. These have

For x = 0, all valu
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la+ bi|? = a®> + b® for a, b € R.

For each p € P: have p e Z + Zi,
and |p|? is a prime not in 3 + 4Z

or the square of a prime in 3+4Z:

p=1+1 p|? = 2.
p = 3: p|? =09.
p=2+1 P2=5-
p=2—1 p2:5.
p="T: pl* =49
p=11: p|? = 121.
p=3+2i p|? = 13.
p=3-—2i p|? = 13.

etc. (To fully define P,
also handle 1,/, —1, —i multiples.)

14

Standard powers of nonequi

nontrivial valuations on Q(ij

x|oo = |X|?. (Warning: x

is a valuation; x — |x|? isn”

X

X X X X X X X

| 4j = 27 FLH,

3 =979, (So now |3|3 =
o4 = 57 2,

o_j =572,

7 = 497¢7

11 = 1217 €11

34pj = 137 3+2i,

3_pj = 137 %3-2i,

Etc. These have product 1.

For x = 0, all valuations 0.



la+ bil]? = a®> 4+ b® for a, b € R.

For each p € P: have p € Z + Zi,
and |p|? is a prime not in 3 + 4Z

or the square of a prime in 3+4Z:

p=1+] p|? =2
p = 3: pl2 =9
D=2+ p|? =5
p=2—1I p2:5
p=T: p|* = 49.
p=11: p|? = 121.
p=3+2i p|? = 13.
p=23-—2i p|? = 13.

etc. (To fully define P,
also handle 1,/, —1, —i multiples.)
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Standard powers of nonequivalent

nontrivial valuations on Q(/):

x|oo = |X[?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

Etc. These have product 1.

x|3 = 9%, (So now [3[3 = 1/9.)
X|o_; = H7®2-i,

x|7 =497 °7.

x|11 = 1217 €11,

X

X

For x = 0, all valuations 0.



— 321+ b%fora beR

' p e P: have pe Z + Zi,
s a prime not In 3+ 4Z
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p|* =49
p|? = 121.
o3t p|? = 13.
o3t p|? = 13.

 fully define P,
dle 1,7/, —1, —i multiples.)
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Standard powers of nonequivalent
nontrivial valuations on Q(/):

x|oo = |X[?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

X|14j = 271+

xls = 9% (So now [3]3 = 1/9.)
X|p4j =52+,

X|o_; =B,

x|7 = 497¢7,

x|11 = 1217 €11,

X|34pj = 137 3+2i,

X|3_oj = 13732/

Etc. These have product 1.
For x = 0, all valuations 0.
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Standard powers of nonequivalent
nontrivial valuations on Q(/):

x|oo = |X|?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

Etc. These have product 1.

x|3 =97, (So now [3[3 = 1/9.)
X|o_; =B,

x|7 = 497°7.

x|11 = 1217 €11,

X

X

For x = 0, all valuations 0.

15

x — (log |X|eo, log
maps the group Q
the infinite-dimen:
(log?2, —log2,0,0
(log 9,0, —log9,0
(log5h,0,0, —log5
(log5h,0,0,0, — log
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Standard powers of nonequivalent

nontrivial valuations on Q(/):

x|oo = |X[?. (Warning: x — |x]

is a valuation; x — |x|? isn't!)

X

X X X X X X X

14 = 27 1,

2= 9% (So now |3[3 = 1/9.)
oy =52t

o_j =572,

7 = 497¢7

11 = 1217 €11

34pj = 137 3+2i,

3_pj = 137320,

Etc. These have product 1.

For x = 0, all valuations 0.

