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1 Introduction

This paper introduces HPPC, a new digital signature scheme based on Multivariate Public
Key Cryptography (MPKC) . The idea behind this scheme is to hide the multiplication and
the composition of Linearised Permutation Polynomials such that the owner can transform
the private function F (X) = Y into an easier one G(X ′) = Y such that recovering X ′

gives the original value X immediately. The scheme is based on the ideas of HFE [Patb],
where other NIST-PQC candidate GeMSS [Cas] was based in similar ideas. However, there
are major differences between HPPC and GeMSS, as HPPC uses a big degree private
polynomial which makes discovered attacks unfeasible (apparently).

2 Algorithm Specification (part of 2.B.1)

2.1 Tensor Algebra and MPKC Schemes

Since the early beginning of the field of Multivariate Cryptography, schemes belonging to
the BigField [WP] families have represented the public key equations encoded in symbolic
notation or in quadratic forms. The private polynomial is an univariate polynomial over
Fqn instead. Notice that every group G admits a group representation using matrices, in
this work we use that fact to construct the scheme using the representation of G using
tensors to multiply elements in G. There are various mathematical facts that gives us a
clue on how to represent efficiently any element of the group G by constructing a basis for
a vector space V.

2.1.1 Representation of a Finite Field

A Finite Field is a mathematical structure having qn elements where the axioms of a ring
and a group are satisfied. To build such algebraic structure we need an irreducible polyno-
mial f(x) of degree n over the prime field Fq. Now use the fact that the Companion Matrix
of f(x) , which we call Cf(x), is used to build a basis of the Finite Field Fqn = Zq/⟨f(x)⟩.
Take a polynomial g(x) =

∑n−1
i=0 gix

i ∈ Fqn , represent it as the vector g = (g0, . . . , gn−1).
Now build the matrix representation of g(x) as:

B = (Cf(x)
0g, . . . , Cf(x)

n−1g)

2.1.2 Multiplication of elements

Then for multiplying any element s(x) by g(x) we compute B ·s = r where s(x)∗g(x) = r(x)
and r, s are the polynomial vector representation over Fq. Based in this property we
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can devise the Tensor representation of multiplication in Fqn , which is the principle of
representing MPKC schemes using Tensor Algebra.

2.1.3 Tensor representation

Let’s represent the operation g(x)2 = g(x) ∗ g(x) in the basis as B · g = g2:

B = (Cf(x)
0gg1, . . . , Cf(x)

n−1ggn)

The reader can notice that the dot product of B and the vector g = (g1, . . . , gn) give entries
ggi = (g1gi, . . . , gngi) = (gig1, . . . , gign) as the base field Fq is commutative. These entries
are equal to the tensor product representation of g⊗g. We finally conclude that the tensor
representation of multiplication of elements (g(x), s(x)) in Finite Field Fqn is:

[Cf(x)
0, . . . , Cf(x)

n−1] · (g ⊗ s)

Where M = [Cf(x)
0, . . . , Cf(x)

n−1] is the concatenation of powers of the Companion Matrix
of the irreducible polynomial f(x) The last step is to adapt this representation for building
MPKC schemes. If we set the multiplication to M · (g× g) we end up having the Frobenius
map F (X) = X2 which is linear and not desirable in MPKC for obvious reasons.
Furthermore, by modifying the representation we can turn this map into a more interesting
one by using the fact that group of Permutation Linearised polynomials over Fq is isomor-
phic to the General Linear Group GL(q, n).
This means that any invertible matrix Ml over Fq acts on the vector g equally as its Lin-
earised Permutation Polynomial equivalent over Fqn . This is Ml ·g = ϕ(l(g(x))), where ϕ(x)
sends the polynomial l(g(x)) to its vector representation, concluding that any invertible
matrix L is associated with a Linearised Permutation Polynomial l(x) over Fqn . Now select
invertible matrices T, S, L1, L2 ∈ F n×n

q and let’s build an example of the representation of
MPKC BigField public key P (X).

