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Abstract.  Testing is the most commonly used approach for software assurance, yet it remains as 
much judgement and art as science.  Structural coverage adds some rigor to the process by 
establishing formally defined criteria for some notion of test completeness, but even full 
coverage, however defined, may miss faults related to rare inputs that were not included in the 
test suite. We suggest that structural coverage measures must be supplemented with measures of 
input space coverage.  Useful input space measures exist and have a relationship with structural 
coverage measures, providing a means of verifying that an adequate input model has been 
defined.  
 
Introduction 
One of the key objections to testing as a form of software verification is that it is never possible 
to show that the system under test works for all possible inputs. It is also difficult to provide 
meaningful statements about the adequacy of a test set for verifying that the system under test 
(SUT) works correctly.  Conventional structural coverage measures, typically statement or 
branch coverage, leave much to be desired.  Even if all statements are executed and all branches 
are taken, there is no guarantee that the input space has been covered adequately for fault 
detection. A latent  error may show up later with the appearance of a very rare combination of 
conditions that was not included in testing.  Methods of systematically partitioning the input 
space have been studied extensively, but most necessarily involve a good deal of subjective 
judgement, and do not provide quantitative measures of completeness. Combinatorial methods 
offer ways to build on existing techniques for input space partitioning, to provide more rigorous 
testing.  
 
Coverage Measures 
A complete input model is part of the goal of achieving thorough testing.  Depending on what 
system aspects are to be considered in defining completeness, a variety of approaches exist to 
determining when testing is considered enough. Typically, these include some notion of fully 
covering requirements, and may also consider structural coverage of the code. In software 
engineering, structural coverage refers to measures of the degree to which programs have been 
exercised.  Two of the most widely used measures are statement coverage, the proportion of 
program statements that have been executed, and branch coverage (also known as decision 
coverage), the proportion of branches that have been evaluated to both true and false. Many 
other measures or test criteria exist, including condition coverage and modified condition 
decision coverage, and it can be shown that these criteria form a hierarchy [4]. For example, 
decision coverage subsumes statement coverage.  Structural coverage measures are of value in 
gauging the thoroughness of a test set, although their utility is somewhat limited. Statement 
coverage is the weakest of these measures, but failure to achieve full statement coverage at least 
indicates that code has not been tested well enough.  Branch coverage provides a stronger 
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measure, and more complex criteria related to branch coverage are used for some life critical 
applications such as aviation.  
 
Of course, simply achieving some level of structural coverage is hardly adequate, because it must 
be shown that the SUT accomplishes its intended function.  If the code does only one of ten 
required functions, the level of structural coverage is obviously an inadequate measure for 
determining if all of the ten functions have been implemented.  The SUT may work well for the 
subset of inputs related to the implemented function, but it would fail if presented with inputs 
directing execution of unimplemented functions. Similarly, if all of the functions are 
implemented but not all correct, the code may produce the right result for some input values but 
fail on others. 
  
Among the key questions in software testing and assurance are what parameters matter, and what 
values should be included in testing.  Except for trivial problems, it is generally intractable to test 
all possible inputs, so some form of equivalence partitioning must be used, i.e., the input space is 
divided into sets of inputs that are considered equivalent with respect to some relation that is 
meaningful for the software under test. Put simply, the problem is to find parameter values that 
each adequately represent a much larger set of values. A simple example is partitioning into valid 
and invalid input values. Another example might be ranges of weights or sizes that are equivalent 
with respect to the shipping charge for each class.   
 
Because the input space is far too large to test exhaustively, inputs must be discretized for 
continuous-valued variables, or a small subset selected from enumerated values.  This problem is 
fundamental in software assurance, and an extensive body of research has been developed to 
solve it.  In general, input parameters cannot be considered in isolation, because the value of one 
may limit the values that must be considered in testing for other parameters, that is, there may be 
constraints among parameters.  
 