15

x — (log [x|co, log [x]14i, - -
maps the group Q(/)* onto

the infinite-dimensional latti

(
(
(
(

og?2,—1log2,0,0,0,...)Z-
0g9,0,—10g9,0,0,...)Z -
0g5,0,0, —logh,0,...)Z -
0g5,0,0,0,—logh,...)Z-
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Standard powers of nonequivalent x — (log |X|eo, log [X|14), .- .)

nontrivial valuations on Q(/): maps the group Q(/)* onto
the infinite-dimensional lattice
(log?2, —log2,0,0,0,...)Z +
0g9,0,—10g9,0,0,...)Z -
0g5,0,0,—logh,0,...)Z
)2 -

x|oo = |X[?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

3 =9-%_ (So now |33 = 1/9.) (

Etc. These have product 1.

j((2+,-:5—62+i_ 0g5,0,0,0, —logh,...)Z +
X|p—j =521,

x|7 =497,

x|11 = 1217 °11,

X

X

For x = 0, all valuations 0.
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Standard powers of nonequivalent x — (log |X|eo, log [X|14), .- .)

nontrivial valuations on Q(/): maps the group Q(/)* onto
the infinite-dimensional lattice
(log?2, —log2,0,0,0,...)Z +
(log 9,0, —10g9,0,0,...)Z -
0g5,0,0,—logh,0,...)Z
)2 -

x|oo = |X[?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)

3=9"%. (So now 3|3 =1/9.) EogS 0,0,0, —log5

D1 = B2+

5= b2, Sg{oo,l—l—i,?),...}, o € S:
7 = 497°7 x € Q(i)* is called an S-unit

11 = 12171, if log|x|, =0 for each p ¢ S.

Etc. These have product 1.

X X X X X X X

For x = 0, all valuations 0.




Standard powers of nonequivalent
nontrivial valuations on Q(/):

x|oo = |X[?. (Warning: x — |x]
is a valuation; x — |x|? isn't!)
X|14j = 271+

3 =979, (So now |3|3 =1/9.)
o4 = 572+,

o—j =572,

7 = 497¢7

11 = 1217 €11

342 = 1375342,

3_pj = 137 %3-2i,

Etc. These have product 1.

X X X X X X X

For x = 0, all valuations 0.
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x — (log |X|eo, log [X|14), .- .)

maps the group Q(/)* onto

the infinite-dimensional lattice

(log?2, —log2,0,0,0,...)Z +
(log 9,0, —10g9,0,0,...)Z -
(log5h,0,0, —logh,0,...)Z
(logh,0,0,0, —logh,...)Z -

S$CH{oo0,14+1,3,...}, 0 €S:
x € Q(i)* is called an S-unit
if log|x|, =0 for each p ¢ S.

e.g. {oo}-units: {1,/,—1,—i}.
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Variant appearing in literature:

Split |x|so into two copies of |x]|.
Gives slightly different lattice:
(0.5log2,0.5log2, —log2,0,0,0,...
(0.5l0og9,0.51l0g9,0, —10g9,0,0,...
(0.5log5,0.5l0g5,0,0, —logh,0, ...
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Minor advantages: e.g.,
some definitions of the lattice
become slightly more concise.

But now have redundant columns,
each column deviating from the
probability interpretation.
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Variant appearing in literature:
Split |x|so into two copies of |x]|.
Gives slightly different lattice:

(0.5log2,0.5log 2, —log2,0,0,0,.
(0.5l0g9,0.510g9,0, —log9, 0,0, .
(0.5log5,0.5l0g5,0,0, —logh,0, .
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Minor advantages: e.g.,
some definitions of the lattice
become slightly more concise.

But now have redundant columns,

each column deviating from the
probability interpretation.
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The 8th cyclotomic field

m = exp(2mi/m) for m € Z
e.g. Cg=(1+1)/v2 {5 =
Q(¢s) = Q + Qs + Q¢Z +
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Variant appearing in literature: The 8th cyclotomic field

Split |x|s into two copies of |x]|. Cm = exp(2mi/m) for m € Z>1.

e.g. g = (1+ I')/\/i; C§ =G4 = 1.
Q(¢s) = Q + Q¢ + Qg + QL.

Gives slightly different lattice:

(0.5log2,0.5log2, —log2,0,0,0,...
(0.5l0g9,0.510g9,0, —log9,0,0, ...
(0.5log5,0.5l0g5,0,0, —logh,0, ...
(0.5log5,0.5l0g5,0,0,0, —logh, ...