P ′(x) = T ·M · (L1 ⊗ L2) · (S ⊗ S) · (x⊗ x)

Which is equal to its equivalent polynomial P (X) = T ◦ (l1 ∗ l2) ◦ S(X) over Fqn as
P ′(x) = ϕ(P (X)).
With this representation in mind we can build MPKC schemes using any platform group
G that has interesting properties, for enciphering/deciphering data or for digital signature.
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2.1.4 HFE Tensor Representation

The cryptosystem HFE uses a Dembowski-Ostrom polynomial over Fqn where q = pk and
deg(F (X)) = D = qa + qb. Values α, β, δ are defined in the extension field Fqn

F (X) =
∑
i,j=0

qi+qj≤D

αXqi+qj +
d∑

i=0

βXqi +
n∑

i=1

δi ∈ Fqn [X]

Now any monomial Xa will have exponent equal or less than D. For representing HFE
in its Tensor public key form we must compute the matrix representation of each Frobenius
Map of kind Frob(X) = Xqi , 0 ≤ i ≤ n−1. Once obtained, represent polynomials α, β, δ as
matrices (as seen in previous section). We can rewrite HFE public key P (X) = T ◦F ◦S(X)
as:

M = (Cf(x)
0, . . . , Cf(x)

n−1)

F (x) =
∑
i,j=0

qi+qj≤D

(Mαi,j
· (MXqi

⊗MX
qj
)) +

d∑
i=0

Mβi
·MXqi +

n∑
i=1

Mδi

P (x) = T ·M · F · (S ⊗ S) · (x⊗ x)

The resulting public key matrix P (x) has size n× n2 and its bit-size is log2 q
nn3. The

rows of P (X) are vectors of n2 which form the Quadratic Forms of the quadratic map.
This because the Tensor Product is related to Bilinear Forms B(x, y), here the Quadratic
Forms are Bilinear of kind B(x, x) so the equality holds.

2.1.5 Linearised Polynomial to Matrix representation

Linearised Polynomials over Fqn can be mapped to their equivalent n × n matrix over q.
We are interested here on Linearised Permutation Polynomials, so the equivalent matrix
has full rank, it’s invertible. In order to convert from the Linearised Polynomial

l(X) =
n−1∑
i=0

αiX
qi αi ∈ Fqn

Express the Vandermonde matrix with coefficient entries in Fqn as:
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M =



(t0)q
0

. . . . . . (t0)q
n−1

(t1)q
0

. . . . . . (t1)q
n−1

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . .

(tn−1)q
0

. . . . . . (tn−1)q
n−1


And compute M · α = β where α is the vector of the coefficients of l(X) such that

α = (α1, . . . , αn) ∈ Fqn . In the vector β ∈ Fqn we have the image of the Linearised
Polynomial as the vector β = (l(t0), . . . , l(tn−1)). Then take every polynomial evaluation
l(ti) and write it as the i th column in the matrix L ∈ F n×n

q . Now the matrix L is linear
equivalent to the Linearised Polynomial l(X). Moreover, if the matrix L is full rank, it’s
invertible and its polynomial equivalent l(X) is a Linearised Permutation Polynomial. This
process is a well known result as the linear matrix equivalent L acts on the canonical vectors
ei the same way l(X) acts on monomials ti.

2.1.5.1 Optimizing Vandermonde Matrix Computation

The optimization has been done in the code as computing Vandermonde Matrices for
Linearised Polynomial interpolation is quite expensive, and if done naively it slows down
the implementation. First, Vandermonde Matrix is only used for generating the polynomial
l2(X) which is of degree qd. For that a random d + 1 vector of coefficients over Fqn is
generated. This is, l2 = (α0, . . . , αd). Then we only need a n × (d + 1) Vandermonde
Matrix, only d+ 1 columns instead of n. We can view it as a partial Vandermonde matrix
that is used to translate linearised polynomials having degree qd to matrices n×n over F2.
The partial Vandermonde matrix is:

M =



(t0)q
0

. . . . . . (t0)q
d

(t1)q
0

. . . . . . (t1)q
d

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . .

(tn−1)q
0

. . . . . . (tn−1)q
d


• First notice that in every row the powers (q0, . . . , qd) are repeated extensively.

• Then compute every monomial in a precomputed vector such that (tq
0
, . . . , tq

d
)

• For every i th row and j th column, compute (tq
j
)i by taking the j th element of the

precomputed vector, so we don’t have to raise to qj.
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• When the i th row is divisible by a small prime factor r, divide i
r
= s and exponent

every monomial of the s th row to the power of r to get the i th row easily. Small
prime factors are 2, 3, 5.

These steps guarantee an efficient computation of the Vandermonde matrix.

2.1.5.2 Selecting linearised polynomials with maximal Degree

The scheme uses Linear Algebra and Tensor representation, so invertible matrix L1 is
randomly generated over F2. It’s not randomly generated as a polynomial in Fqn [X] so at
first glance we don’t know what degree does l1(X) have as a linearised polynomial. We
only know that the matrix L1 is the matrix representation of the polynomial l1(X). HPPC
works with an HFE polynomial with maximal degree bounded by D = qn−1 which is only
achieved if the selected random matrix L1 ∈ F n×n

2 has a representation l1(X) with degree
D = qn−1. Checking the degree would require using the Vandermonde matrix inverse to
obtain the coefficient tuple of l1(X) and check if there’s an element in the n-th position, so
degree qn−1. This is overkill, we want to cut time from here so we stick to linear algebra in
F2 instead of computing in the polynomial extension. The approach here is to prove that
selecting a random invertible matrix L1 over F2 guarantees that its linearised polynomial
equivalent l1(X) has degree qn−1, this is having monomial αn−1X

qn−1
.

This is done by finding the number of polynomials l1(X) having degree qn−1. The number
of polynomials

∑n−1
i=0 αiX

qi = α0X
q0 + . . .+ αn−1X

qn−1
that have degree qn−1 is given by:

(
n−1∏
i=1

qn) · (qn − 1) = (qn
2−n) · (qn − 1) = qn

2 − qn
2−n = qn

2−n(qn − 1)

The aforementioned expression counts how many linpolys do exist with degree qn−1, to
compute the probability of selecting such polynomials at random:

qn
2−n(qn − 1)

qn2 =
qn − 1

qn

When setting q = 2 the limit of the ratio tends to one, so there exists a high probability
of selecting a random n×n invertible matrix L1 over F2 such that its linearised polynomial
representation has maximal degree qn−1. With this in mind, there is no need to check
for degree and invertible L1 ∈ F n×n

2 can be selected at random. Concluding that partial
Vandermonde matrix n×(d+1) is used only for generating l2(X), L2 and there is no need to
translate matrix L1 to a linearised polynomial l1(X) ∈ Fqn [X] to check for maximal degree.
This results serves for lowering key generation time as reflected in the implementation code.
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2.2 HPPC Scheme

In MPKC we are interested on functions P (X) = T◦F◦S(X) such that T, S are linear/affine
maps and F (X) is a quadratic set of equations. This is because P (X) is non-linear thanks
to the internal structure of F (X). However, we need F (X) to be a trapdoor function since
recovering X from the public key P−1(Y ) = X is considered hard.