How can an adequate input model be found?  Part of the problem was solved decades ago, with 
systematic methods of analyzing and partitioning the input space. Accepted practices for this task 
include boundary value analysis [5,4], to identify boundaries in range-defined variables and 
divide the input space into partitions of values for which the system under test can be expected to 
produce equivalent results. The classic category partition method [1] provides a systematic way 
to integrate the definition of boundary values and equivalence partitions into test frames that 
consolidate values into sets that exercise particular functionality in the SUT.  A more recently 
developed approach that builds on these ideas is the classification tree method [2], which adds a 
graphical notation and analysis of hierarchical or implicit dependencies among parameter values.  
Such methods are valuable in providing a systematic, rigorous method of input parameter model 
definition, but a good deal of engineering judgment is still required to determine whether the 
model is adequate.  This partition of the parameters and values is referred to as an input 
parameter model (IPM), or simply input model.  
 
After an input model has been constructed, how can one ensure that it is adequate for testing, that 
is, the equivalence partitions contain values that are truly equivalent in terms of system 
response?  More generally, can we find measures of the IPM that are relevant to testing?  To 
answer this question, it is useful to first consider empirical data on the distribution of faults.      
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Background – Fault Distribution.   
Empirical data show that most failures are triggered by a single parameter value, or interactions 
between a small number of parameters, generally two to six [ref], a relationship known as the 
interaction rule. An example of a single-value fault might be a buffer overflow that occurs when 
the length of an input string exceeds a particular limit.  Only a single condition must be true to 
trigger the fault:  input length > buffer size.  A 2-way fault is more complex, because two 
particular input values are needed to trigger the fault.  One example is a search/replace function 
that only fails if both the search string and the replacement string are single characters.  If one of 
the strings is longer than one character, the code does not fail, thus we refer to this as a 2-way 
fault.  More generally, a t-way fault involves t such conditions. 
 
     Figure 1 shows the cumulative percentage of faults (y axis) at t = 1 to 6 (x axis) for various 
real applications [8,15].  We refer to the distribution of t-way faults as the fault profile.  Figure 1 
shows the fault profile for a variety of fielded products in different application domains, and 
results for initial testing of a NASA database system. As shown in Figure 1, the fault detection 
rate increases rapidly with interaction strength, up to t=4.  With the medical device applications, 
for example, 66% of the failures were triggered by only a single parameter value, 97% by single 
values or 2-way combinations, and 99% by single values, 2-way, or 3-way combinations. The 
detection rate curves for the other applications studied are similar, reaching 100% detection with 
4 to 6-way interactions.   
 

 
Figure 1. Cumulative fault distribution 

      
     Matrices known as covering arrays can be computed to cover all t-way combinations of 
variable values, up to a specified level of t (typically t ≤ 6), making it possible to efficiently test 
all such t-way interactions [7].   The effectiveness of any software testing technique depends on 
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whether test settings corresponding to the actual defects in the SUT are included in the test sets.  
When test sets do not include test settings corresponding to actual defects, the faults and defect 
will not be detected. Conversely, with the right input model, we have evidence that the software 
works correctly for t-way combinations contained in passing tests.  
 
Coverage Implications of Fault Distribution 
The empirical distribution of faults suggests that it is useful to consider the degree to which 
combinations of input values are covered in a test set.  The data in Fig. 1 suggest that we may 
miss 5-10% of possible errors if we do not test 4-way, or more complex, combinations.  
However, these findings also mean that in general it will not be necessary to test all possible 
combinations of input values, because relatively few factors are involved in failures.  Covering t-
way combinations of inputs, for small values of t, is to some extent equivalent or at least close to 
exhaustive testing.  Thus, it is important to understand the coverage of input combinations for 
any test set.   
 