N N N N’

Minor advantages: e.g.,
some definitions of the lattice
become slightly more concise.

But now have redundant columns,
each column deviating from the
probability interpretation.




17
Variant appearing in literature: The 8th cyclotomic field

Split |x|s into two copies of |x]|. Cm = exp(2mi/m) for m € Z>1.

e.g. g = (1+ I')/\/i; C§ =G4 = 1.
Q(¢s) = Q + Q¢ + Qg + QL.

Fact: Each x € Q({g)*
factors uniquely as ru®u HpeP pep

where r € {1,s, ..., <43
P={1+{s1—{g—¢5 ...}
Minor advantages: e.g., u=1+{s+ 5 en€Z; epcZ.
some definitions of the lattice

Gives slightly different lattice:

(0.5log2,0.5log2, —log2,0,0,0,...
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become slightly more concise.

But now have redundant columns,
each column deviating from the
probability interpretation.
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The 8th cyclotomic field

Cm = exp(2mi/m) for me Z>.
e.g. g = (1+ I')/\/i; C§ =G4 = 1.
Q(¢s) = Q + Q¢s + Q¢s + QL.

Fact: Each x € Q({g)*
factors uniquely as ru®u HpeP pep

where r € {1,s, ..., <43
P:{1+C8,1—C8—C§,---};
u=1+{s+ 5 en€Z; epcZ.

Why isn't u included in P?
Answer: We'll want to use P to
Index various nontrivial valuations.
Exercise: u valuation is trivial.
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The 8th cyclotomic field

Cm = exp(2mi/m) for me Z>.

e.g. (g = (1—|—i)/\/§; C§ =G4 = 1.

Q(¢s) = Q + Qs + Qg + Q3.

Fact: Each x € Q({g)*
factors uniquely as ru®u HpeP pep

where r € {1,s, ..., <43
P:{1+§8,1—§8—§§,...};
u=1+{s+ ¢35 en€Z; epcZ.

Why isn't u included in P?
Answer: We'll want to use P to

iIndex various nontrivial valuations.

Exercise: u valuation is trivial.

18

Standard valuatior

X0y = |x]%.
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Cm = exp(2mi/m) for me Z>.

cg o= (1+)V2EE=Cr=i

Q(¢s) = Q + Q¢ + Q¢ + QG-

Fact: Each x € Q({g)*
factors uniquely as ru®u HpEP pep

where r € {1,s, ..., <43
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u=1+{s+ ¢35 en€Z; ep€Z.

Why isn't u included in P?
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index various nontrivial valuations.

Exercise: u valuation is trivial.

18

Standard valuation power

X|ooy = [x]%.
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Cm = exp(2mi/m) for me Z>.
e.g. g = (1+ I')/\/i; C§ =G4 = 1.
Q(¢s) = Q + Qs + QL5 + Q3.
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where r € {1,s, ..., <43
P:{1+§8,1—§8—§§,...};
u=1+{s+ ¢35 en€Z; epcZ.

Why isn't u included in P?
Answer: We'll want to use P to
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Exercise: u valuation is trivial.

18

Standard valuation power co1:

X0y = |x]%.
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u=1+{s+ ¢35 en€Z; epcZ.

Why isn't u included in P?
Answer: We'll want to use P to
Index various nontrivial valuations.
Exercise: u valuation is trivial.

18

Standard valuation power co1:

X0y = |x]%.

Standard valuation power co3:
X|o03 = |03(X)|?
o3(ao + a1ls + a3 + a3é3)
= ap + a143 + ax¢d + a3y

where

Exercise: a3(xy) = o3(x)o3(y).

19
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Standard valuation power co1:

X0y = |x]%.

Standard valuation power co3:
X|oo3 = |03(x)|%
03(a0 + a1ds + axg + a3¢g)

= ap + a1{g + a2¢g + a3lg.
Exercise: a3(xy) = a3(x)o3(y).

where

To see 001, 003 are inequivalent:
1_|_C8 001 :2+\/§> 1,
14 {8looy = 2/(2++/2) < 1.
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Standard valuation power co1:

X0y = |x]%.

