

1

ITL BULLETIN FOR NOVEMBER 2016

EXPLORING THE NEXT GENERATION OF ACCESS CONTROL METHODOLOGIES

David Ferraiolo, Larry Feldman,1 and Greg Witte,1 Editors
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
U.S. Department of Commerce

Introduction

As more and more information becomes centralized, controlling and managing access to sensitive data
becomes increasingly challenging. Attribute-based access control (ABAC), which represents the latest
milestone in the evolution of logical access control methods, is designed to address these challenges. It
provides an attribute-based approach to accommodate a wide breadth of access control policies and
simplify access control management.

Many other access control approaches are based on the identity of a user that is requesting a particular
operation on a resource – in these cases, the decision is rendered based on the user’s identity, or
indirectly through predefined attribute types (e.g., roles, groups) assigned to the user. Practitioners have
noted that these forms of access control are often cumbersome to set up and manage, given the
challenges of associating permissions (also referred to as capabilities) directly to users or their
attributes. Furthermore, the identity, group, and role qualifiers of a requesting user are often
insufficient for expressing real-world access control policies. An alternative approach is to express
policies in terms of attributes and to grant or deny user requests based on arbitrary attributes of users
and resources, and, optionally, environmental attributes. This approach to access control is commonly
referred to as attribute-based access control and is an inherent feature of both Extensible Access
Control Markup Language (XACML) and Next Generation Access Control (NGAC).

ITL has recently published NIST Special Publication (SP) 800-178, Comparison of Attribute-Based Access
Control (ABAC) Standards for Data Service Application. The purpose of the document is to compare and
contrast XACML and NGAC — two different access control standards with similar goals and objectives.

SP 800-178 explains the basics of each standard and provides a comparative analysis based on five
criteria. The first criterion is the relative degree to which the access control functionality of an
application or other data service can be separated from a proprietary operational environment such as
that of an operating system. The other four criteria are derived from ABAC considerations identified by
NIST SP 800-162, Guide to Attribute Based Access Control (ABAC) Definition and Considerations; the

1 Larry Feldman and Greg Witte are Guest Researchers from G2, Inc.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

2

criteria are operational efficiency, attribute and policy management, scope and type of policy support,
and support for administrative review and resource discovery.

Separation of Access Control Functionality from Proprietary Operating Environments

Both XACML and NGAC achieve separation of access control functionality of data services from
proprietary operating environments, but to different degrees. XACML’s separation is partial. XACML
does not envisage the design of a Policy Enforcement Point (PEP) that is data service-agnostic. An
XACML deployment consists of one or more data services, each with an operating environment-
dependent PEP and operating environment-dependent operational routines and resource types that
share a common Policy Decision Point (PDP) and access control information consisting of policies and
attributes.

The degree of separation that can be achieved by NGAC is near complete. Although an NGAC
deployment could include a PEP with an application programming interface (API) that recognizes
operating environment-specific operations (e.g., send and forward operations for a messaging system),
it does not necessarily need to do so. NGAC deployment can include a standard PEP with an API that
supports a set of generic, operating environment-agnostic operations (read, write, create, and delete
policy elements and relations). This API enables a common, centralized PEP to be implemented to serve
the requests of multiple applications.

Operational Efficiency

An XACML request is a collection of attribute name, value pairs for the subject (user), action (operation),
resource, and environment. XACML identifies relevant policies and rules for computing decisions
through a search for Targets (conditions that match the attributes of the request). Because multiple
policies in a policy set and/or multiple rules in a policy may produce conflicting access control decisions,
XACML resolves these differences by applying a policy combining algorithm from a set defined by the
standard. The entire process includes collecting attributes, matching conditions, computing rules, and
resolving conflicts involving at least two data stores. There are two phases of policy evaluation that need
to be considered. The first and costliest is loading policy from disk to Policy Decision Point (PDP) main
memory, and the second is request evaluation. In both phases, performance is directly related to the
number of policies considered.

An NGAC request is composed of a process ID, user ID, operation, and a sequence of one or more
operands mandated by the operation that affects either a resource or access control data. NGAC
identifies relevant Policies and attributes by reference when computing a decision. NGAC computes
decisions by applying a single combining algorithm over applicable Policies that do not conflict. Unlike
XACML, NGAC does not need to load policy from disk into memory when evaluating a request. Instead,
and as treated in NGAC reference implementation version 1.6, all information necessary in computing

3

an access decision can reside in memory. Memory is initially loaded when the PDP is initialized, and is
updated when an administrative change occurs. The NGAC specification describes what constitutes a
valid implementation, but does not provide implementation guidance, thereby leaving room for multiple
competing approaches with different efficiencies. A measure of the operational efficiency is the
complexity of algorithm used for arriving at a policy decision. In its reference implementation version 1.
6 on GitHub, the NGAC computes a decision through an algorithm that is linear. Furthermore, it is not
linear in relation to the entire access control data set, but only to the portion relevant to a particular
user.

Attribute and Policy Management

Proper enforcement of data resource policies is dependent on administrative policies. This is especially
true in a federated or collaborative environment, where governance policies require different
organizational entities to have different responsibilities for administering different aspects of policies
and their dependent attributes.