As noted, a covering array may be constructed to cover all t-way combinations of input 
parameters, but any test set of course contains many combinations.  We can measure the 
combinatorial coverage, i.e., the coverage of t-way combinations in a test set, for a better 
understanding of test set quality.  These measures provide quantitative levels of quality very 
different from conventional structural coverage.  In particular, combinatorial coverage has a 
direct relationship with fault detection. As shown in Fig. 1, a significant portion of fault 
triggering combinations involve more than two factors, so the level of combination coverage 
measures the ability of the test set to detect, for example, faults induced by 4-way or 5-way 
combinations. These measures can also be computed independently of structural coverage, prior 
to running any tests, because they relate to the (static) content of the test set.  However, there is 
an interesting relationship between combinatorial coverage and structural coverage, as discussed 
later.  
 
Measuring Coverage of Fault-triggering Combinations 
Measuring combination coverage can help in understanding the degree of risk that remains after 
testing.  If a high level of coverage of input state-space variable combinations has been achieved, 
then the risk is small that there is latent combination that may induce a failure.  Lower coverage 
reflects greater risk that there is some untested failure-triggering combination.   A variety of 
measures of combinatorial coverage can help in estimating this risk. In this section we describe 
some of the basics;   see, [15] and [18] for more details.   
 
For a set of t variables, a variable-value configuration is a set of t valid values, one for each of 
the variables, i.e., the variable-value configuration is a particular setting of the variables.  For 
example, four binary variables a, b, c, and d, for a selection of three variables a, c, and d the set 
{a=0, c=1, d=0} is a variable-value configuration, and the set {a=1, c=1, d=0} is a different 
variable-value configuration.  
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a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

Table 1. Test array with four binary 
components 

 
   
   
 

 

Table 2. The test array covers all possible 2-way 
combinations of a, b, c, and d to different levels. 

Vars Configurations covered Config coverage 

a b 00, 01, 10                 .75 

a c 00, 01, 10          .75 

a d 00, 01, 11          .75 

b c 00, 11                .50 

b d 00, 01, 10, 11     1.0 

c d 00, 01, 10, 11      1.0 

 
    It is also useful to measure the number of t-way combinations covered out of all possible 
settings of t variables.  For a given combination of t variables, total variable-value configuration 
coverage is the proportion of all t-way variable-value configurations that are covered by at least 
one test case in a test set.  This measure may also be referred to as total t-way coverage. For the 
array in Table I, there are 4-choose-2, C(4,2) = 6 possible variable combinations and 22×C(4,2) = 
24 possible variable-value configurations.  Of these, 19 variable-value configurations are 
covered and the only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10, so the total variable-
value configuration coverage is 19/24 = 79%.  Although the example in Table 1 uses variables 
with the same number of values, it is also possible to compute coverage for test sets in which 
parameters have differing numbers of values. 

   
Figure 2.  Graph of coverage for tests in Table 1 

 
     Figure 2 shows a graph of the 2-way (red/solid) and 3-way (blue/dashed) coverage data for 
the tests in Table 1.  Combination coverage of variable values is given as the y axis, with the 
percentage of combinations reaching a particular coverage level as the x axis.    Of particular 
interest is the minimum t-way coverage, Mt, which is the smallest proportion of coverage of 
variable-value configurations for parameters taken t at a time.  For example, Table I shows four 
binary variables, a, b, c, and d, where each row represents a test, so parameters taken two at a 
time have four possible configurations:  00, 01, 10, 11.  The six possible 2-way variable 
combinations, ab, ac, ad, bc, bd, cd, only bd and cd are covered to different levels, shown in the 
second column.  The minimum coverage for 2-way combinations, M2 = .5, shown as y = .5 at x = 
.833 because one out of the six variable combinations has 2 of the 4 possible settings of two 
binary variables covered.  The area under the curve for 2-way combinations is approximately 

M2 

M3 
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79% of the total area of the graph, reflecting the total coverage of 19 out of 24 2-way 
combinations.  
 