Standard valuation power co3:
X|oo3 = |03(x)|%
03(a0 + a1ds + axg + a3¢g)

= ap + a1{g + a2¢g + a3lg.
Exercise: a3(xy) = a3(x)o3(y).

where

To see 001, 003 are inequivalent:
1_|_C8 001 :2+\/§> 1,
14 {8looy = 2/(2++/2) < 1.

Standard valuation for p € P:

X|p = N(p)~ P, using prime
sower N(p) = [Bloo; |P|oos.
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Z[¢e] = Z+ Z¢s + 22 + Z
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{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢3 + Z¢3.

{001, 003 }-units: Céo us.
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Standard valuation power 001: {001, 003 }-integers:
X[ooy = |x]% Z[¢s] = Z + Z¢g + ZE2 + Z¢3.
Standard valuation power 0o3: {001, 003 }-units: Céo ----- i,z

X|oos = |o3(x)|? where
03(ag + a1ls + a2¢5 + a3¢3)
= ap + a1{g + a2(g + a3g-

Exercise: a3(xy) = o3(x)o3(y).

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

To see 001, 003 are inequivalent:
1_|_C8 001 :2+\/§> 1,
14 {8looy = 2/(2++/2) < 1.

Standard valuation for p € P:

X|p = N(p)~ P, using prime
sower N(p) = [Bloo; |Ploos.
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14 {8looy = 2/(2++/2) < 1.

Standard valuation for p € P:
X|p = N(p)~ P, using prime
sower N(p) = [Bloo; |Ploos.

19

20
{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢3 + Z¢3.
{001, 003 }-units: Céo us.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + {g}-units:



Standard valuation power co1:

X|ooy = |x]%.

Standard valuation power co3:
X|o03 = |03(X)|?
o3(ao + a1ls + a3 + a3é3)
= ap + a143 + ax¢d + a3y

where

Exercise: a3(xy) = o3(x)o3(y).

To see 001, 003 are inequivalent:

14 {8looy = 2/(2++/2) < 1.

Standard valuation for p € P:

X|p = N(p)~ P, using prime
sower N(p) = [Bloo; |Ploos.

19

20
{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢3 + Z¢3.
{001, 003 }-units: Céo us.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + {g}-units:

{001, 003, 1 4+ {g}-unit lattice:
(1.76...,—1.76...,0,..)Z +
(122...,-053...,-069...,... \Z.



1 valuation power 0co1:
x|°.

1 valuation power 0c03:
o3(x)|3
a18s + a285 + a3(3)

g + a8 + a3¢g.

where

- 03(xy) = 03(x)o3(y).

01, 003 are Inequivalent:

03 = 2/(2++v2) <1

1 valuation for p € P:
/(p)©P, using prime
(P) = |Plooy |Ploos-

19

{001, 003 }-integers:
Z[¢s] = Z + Z{g + Z¢3 + Z¢3.

{001, 003 }-units: Céo us.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

20

Again increase S for more S-units.

{001, 003, 1 + {g}-units:

{001, 003, 1 4 {g}-unit lattice:
(1.76...,—1.76...,0,..)Z +
(1.22...,-053...,-069...,...

Reasona
for the i
lattice o
shown t|

1.76 —1
1.22 -0
1.09 1
1.09 1



1 power 001 :

1 power 003
vhere

¢+ a3¢3)
:S + 33C§-

= 03(x)o3(y).

e Inequivalent:

V2> 1,
+4/2) < 1.

1 for p € P:
sing prime

>01‘P‘003-

19

{001, 003 }-integers:
Z[¢s] = Z + Z{g + Z¢3 + Z¢3.

{001, 003 }-units: Céo us.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

20

Again increase S for more S-units.

{001, 003, 1 + {g}-units:

{001, 003, 1 4+ {g}-unit lattice:
(1.76...,—-1.76...,0,..)Z +
(122...,-053...,-069...,...