To build such trapdoor functions a new family of private polynomials F (X) is presented.
The construction guarantees that is easy to evaluate the map but hard to recover the original
point, in theory. Let’s give a detailed description

2.2.1 Description

All the operations are done in the base field q = 2, where the extension field has qn

elements. In order to construct a theoretical secure function P (X) = T ◦ F ◦ S(X) we
select linear or affine transformations T, S ∈ F n×n

2 . Then select Linearised Permutation
Polynomials l1(x), l2(x) ∈ Fqn [X] where L1, L2 ∈ GL(2, n) is the matrix representation

of l1(x), l2(x). l2(X) must be monic, where the highest monomial is Xqd . The degree of
Linearised Permutation Polynomials l1(x) is at most qn−1 and for l2(x) is qd, for d = 10.
Then

M = (Cf(x)
0, . . . , Cf(x)

n−1)

F = L1 ⊗ (L2 · L1)

P (−→x ) = T ·M · (L1 ⊗ (L2 · L1))︸ ︷︷ ︸
F

·(S ⊗ S) · (−→x ⊗−→x )

And P (−→x ) is the n× n2 matrix representation of the public key polynomial.
To compute the trapdoor function G(X) we do the composition

G(X ′) = P (S−1 ◦ L−1
1 (X))

= T ·M ·(L1 ⊗ (L2 · L1)) · (S ⊗ S) · (S−1 ⊗ S−1) · (L−1
1 ⊗ L−1

1 ) =

= T ·M ·(L1 ⊗ (L2 · L1)) · (L−1
1 ⊗ L−1

1 ) =

= T ·M ·(In ⊗ (L2))

This is equal to the monic polynomial G(X) = X ∗ l2(X) having degree qd + 1 = D =
1025

Then G(X ′) = P (X) = Y and if we solve the system G(X ′) − Y = 0 over Fqn [X] we
recover P (X) = Y as S−1 · L−1

1 X ′ = X.
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2.2.2 Key Generation

The scheme relies its security on the construction of a private key polynomial F (X) =
l1(X) ∗ (l2 ◦ l1(X)) which is a product of two Linearised Permutation Polynomials. The
polynomial l1 has at most degree qn−1 and l2 has degree q

d, then its product F (X) ∈ Fqn [X]
has big degree, which is desirable to resist rank attacks at a first glance, as the resulting
polynomial doesn’t’ have low degree compared to other BigField schemes like: HFEv-,
QUARTZ, and GeMSS [Cas].

2.2.2.1 Public Key Construction

In order to generate a public key we must set-up the parameters of the scheme:

• Let q = 2, f(x) ∈ Fq[x] an irreducible polynomial over q, then the Finite Field Fqn

has qn elements.

• Select invertible linear matrices T, S ∈ F n×n
q which are used to hide the private

polynomial map F (X).

• Select L1 ∈ F n×n
q as an invertible matrix over q. It’s representation in Fqn [X] guaran-

tees l1(X) to be a Linearised Permutation Polynomial with highest degree monomial
at most αXqn−1

• Select l2(X) ∈ Fqn [X] as a monic Linearised Permutation Polynomial with degree
qd, for d = 10 so degree 210 = 1024 .

• For that generate a random (monic) vector α = (α0, . . . , αd) with αd = 1, having
d+ 1 coefficients.

• Now α is the coefficient representation of the monic Linearised Polynomial l2(X) ∈
Fqn [X] with degree qd.

• Compute the partial Vandermonde matrix M of size n × (d + 1) and multiply it by
α to obtain M · α = v ∈ Fqn .

• Represent the output vector v as the matrix L2 ∈ F n×n
q .

• Compute the rank of L2 over q. If it’s full rank then l2(X) is a Linearised Permutation
Polynomial and L2 ∈ F n×n

q is its matrix representation.

• Compute the matrix representation of multiplication of elements in the Finite Field
Fqn as M = (Cf(x)

0, . . . , Cf(x)
n−1), where Cf(x)

i is the ith power of the Companion
Matrix of the irreducible polynomial f(x).
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• Compute the multilinear private map F = L1 ⊗ (L2 · L1) which is the tensor repre-
sentation over q.