XACML and NGAC differ dramatically in their ability to impose policy over the creation and modification
of access control data (attributes and policies). NGAC manages attributes and policies through a
standard set of administrative operations, applying the same enforcement interface and decision-
making function as it uses for accessing data resources. XACML does not recognize administrative
operations, but instead manages policy content through a Policy Administration Point (PAP) with an
interface that is different from that for accessing data resources. XACML provides support for
decentralized administration of some of its access policies. However, the approach is only a partial
solution in that it is dependent on trusted and untrusted policies, where trusted policies are assumed
valid, and their origin is established outside the delegation model. Furthermore, the XACML delegation
model does not provide a means for imposing policy over modification of access policies, and offers no
direct administrative method for imposing policy over the management of its attributes.

NGAC enables a systematic and policy-preserving approach to the creation of administrative roles and
delegation of administrative capabilities, beginning with a single administrator and an empty set of
access control data, and ending with users with data service, policy, and attribute management
capabilities. NGAC provides users with administrative capabilities down to the granularity of a single
configuration element, and it can deny users administrative capabilities down to the same granularity.

Scope and Type of Policy Support

Although resources may be protected under a wide variety of different access policies, these policies can
generally be categorized as either discretionary or mandatory controls. Discretionary access control
(DAC) is an administrative policy that permits system users to allow or disallow other users’ access to
resources that are placed under their control. Although XACML can theoretically provide users with

4

administrative capabilities necessary to control and give away access rights to other users, the approach
is complicated by the need to create and maintain additional metadata for each and every
object/resource (e.g., Owner attribute). Conversely, NGAC has a flexible means of providing users with
administrative capabilities to include those necessary for the establishment of DAC policies.

In contrast to DAC, mandatory access control (MAC) enables ordinary users’ capabilities to execute
operations on resources, but not administrative operations that may influence those capabilities. MAC
policies unavoidably impose rules on users in performing operations on resources. MAC policies can be
further characterized as controls that accommodate confinement properties to prevent indirect leakage
of data to unauthorized users, and those that do not.

Expression of non-confinement MAC policies is perhaps XACML’s strongest suit. XACML can specify rules
and other conditions in terms of attribute values of varying types. There are undoubtedly certain
policies that are expressible in terms of these rules that cannot be easily accommodated by NGAC. This
is especially true when treating attribute values as integers. For example, when considering a purchase
request, the system may add the two attribute values of a person’s credit limit and account balance to
determine if adequate funds are available. Furthermore, XACML takes environmental attributes into
consideration in expressing policy, and NGAC does not. However, there are some non-confinement MAC
properties, including a variety of history-based policies, that NGAC can express but XACML cannot.

In contrast to NGAC, XACML does not recognize the capabilities of a process independent of the
capabilities of its user. Without such features, XACML cannot support confinement or enforce a variety
of confinement policies. These confinement-dependent policies include some instances of role-based
access control (RBAC), e.g., “only doctors can read the contents of medical records,” originator control
(ORCON) and privacy, e.g., “I know who can currently read my data or personal information,” or conflict
of interest, e.g., “a user with knowledge of information within one dataset cannot read information in
another dataset.” Through imposing process-level controls in conjunction with event-response relations,
NGAC has shown support for these and other confinement-dependent MAC controls.

Administrative Review and Resource Discovery

A desired feature of access controls is the ability to review the capabilities of users and the access
control entries of objects. These features are often referred to as “before the fact audit” and resource
discovery. “Before the fact audit” is one of RBAC’s most prominent features. Being able to discover or
see a newly accessible resource is an important feature of any access control system. NGAC supports
efficient algorithms for both per-object and per-user review. Per-object review of access control entries
is not as efficient as a pure access control list (ACL) mechanism, and per-user review of capabilities is not
as efficient as that of RBAC. However, this is due to NGAC’s consideration of conducting review in a
multi-policy environment. NGAC can efficiently support both per-object and per-user reviews of
combined policies, where RBAC and ACL mechanisms can do only one type of review efficiently, and

5

logical formula-based mechanisms such as XACML, although able to combine policies, cannot do either
type of review efficiently.

Conclusion

XACML is similar to NGAC in that they both employ attributes in computing decisions, and both provide
flexible, mechanism-independent representations of policy rules that may vary in granularity. However,
XACML and NGAC differ significantly in their expression and management of policies, treatment of
attributes, computation of decisions, and representation of requests. Many of these differences stem
from the methods with which they represent policies and attributes. XACML’s approach is to define
policies by using logical formulas involving attribute values, while NGAC uses enumeration involving
configurations of relations. As a consequence of this and other factors, XACML and NGAC have
comparative advantages and disadvantages.

Although the criteria used in this document to compare XACML and NGAC are significant factors for
users to consider in choosing future ABAC deployments and for vendors considering future product
offering, this set is by no means exhaustive. From a user’s perspective, NGAC is new with few products
available for testing and evaluation. From a vendor’s perspective, the NGAC specification describes only
what constitutes a valid implementation using set theoretic notation, thereby leaving room for multiple
competing implementations. XACML, on the other hand, has served as a basis for a number of
proprietary and open-source product offerings that cover virtually all aspects of its deployment.

Additional Resource

NIST’s NGAC reference implementation (“Harmonia”), versions 1.5 and 1.6 –
https://github.com/PM-Master

ITL Bulletin Publisher: Elizabeth B. Lennon
Information Technology Laboratory
National Institute of Standards and Technology
elizabeth.lennon@nist.gov

Disclaimer: Any mention of commercial products or reference to commercial organizations is for information only;
it does not imply recommendation or endorsement by NIST nor does it imply that the products mentioned are
necessarily the best available for the purpose.

https://github.com/PM-Master