Reasonably short |
for the infinite-din

lattice of Q({g)* |
shown truncated

1.76 —1.76 O
1.22 —0.53 —0.69
1.09 1.09 O

1.09 1.09 O



19

20
{001, 003 }-integers:

Z[¢s] = Z + Z{g + Z¢3 + Z¢3.
{001, 003 }-units: Céo u”.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + {g}-units:

{001, 003, 1 4 {g}-unit lattice:
(1.76...,—1.76...,0,..)Z +
(1.22...,-053...,-069...,... \Z.

Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,
shown truncated after 2 digi

1.76 —1.76 O 0

1.22 —0.53 -0.69 O

1.09 109 0 =219
0

1.09 1.09 O



20 21

{001, 003 }-integers: Reasonably short basis
Z[¢g] = Z + Z¢s + 285 + ZE3. for the infinite-dimensional
_____ 7 5 lattice of Q({g)* logs,

{0
1001, 003 j-units: Ca s shown truncated after 2 digits:

{001, 003 }-unit lattice:

1.76 —=1.76 0 0 O
(1.76...,-1.76...,0,...)Z.

1.22 —0.53 —0.69 0 0
Again increase S for more S-units. 1.09 1.09 0 =219 O

{001, 003, 1 + ¢g}-units: _1-09 1.09 0 0 —2.19

{001, 003, 1 4+ {g}-unit lattice:
(1.76...,—-1.76...,0,..)Z +
(122...,-053...,-069...,... \Z.




20 21

{001, 003 }-integers: Reasonably short basis
Z[¢g] = Z + Z¢s + 285 + ZE3. for the infinite-dimensional
_____ 7 5 lattice of Q({g)* logs,

{0
1001, 003 j-units: Ca s shown truncated after 2 digits:

{001, 003 }-unit lattice:

1.76 —=1.76 0 0 O
(1.76...,-1.76...,0,...)Z.

1.22 —0.53 —0.69 0 0
Again increase S for more S-units. 1.09 1.09 0 =219 O

{001, 003, 1 + ¢g}-units: _1-09 1.09 0 0 —2.19

{001, 003, 1 + ¢g}-unit lattice: Diagonal after 2 columns.
(1.76...,—-1.76...,0,...)Z + Compare to the lattice bases for

(1.22...,—053...,-0.69...,... \Z. Q. Q(/): diagonal after 1 column.




20

{001, 003 }-integers:
Z[¢s] = Z + Z{g + Z¢3 + Z¢3.

{001, 003 }-units: Céo us.

{001, 003 }-unit lattice:
(1.76...,—-1.76...,0,...)Z.

Again increase S for more S-units.

{001, 003, 1 + {g}-units:

{001, 003, 1 4+ {g}-unit lattice:
(1.76...,—1.76...,0,...)Z +

(1.22...,-053...,-069...,... )Z.

Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
1.09 109 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21



20

3 }-integers:
Z+Zg+ Z¢5 + Z&3.
3 }-units: Céo """ [

crease S for more S-units.

3, 1 + (g }-units:
14 (1 + ¢g)4.

3, 1 + {g}-unit lattice:

Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —-0.53 -0.69 O 0
1.09 1.09 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for

Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

The 16t

(16 = ex

Q(<16) -
+ Q¢



20

or more S-units.

units:
2.

unit lattice:

Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
109 1.09 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for

Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

The 16th cycloton

<16 — eXp(27TI'/16:

Q(¢16) = Q+ Q¢
+ Q¢ + QL3



20

—units.

Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
1.09 1.09 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for

Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

The 16th cyclotomic field

C16 = exp(2mi/16) so ¢8 =

Q(¢16) = Q+ Q16 + QL -
+ Q¢ + QLY + QLY +



Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
109 109 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

The 16th cyclotomic field

$16 = exp(27i/16) so B = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + QP + QLY + QL.

