UTA

IPOG: A General Strategy for T-Way
Software Testing

Y. Lei (UT Arlington), R. Kacker (NIST), D. R. Kuhn
(NIST), V. Okun (NIST), J. Lawrence (GMU)

ECBS, Tucson, Arizona
3/28/2007

UTA

Software Engineering

O Software has become pervasive in modern society
Directly contributes to quality of life

= Malfunctions cost billions of dollars every year, and could
have severe consequences in a safety-critical
environment

a Build better software in better ways, especially
for large-scale development

= Requirements, design, coding, testing, maintenance,
configuration, documentation, deployment, and etc.

UTA

Software Testing

Q A dynamic approach to detecting software faults

- Alfernatively, static analysis can be performed, which is
however often intractable

Q Involves sampling the input space, running the test
object, and observing the runtime behavior

= Intuitive, easy-to-use, scalable, and can be very
effective for fault detection

a Perhaps the most widely used approach to ensuring
software quality in practice

UTA

The Challenge

a Testing is labor intensive and can be very costly
- often consumes more than 50% of the development cost

0 Exhaustive testing is often impractical, and is not
always necessary

ad How to make a good trade-off between test
effort and test coverage?

UTA

Outline

a Introduction
- T-way testing
« State-of-the-art

a The IPOG Strategy
- Algorithm IPOG-Test
- Experimental results

A Related Work on T-Way Testing

d Conclusion and Future Work

UTA

T-Way Testing

Q Given any t input parameters of a test object,
every combination of values of these parameters be
covered by at least one test

Qd Motivation: Many faults can be exposed by
interactions involving a few parameters

- Each combination of parameter values represents one
possible interaction between these parameters

0 Advantages

- Light specification, requires no access to source code,
automated test input generation, excellent trade-off
between test effort and test coverage

UTA

Example

Three parameters, each with values O and 1

P1 P2 P3
P1 P2 P3 8 8 (1)
0 0 0 o 1 0
0 1 1 0o 1 1
1 0 1 L 0 0o
1 1 0 L o0 1

. 1 1 0
pairwise 1 1 1

exhaustive

UTA

State-of-the-Art

0 Greedy construction
= Involves explicit enumeration of all possible combinations

- tries to cover as many combinations as possible at each
step

Q Algebraic Construction
- Test sets are constructed using pre-defined rules

Q Most approaches focus on 2-way (or pairwise)
testing

UTA

Beyond pairwise

O Many software faults are caused by interactions
involving more than two parameters

= A recent NIST study by R. Kuhn indicates that failures
can be triggered by interactions up to 6 parameters

0 Increased coverage leads to a higher level of
confidence

- Safety-critical applications have very strict
requirements on test coverage

UTA

Outline

d Introduction
- T-way testing
- State-of-the-art

a The IPOG Strategy
= Algorithm IPOG-Test
- Experimental results

A Related Work on T-Way Testing

d Conclusion and Future Work

10

UTA

The Framework

Q Construct a t-way test set for the first t
parameter

0 Extend the test set to cover each of the
remaining parameters one by one

= Horizontal growth - extends each existing test by adding
one value for the new parameter

= Vertical growth - adds new tests, if needed, to make the
test set complete

11

UTA

Algorithm IPOG-Test

{
1
2.
3
4
5

o N

9.

18

}

10.
11.
12.
13.
14.
15.
16.

17.

19.
20.

Algorithm IPOG-Test (int t, ParameterSet ps)

. initialize test set ts to be an empty set

denote the parameters in ps, in an arbitrary order, as P, P,, ..., and P,

. add into test set ts a test for each combination of values of the first t parameters
for(inti=t+1;i<n; i++){

let 7z be the set of t-way combinations of values involving parameter P;
and t -1 parameters among the first i — 1 parameters
/I horizontal extension for parameter P;
for (each test 7= (v, vy, ..., V;;) in test set ts) {
choose a value v; of P; and replace t with t” = (v, V,, ..., V;.1, V;) SO that ©’ covers the
most number of combinations of values in ©
remove from = the combinations of values covered by t’
¥
/I vertical extension for parameter P;
for (each combination oin set n){
if (there exists a test that already covers o) {
remove ¢ from «t
}else {
change an existing test, if possible, or otherwise add a new test
to cover o and remove it from n
}

¥
¥

return ts;

12

* Four parameters: P1, P2, P3, and P4

- P1, P2, and P3 have 2 values

* P4 has 3 values

Example

UTA

S
\ A / \2)
1
1 4
N |
A OANOANO HO - NN NN %
1
Fodordododadodoo« P
1 O
N I -~ >~
hFoOoOdd0O0Oddo A0 0o S
- “ =
PﬁOOOllll_lOOl* *k _
1 DD
T
<
+—
=
o
C
(o))
< S
9
+—
o
Q
>

S N

A O NO—-HNO

%01010101

—~
O
N—r
AN
O OO A 10O A
—
O OO O0OO dA A A
- S c
+—
s
O
| -
(o))
©
+—
+— <
o
N
| -
(@)
X
o A
g odoAd o0 A0 A
N
D OO A 100 dAdA =
1 N
O OO0 O0OO dAdA A«

13

UTA

Experimental Results (1)

Question 1: How does the size of a test set
generated by IPOG-Test, as well as the time taken,
grow in ferms of t, # of parameters, and # of
values?