• Compute the trapdoor polynomial map G(X) = X ∗ l2(X) ∈ Fqn [X] which is of
degree qd + 1 = 1025 and is defined over Fqn . It’s mandatory to compute it over
the finite field extension as Berlekamp’s Algorithm cannot be applied to the Tensor
Representation. Here the author is unaware of a root solving algorithm reduction to
Tensor Algebra.

• Compute the Tensor representation of the Public Key over q as P (X) = T ·M · F ·
(S ⊗ S) · (x⊗ x).

2.2.2.2 Private Key Construction

The owner must retain matrices T−1, S−1, L−1
1 and the private polynomial G(X) = X ∗

l2(X).

2.2.3 Signing process

2.2.3.1 Message Signing

• For signing a message m of any size compute the digest of the message via a Hash
Function H(m) = y. Truncate the output of the digest to fit in a n bit vector, if
necessary.

• Here v ∈ F n
q is a vinegar vector with the first k = 8 positions randomized and the

rest n− k positions set to zero.

• To solve the equation P (x)+v = y start by selecting random k values for the vinegar
vector v.

• Compute y′ = y − v and apply T−1 · y′ = z.

• Express the vector z as it’s polynomial representation as Z = ϕ−1(z) ∈ Fqn .

• Recover X ′ ∈ Fqn by root finding (Berlekamp’s) on the polynomial G(X ′)− Z = 0.

• If no root is found for G(X ′)− Z = 0 then go back to step 2.

• Once the polynomial X ′ is recovered, express it as the vector x′ = ϕ(X ′) ∈ F n
q .

• Compute the vector S−1 · L−1
1 · x′ = x which is the signature point.
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2.2.3.2 Message Verification

• The verifier must posses the Public Key in Tensor form P (x) = A · (x⊗ x) = y.

• Verifier receives a triplet (H, x, v,m) where H is the Hash function, x is the signature,
v is the vinegar vector and m the message to be validated.

• Verifier takes vinegar vector v ∈ F k
2 and forms the vector v′ = (v1, . . . , vk, 0, . . . , 0) ∈

F n
2 .

• Verifier computes P (x) + v′ = H(m) = y and if its correct the signature is trusted as
only the owner of the private key can issue valid signatures.

2.2.4 Key Sizes

The advantage of MPKC over other PQC candidates is the reduced signature bit length.
However, it’s been widely commented that MPKC has notorious trade-off between the
signature bit length and public/private key pairs (specially HFE variants). Let’s examine
these cases:

2.2.4.1 Public Key

Recall that the Tensor representation of the Public Key is P (x) = T ·M ·F ·(S⊗S)·(x⊗x) =
A·(x⊗x). The matrix A ∈ F n×n2

q is the public key that everyone sees and has size log2q×n3.

However, it’s been optimized to log2q × n× n(n+1)
2

2.2.4.2 Optimized Public Key size

When dealing with tensor products of vectors x ⊗ x we encounter monomials xixj and
xjxi, meaning that the tensor product of two n bit length vectors is of size n2. The size of

this vector can be reduced to n∗(n+1)
2

by skipping the redundant terms. The same for the

public key matrix, which is of dimension n× n2 is reduced to n× n(n+1)
2

. To compress the
public key note that each row is the vectorisation of a quadratic form Qi. Quadratic Forms
are symmetric in the sense that coefficients can be packed since any resulting quadratic
monomial can be expressed as ai,jxixj +aj,ixjxi. This facts leads to the compression of the

public key matrix to a rectangular matrix of size n× n(n+1)
2

.

2.2.4.3 Private Key

The private key is comprised of matrices T−1, S−1, L−1
1 ∈ F n×n

q and the polynomial G(X) =
X ∗ l2(X) ∈ Fqn [X] of degree qd + 1. Then the Private Key size sums up to log2q × (3n2 +
(d+ 1)× n).
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2.2.4.4 Signature Length

The input vectors (x, v) have length n and k respectively. Then the signature size is
log2 q × (n + k). When n = 128 a random salt of 32 bits must be generated an appended
to the signature. Check parameter list for more info.