22



21

Reasonably short basis The 16th cyclotomic field

for jche infinite-dimensional tis = exp(2mi/16) so C?@ _q
lattice of Q({g)* logs,

shown truncated after 2 digits: Q(¢16) = Q+ QC16 + QC%@ + QC%@

+ Q¢* + Q& + QCo. + QY.
1.76 —1.76 0 0 0 16 1 Q616 + Qip + Qeie

122 —053 —069 0 0 | 8th roots of —1 in C:
109 109 0 -219 0 ... &GE¢e.ae. Gl

1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.




Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
109 109 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

The 16th cyclotomic field

$16 = exp(27i/16) so B = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + QP + QLY + QL.

8th roots of —1 In C:
STRESTRESTRESTE

Each odd integer j has a unique

ring morphism ¢ : Q(¢16) — C
mapping (16 to {i¢.

22



Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
109 109 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for
Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

22
The 16th cyclotomic field

$16 = exp(27i/16) so B = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + QP + QLY + QL.

8th roots of —1 In C:
STRESTRESTRESTE

Each odd integer j has a unique

ring morphism ¢ : Q(¢16) — C
mapping (16 to {i¢.

Define |x|oo; = |aj(x)\2.



Reasonably short basis

for the infinite-dimensional
lattice of Q({g)* logs,

shown truncated after 2 digits:

1.76 —1.76 O 0 0
1.22 —0.53 -0.69 O 0
109 109 0 =219 O
1.09 1.09 O 0 —2.19

Diagonal after 2 columns.
Compare to the lattice bases for

Q, Q(/): diagonal after 1 column.

Exercise: Find shorter basis.

21

22
The 16th cyclotomic field

$16 = exp(27i/16) so B = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢ + QP + QLY + QL.

8th roots of —1 In C:
STRESTRESTRESTE

Each odd integer j has a unique

ring morphism ¢ : Q(¢16) — C
mapping (16 to {i¢.

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.



bly short basis
nfinite-dimensional

f Q(¢s)* logs,
‘uncated after 2 digits:

76 0 0 0
53 -0.69 O 0
09 0 =219 0
09 0 0 —2.19

| after 2 columns.
> to the lattice bases for

- diagonal after 1 column.

- Find shorter basis.

21

22
The 16th cyclotomic field

(16 = exp(2mi/16) so <§6 = —1.

Q(<16) = Q+ Q16 + QLEe + QL3
+ Q¢ + Q3 + QLY + QLY.

8th roots of —1 in C:
STRESTRESTRISTE

Each odd integer j has a unique

ring morphism ¢ : Q(¢16) — C
mapping (16 to le6'

Define [x|oo; = \aj(x)|2.

Inequivalent: o071, 003, 005, 007.

{00 }-int
{001, 00
Z[{16] =



DasIs
rensional
0gs,
fter 2 digits:
0 0
0 0
—-2.19 0
0 —2.19
olumns.

ttice bases for

after 1 column.

rter basis.

21

22
The 16th cyclotomic field

$16 = exp(2mi/16) so B = —1.

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢fe + QeI + QY + QL.

8th roots of —1 In C:
STRESTRESTRESTE

Each odd integer j has a unique

ring morphism o : Q(¢16) — C
mapping (16 to le6'

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.

{oo}-integers, me:
{001, 003, 005, 007

Z[{16) = Z + Z{36
+ 2L + 283,



ts:

n O O O

5 for

lumn.

21

22
The 16th cyclotomic field

(16 = exp(27i/16) so <§6 = —1.

Q(<16) = Q+ Q16 + QLE + QL3
+ Q¢ + Q3 + QLY + QL.

8th roots of —1 in C:
STRESTRESTRISTE

Each odd integer j has a unique

ring morphism ¢ : Q(¢16) — C
mapping (16 to (i¢.

Define [x|oo; = \aj(x)|2.

Inequivalent: o071, 003, 005, 007.

{00 }-integers, meaning

{001, 003, 005, 007 H-integers

Z[16) = Z + Z16 + Z8ig +
+ Z¢fe + 2876 + 2836



The 16th cyclotomic field
$16 = exp(2mi/16) so B = —1.