 
Practical Example 
     Combinatorial coverage measures were originally developed to analyze the input space 
coverage of tests for spacecraft control software [9][10].  A test suite of 7,489 tests had been 
developed using conventional techniques such as use case analysis and knowledge of likely error 
sources.  The control system included 82 variables, with a  test configuration of 132754262 (three 
1-value, 75 binary, two 4-value, and two 6-value). Figure 3 shows combinatorial coverage 
achieved by the full set of 7,489 tests (red = 2-way, blue = 3-way, green = 4-way, orange = 5-
way).  The area under the curves is the proportion of the input space tested at the various t-way 
levels, while the are above the curve represents untested space – where errors might still be 
found.  For example, 2-way coverage is 94%, so there is relatively little risk of faults that might 
be triggered by 2-way combinations.   
 

Figure 3. Configuration coverage for spacecraft example. 

    
    
 

interaction combinations settings coverage 
2-way 3321 14761 94.0 
3-way 88560 828135 83.1 
4-way 1749060 34364130 68.8 
5-way 27285336 603068813 53.6 

Table 3. Total t-way coverage for Fig. 3 configuration. 
 
  
 

 
 
Relationship Between Combinatorial Coverage and Structural Coverage 
It is obvious that any thorough assessment of a system must show that all requirements have 
been met, but it is also true that the system should not produce unexpected behavior. One of the 
most effective means of confirming these objectives is to generate tests from requirements, then 
ensure that full structural coverage has been achieved, for some strong coverage criterion. That 
is, tests must be requirements-based; structural coverage is used only to validate the quality of 
these tests.  This approach has been required by the US Federal Aviation Administration for 
testing life-critical aviation software, in RTCA standard DO-178B [13], and continued in the 
update DO-178C [14].  This requirement uses a stronger relative of branch/decision coverage 
called modified condition decision coverage (MCDC), which subsumes branch coverage. 
(Branch coverage requires that each branch of every control structure, such as if or while 
conditionals, has been taken in the test suite. MCDC requires that every condition in a decision 
in the program has taken on all possible outcomes at least once, and each condition has been 
shown to independently affect the decision outcome, and that each entry and exit point have been 
invoked at least once.). The intuition is clear – if full structural coverage has not been achieved, 
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then either tests are inadequate, or there is some system functionality that is outside of the 
specification.  
 
Structural coverage is a useful heuristic for evaluating whether we have a correct input model. 
FAA/Chilenski [11] notes that “MCDC should be used as a structural coverage criterion because 
it attempts to provide a cost effective form of logic verification. In essence, MCDC can be 
thought of as a (weak) measure of the coverage of equivalence classes and boundary values.” 
According to DO-178B [12],  
 

If branches (decision outcomes) are left uncovered by the requirements-based 
verification process, then that process failed to consider the special cases the 
development process thought were important. Decision coverage ensures that 
the verification process has considered sufficient operational scenarios to 
execute every special case the system was designed for in at least one 
operational context. 

 
One interesting development from combinatorial testing research is a result that shows a 
connection between (static) combinatorial coverage of the input space, and (dynamic) structural 
coverage [16].  This connection provides a formal justification for the DO-178B requirement that 
modified condition decision coverage (and consequently branch coverage) be achieved as a way 
to verify the adequacy of equivalence classes and boundary values. 
 
As noted, structural coverage is a dynamic measure in the sense that it requires code execution. 
Combinatorial coverage, as we have defined here, looks at the input space, a static measure of 
value combinations. Clearly, the input to a program must affect the paths executed in the code, 
and thus impact structural coverage measures. In fact, we can show that there is a relationship 
between the coverage measures introduced above, and structural coverage, captured in simple 
theorem defining what we call the branch coverage condition [16].   
 

Branch coverage condition: A test set provides 100 % branch coverage for t-way conditionals if 
Mt + Bt > 1, where Mt = minimum combinatorial coverage at level t, and Bt =minimum 
proportion of t-way combinations that is guaranteed to trigger a branch within the code, where 
all variables in decision predicates have values from the variable set with minimum coverage 
characteristic Mt. 