2.2.5 Key Encoding and Decoding

NIST proposed a template for KAT values where Public and Private keys are represented
as an unsigned char vector, this is, a byte vector. As we are dealing with matrices over F2,
literally 1’s and 0’s we must pack every 8 bit into a byte thus encoding the bit string into
a byte vector. This is done in the code by dividing every row of a matrix in 8 bit groups,
then packing every group into a decimal value from 0− 255.
The reverse operation is decoding. We must convert from unsigned char or a byte vector
to a matrix. For that every byte from the vector is represented as a 8 bit string, its binary
representation. That representation is copied directly to the rows of the matrix.
Both methods guarantee that Public and Private Keys along with signatures are expressed
in Hexadecimal representation.
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3 List of parameter sets (part of 2.B.1)

First define every parameter of the tuple (q, n, k,D).

• q is the base field of the Finite Field.

• n is the dimension of the Finite Field and the Vector space which is constructed by
using Tensor Algebra.

• k is the number of vinegar variables. Recall that v ∈ F n
q is a n vector having k entries

in Fq and other n− k entries set to zero.

• d is the exponent used for constructing the degree D.

• D is the degree of the polynomial G(X) = X ∗ l2(X) which is monic, this is, largest
monomial is Xqd+1.

Scheme Security Level q n k D | pk | (KB) | sk | (KB) sign (B)
HPPC128 2 2 128 8 1025 129 6.17 21
HPPC192 4 2 192 8 1025 434.25 13.75 25
HPPC256 5 2 256 8 1025 1028 24.34 33

Table 1: Parameter list for Security Levels KB:Kilo-Byte, B:Byte
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4 Design rationale (part of 2.B.1)

The field of Multivariate Public Key Cryptography counts with a taxonomy that catego-
rizes schemes into families: BigField, MediumField, Stepwise, Oil-Vinegar [WP]. Schemes
based on these families play an important role in the development and study of Post-
Quantum schemes as there is a need for strengthening key exchange found in the Internet
(i.e: SSL/TLS) and for digital signatures. It’s theorized that in next decades Quantum
computers will be ready to break the schemes that we use today, as they’re based in com-
mon problems found in commutative cryptography where the security relies in the Discrete
Logarithm Problem and Integer Factorization.
With the introduction of the C* scheme by Matsumoto-Imai the field of MPKC started
to gain attention [TH]. The C* scheme was broken in the work of Patarin [Pata] by a
Differential attack. Attacker gathers plaintext and ciphertext pairs and mounts a linear
equation system that recovers the coefficient of the quadratic equations obtained by the
Differential. With these equations Patarin demonstrated that plaintext recovery is doable
for C*. Other variations were done like the Perturbation modifier.
After this breakthrough HFE [Patb] gained attention, which is a Dembowski-Ostrom pri-
vate polynomial, that is represented as a quadratic set (system of quadratic equations).
HFE has its weakness on decipher stage, where the Degree of the central polynomial F (X)
must be small to apply root finding (e.g: Berlekamp’s Trace). Kipnis and Shamir pub-
lished a work [KS] demonstrating that private polynomial computation is feasible solving
the Minrank problem by solving a multivariate system of equations using the relinearization
technique. This is because the rank of the private polynomial is considered small.
Variations of HFE appeared to protect from these key recovery attacks. (Gui, HFEv-,
GeMSS, QUARTZ), that nowadays are considered not secure as it’s been proved that are
not resistant to recent discoveries [STV] [TV]. In addition, the underlying problems of
MPKC have been broadly studied: PoSSo, Minrank [Bus], Isomorphism of Polynomials
(IP2) [Pata] .