Q(¢16) = Q+ Q16 + QL + QL3
+ Q¢fe + QLY + QY + QL.

8th roots of —1 in C;
STRSTRISTRRS A
Each odd integer j has a unique
ring morphism o : Q(¢16) — C
mapping (16 to {i6.

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.

22

{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + ZC5

+ 2o + 28 + Z8 + 286,

23



The 16th cyclotomic field
(16 = exp(2mi/16) so <?6 = —

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢fe + QLY + QY + QL.

8th roots of —1 in C:

+1 43 4b 47
C16 + $16 + $16 + $16 -

Each odd integer j has a unique

ring morphism o : Q(¢16) — C
mapping {16 to {1

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.

22

{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + ZC5

+ 2o + 28 + Z8 + 286,

{ oo }-units: <126 ut u3z u5Z where

up =1+ (16 + <%6,
uz = 1+ C16 T C16 — ‘73( 1)
U5:1“<%6‘ Cl6 —05( )

23



The 16th cyclotomic field
(16 = exp(2mi/16) so <?6 = —

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q% + QLY + QLY + Qe

8th roots of —1 in C:

+1 43 4b 47
C16 + $16 + $16 + $16 -

Each odd integer j has a unique

ring morphism o : Q(¢16) — C
mapping {16 to {1

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.

22

{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + ZC5

+ 2o + 28 + Z8 + 286,

{oo}-units: ¢4 ufufuf where

up =1+ C16 + s,

uz =1+ C16 + (i = o3(u1),

us = 1+ C%@ T C%g — US(Ul)-
Exercise: ujuzusuy; = —1 where
u7 =1+ <16 T C16 = o7(u1).

23



The 16th cyclotomic field
(16 = exp(2mi/16) so <?6 = —

Q(<16) = Q+ Q16 + QLEs + QL3
+ Q¢fe + QLY + QY + QL.

8th roots of —1 in C:

STMSTRISTRLSTE

Each odd integer j has a unique
Q(¢16) — C

ring morphism o; :
- J
mapping (16 to C16

Define |x|oo; = |aj(x)\2.

Inequivalent: o071, 003, 005, 007.

22

{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + ZC5

+ 2o + 28 + Z8 + 286,

{oo}-units: ¢4 ufufuf where

up =1+ C16 + s,

uz = 1+ C16 T C?@ = 03("1)1

us = 1+ C%@ T C%g — US(Ul)-
Exercise: ujuzusuy; = —1 where
u7 =1+ <16 T C16 = o7(u1).

Logs of uy, uz, us, truncated:

2.09 1.13 —-2.389 —-0.33
1.13 —0.33 2.09 —-2.89
—2.89 2.09 —-0.33 1.13

23



h cyclotomic field

p(27i/16) so ¢$s = —

= Q + Q<16 + Q¢ + QCe
16 T Q¢ + Qs + Q.
sof —1 in C;

flstsT
d integer j has a unique
'phism gj : Q(<16) — C
(16 to {1

x‘ooj — ‘UJ(X)|2-

lent: o001, 003, 005, 007.

22

{oo }-integers, meaning
{001, 003, 005, 007 H-integers:
Z[¢16) = Z + Zli6 + 285 + 25

+ Z¢fe + 28 + Z8 + 286,

{ oo }-units: §126 ut u3z u5Z where

up =1+ 16+ C%G,

uz =1+ C16 T C16 = o3(u1),

us = 1+ C%@ T <16 — 05(U1)-
Exercise: ujususuy; = —1 where
ur =1+ C16 + <16 = o7(u1).

Logs of uy, uz, us, truncated:

2.09 1.13 —-2.389 —-0.33
1.13 —0.33 2.09 —-2.89
—2.89 2.09 —-0.33 1.13

23

In the In

of Q({1¢
after the

2.09
1.13 -
—2.89
1.34
1.94 —



nic field

) so C% = —1.