 
The reason this condition is important is that when test sets are based on covering arrays, which 
by definition have Mt = 100%, for a t-way covering array, then branch coverage should be 100%.  
The term Bt refers to the minimum proportion of input variable-value combinations that trigger a 
branch. For example, in the statements if (A&&B) line1; if (C) line2;,  where A and B are 
Boolean variables, Bt = .25, because line1 is executed only for one of the possible four settings of 
A&&B.   
 
A corollary also shows that branch coverage condition is obtained with 𝑀"	 > 1 −	 '

()
 ,  if k or more t-way 

settings satisfy every predicate where all variables in decision predicates have values v from the variable 
set with minimum coverage characteristic Mt.  If one uses a covering array in testing, how can Mt + Bt 
> 1 ever be false?  In fact it cannot, if the input space has been properly modeled, that is, if 
variable value partitions have been properly defined.  We will refer to Mt as the minimum 
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coverage of an adequate input model, and Mt’ as the minimum coverage of the input model that 
has been produced.  That is, Mt is for an ideal IPM that has not necessarily been produced, while 
Mt’ is measured on the current IPM, which may need to be revised.  
 
To clarify, if Mt’ is from a covering array for an adequate IPM, then Mt’ + Bt > 1 => branch 
coverage = 1.0, so branch coverage < 1.0 => Mt’ + Bt ≤ 1, but  Bt ≥ v-t  for all parameters and Mt’ 
= 1.0 because it is from a t-way covering array.  Therefore, Mt’ is not from an adequate IPM and 
must be revised. This result gives us a formal basis for the DO-178B approach of using MCDC 
to validate a requirements-derived test set.  
 
So, failure to achieve the branch coverage condition indicates that the input model must be 
revised. The corollary above shows it is possible to detect a deficient input model even if 100% 
branch coverage is not achieved, a result that can be useful in developing the IPM.  Note 
however we do NOT want to imply that less than full structural coverage is adequate for testing, 
only for developing an adequate IPM.  For the full testing process, incomplete structural 
coverage indicates a different aspect of deficient testing.  
 
One study that illustrated the relationship between input models and coverage nicely is [17].  The 
initial input model definition produced branch coverage in the range of approximately 70-75%, 
but by redesigning the IPM, 100% branch coverage and MCDC coverage (subsumes branch 
coverage) was obtained. The branch coverage condition provides a theoretical justification for 
the heuristic of requiring structural coverage as a means of validating requirements-based tests.  
 
Note that achieving 100% branch coverage with a particular level of t does not indicate that 
higher strength testing is not  needed.  For example, if we find full branch coverage with 2-way 
testing, it will still be important to cover higher interaction strengths, because some failures may 
involve multiple factors that depend on nested conditions or variable states.  That is, full branch 
coverage can be considered as necessary, but not sufficient, condition for achieving an adequate 
IPM.  Unavoidably, some engineering judgement will be involved in selecting representative 
values for the model but measuring branch or MCDC coverage provides an assured method of 
validating IPM adequacy. Conventional methods of input space partitioning, such as the category 
partition and classification tree methods [refs], are highly effective for this.  Combinatorial 
coverage measures described here can be used to improve the test engineering discipline, and 
provide measures of risk related to the untested input space.  
 
Conclusions 
     Despite its shortcomings, testing is still the most widely used method of software assurance, 
but better measures are needed for quality of the test design.  The most common measures of test 
completeness are various forms of structural coverage, but more can be done to improve the test 
engineering process.  Structural coverage is a dynamic measure that should be supplemented 
with static measures of the input space. Combinatorial coverage measures the proportion of the 
input space relevant to testing that is covered by tests.  Because only a small number of variables 
are involved in failures, measuring the proportion of t-way combinations covered in testing 
provides information on residual risk when the software is released.   
 
This approach of using both static and dynamic measures also provides a means of ensuring that 
the input space partitioning has been done correctly. A simple theorem defining the branch 
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coverage condition shows that if full branch coverage is not achieved when input space coverage 
is sufficiently high, then the input model has not been defined correctly, and must be revised. 
Tools exist to compute the necessary measures, and can be a valuable addition to the test 
engineering process [15][18].  
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