2 3 4 5 6

48 | 308 | 1843 | 10119 | 50920
011 | 056 | 6.38 | 63.8 791.35

Results for 10 5-value parameters for 2- and 6-way testing

14

UTA

Experimental Results (2)

5 6 7 8 9 10 11 12 13 14 15
784 1064 | 1290 | 1491 | 1677 | 1843 | 1990 | 2132 | 2254 | 2378 | 2497
0.19 0.45 0.92 1.88 3.58 6.38 | 10.83 | 17.52 | 27.3 | 41.71 | 61.26

Results for 5 to 15 5-value parameters for 4-way testing
2 3 4 5 6 7 8 9 10
46 229 649 | 1843 | 3808 | 7061 | 11993 | 19098 | 28985
0.16 | 0547 | 1.8 6.33 | 16.44 | 38.61 | 83.96 | 168.37 | 329.36

Results for 10 parameters with 2 to 10 values for 4-way testing

15

UTA

Experimental Results (3)

Question 2: How does FireEye compare to other
tools, both in terms of # of tests and time to
produce them?

; FireEye ITCH Jenny TConfig TVG6
Y Toize | Time | Size | Time | Size | Time | Size Time Size | Time
2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
4 1361 3.05 1484 5400 1536 3.54 1476 >21 hour 64696 127
5 4219 18.41 NA >1 day 4580 43.54 NA >1 day 313056 1549
6 10919 65.03 NA >1 day 11625 470 NA >1 day 1070048 12600

Results of different tools for the TCAS application

TCAS: Seven 2-value parameters, two 3-value parameters,
one 4-value parameter, two 10-value parameters

16

UTA

Outline

d Introduction
- T-way testing
- State-of-the-art

a The IPOG Strategy
- Algorithm IPOG-Test
- Experimental Results

0 Related Work on T-Way Testing

d Conclusion and Future Work

17

UTA

AETG (1)

a Starts with an empty set and adds one (complete)
test at a time

a Each test is locally optimized to cover the most
number of missing pairs:

a Has a higher order of complexity, both in terms of
time and space, than IPOG

18

UTA

AETG (2)

Adds the 1st test

A B C
Al Bl (1
Al B2 C2

|

Adds the 2nd test

A B C

Al Bl (1
Al B2 C2
A2 Bl C3
A2 B2 Cl
A2 Bl C2
Al B2 C3

T

Adds the last test

19

UTA

Orthogonal Arrays (1)

a Given any t columns, every combination of the
possible values is covered in the same number of
tTimes

- Originally used for statistical design, which often
requires a balanced coverage

- Often computed using some pre-defined mathematical
functions

Q Each row can be considered as a test, and each
column as a parameter

Q Can be constructed extremely fast, and are
optimal by definition, but do not always exist

20

UTA

Orthogonal Arrays (2)

(b, k1) A =hl B =b0 + bl &N * hl [= hi
(0.0 () 0 () 0
(0, 1) | | E 0
(0, 2) 2 2 1 {
(1. 0] () | | |
(1, 1) l 2) |
(1. 2) 2 0 2 |
(2.0 () 2 2 2
(2. 1) 1 { | L
(2. 2] 2 |) 2

21

UTA

Outline

d Introduction
- T-way testing
- State-of-the-art

a The IPOG Strategy
- Algorithm IPOG-Test
- Experimental Results

A Related Work on T-Way Testing

a Conclusion and Future Work

22

UTA

Conclusion

a T-way testing can substantially reduce the number
of tests, while remaining effective for fault
detection

0 IPOG produces a t-way test set incrementally,
covering one parameter at a step

a Comparing to existing tools, IPOG can produce
smaller tests faster.

23

UTA

Future Work

a Explicit enumeration can be very costly

- How to reduce the number of combinations that have to
enumerated?

Q Support for parameter relations and constraints

= No need to cover combinations of independent
parameters

- Invalid combinations must be excluded

a Integration of t-way testing with other tools to
increase the degree of automation

24

	IPOG: A General Strategy for T-Way Software Testing
	Software Engineering
	Software Testing
	The Challenge
	Outline
	T-Way Testing
	Example
	State-of-the-Art
	Beyond pairwise
	Outline
	The Framework
	Algorithm IPOG-Test
	Example
	Experimental Results (1)
	Experimental Results (2)
	Experimental Results (3)
	Outline
	AETG (1)
	AETG (2)
	Orthogonal Arrays (1)
	Orthogonal Arrays (2)
	Outline
	Conclusion
	Future Work