6+ Qs + Qg
+Qe8 + Qe

CZ

/ has a unique
Q(¢16) = C
-

(x)]%.

03, O0fF, CO7.

22

{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + 25

+ 2o + 28 + Z8 + 286,

{ oo }-units: <126 ut u3z u5Z where

ur =1+ 16 + ¢,
uz = 1+ C16 T C?@ = 03("1)1

_ 5 10
us = 1+ (76 + 16 = 05(U1):
Exercise: ujuzusu7; = —1 where

u7 =1+ <16 T C16 = o7(u1).

Logs of uy, uz, us, truncated:

2.09 1.13 —-2.389 —-0.33
1.13 —0.33 2.09 —-2.89
—2.89 2.09 —-0.33 1.13

23

In the infinite-dim

of Q({16)* logs, a
after the four oo ¢

2.09 1.13-2.8
1.13 -0.33 2.0
—2.89 2.09 -0.3
1.34 1.01 0.2
1.94 -0.68 0.9



Q¢

ique
> C

22

{oo }-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + Z(5

+ Z¢fe + 28 + Z8 + 285,

{oo}-units: ¢& ufufuf where

up =1+ 16 + <%6,

u3 =1+ C16 T C16 = o3(u1),

us =1+ C%@ T <16 = o5(u1).
Exercise: ujuzusu7; = —1 where
ur =1+ C16 + <16 = o7(u1).

Logs of uy, uz, us, truncated:

2.09 1.13 =239 —-0.33
1.13 —-0.33 2.09 —-2.89
—2.89 2.09 —-0.33 1.13

23

In the infinite-dimensional |z

of Q({16)* logs, a diagonal -
after the four co columns:

2.09 1.13-2.89 —-0.33
1.13 -0.33 2.09 —-2.39
—-2.89 2.09 -0.33 1.13
1.3 1.01 0.21 —-1.88 —
1.94 -0.68 0.98 0.58



{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + 25

+ Z¢fe + 286 + Z8 + 286,

{ oo }-units: <126 ut u3z u5Z where

ur =1+ 16 + ¢,
uz = 1+ C16 T C?@ = 03("1)1

_ 5 10
us = 1+ (76 + 16 = 05(U1):
Exercise: ujuzusu7; = —1 where

u7 =1+ <16 T C16 = o7(u1).

Logs of uy, uz, us, truncated:
2.09 1.13 —2.89 —-0.33
1.13 —0.33 2.09 —2.89

—2.89 2.09 —-0.33 1.13

23

In the infinite-dimensional lattice
of Q({16)* logs, a diagonal starts

after the four oo columns:

2.09 1.13-2.389-033 0
1.13-0.33 2.09-2.39 O
—-2.89 2.09-033 1.13 0
1.34 1.01 0.21 —1.88 —0.69
1.94 -0.68 093 0.58 O

24

0
0
0
0
2



{oo}-integers, meaning
{001, 003, 005, 007 }-integers:
Z[¢16) = Z + Zli6 + 285 + 25

+ Z¢fe + 286 + Z8 + 286,

{oo}-units: ¢4 ufufuf where

ur =1+ 16 + ¢,
uz = 1+ C16 T C?@ = 03("1)1

_ 5 10
us = 1+ (76 + 16 = 05(U1):
Exercise: ujuzusu7; = —1 where

u7 =1+ <16 T C16 = o7(u1).

Logs of uy, uz, us, truncated:
2.09 1.13 —2.89 —-0.33
1.13 —0.33 2.09 —2.89

—2.89 2.09 —-0.33 1.13

23

In the infinite-dimensional lattice
of Q({16)* logs, a diagonal starts

after the four oo columns:

2.09 1.13-2.389-033 0
1.13-0.33 2.09-2.39 O
—-2.89 2.09-033 1.13 0
1.34 1.01 0.21 —1.88 —0.69
1.94 -0.68 093 0.58 O

The general picture: Number of
oo columns is between n/2 and
n for a degree-n number field,
and a diagonal appears almost

immediately after the oo columns.

24

0
0
0
0
2