With that all in mind the design of HPPC is similar to previous HFE based schemes,
with the difference that the central polynomial F (X) has big degree. In literature the
degree of the central polynomial D must be low to apply Berlekamp’s for root finding. In
HPPC the public key is composed of a central polynomial with big degree. The private key
has low D instead in order to apply root finding. These properties make HPPC resistant
to well-known attacks at first glance.
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5 Detailed performance analysis (part of 2.B.2)

5.1 Testing Platform

The reference and optimized implementation has been tested on a single platform.

Computer Processor Frequency (MHz) Max freq. (MHz)
Workstation AMD Ryzen 3700x 3600 4200
Embedded Raspberry PI 4b 1500 1500

Table 2: Description of the testing platform.

Computer OS Kernel RAM
Workstation Arch Linux 6.1.12 32GB
Embedded OpenBSD 7.3 GENERIC.MP 4GB

Table 3: Description of OS and RAM

5.2 Third Party Open Source Libraries

The reference and optimized implementation make use of three libraries: FLINT, M4RI
and NTL. Both FLINT and M4RI are supported in ANSI C, however NTL is only usable
in C++. So the code has been separated, exporting NTL functionality to a single .cpp
and .hpp file, which is minimal and can be replaced in the future to complete the whole in
ANSI C.

• FLINT is used for the selection of the matrix L2 and the private trapdoor function
G(X) = X ∗ l2(X). This is done by the Vandermonde matrix representation, thus
expressing matrix L2 of rank n as the representation of the polynomial l2(x), which
is a Linearised Permutation Polynomial.

• M4RI is used for dealing with operations of linear algebra over F2 (mult, sum, rank,
vectors, matrices) thus for constructing Private and Public Key and for obtaining-
verifying signatures using Tensor Algebra.

• NTL is used only for finding roots of the polynomialG(X)−Y = 0 as FLINT struggles
either when finding the roots of the polynomial or when splitting a single factor. In
this case NTL outperforms FLINT. For more information refer to [Sho].
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5.2.1 Differences between Operating Systems

There are major differences between the packaging found among Unix-like OS and GNU/Linux
distributions.

5.2.1.1 GNU/LINUX

In Arch Linux and Kali (Debian based) FLINT is at version 2.9.0 which guarantees that
some primitives like fmpz mod mat rank(), fmpz mod mat inv do exist. The implementa-
tions do rely on these primitives which are not present for example in Ubuntu (Desktop)
22.04 and Debian 11. Manual installation of FLINT 2.9.0 is mandatory in those cases since
compilation with GCC of implementations will throw errors as it cannot find those func-
tion calls. In the case of M4ri and NTL both libraries are integrated in apt and pacman
(package managers).

5.2.1.2 BSD

In the case of other Unix-Like OS, OpenBSD has been tested on a Raspberry PI 4b
(aarch64). FLINT was manually compiled and installed with gmake ang gcc. The im-
plementations compiled by passing the argument ”-I /usr/local/includes” so GCC locates
FLINT’s header files. NTL has a ports section so it can be intregrated easily and M4ri must
be manualy compiled and installed. As libstdc++ is required and not found in this system,
Clang++ is used to compile the code using libc++, the C++ runtime library supported
by the OpenBSD team.

5.3 Reference vs Optimized implementation

The reference and optimized implementations are the same at code level. The reference
implementation runs in single core. However the MAKEFILE includes an optimized version
that selects Strassen Matrix multiplications using M4RI’s method mzd mul() that applies
the method plus it can parallelize operations. This parameter is disabled by default and
it’s experimental. It can improve KeyGen method as Tensor Products are better computed
in parallel than in a single core.
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5.4 Benchmark

The MAKEFILE has two tests. One is the Fast test in single core, the other the Strassen
fast test which may exploit parallelization. KAT procedure is not contemplated here, as
it’s compiled without optimizations, just for collecting and satisfying NIST tests.

5.4.1 Fast test

Here the Fast test in single core is measured on Workstation and Embedded computers.

Scheme Gen Sign Verify
HPPC128 539.26ms - 542.67ms 689.75ms - 725.33ms 3.18ms - 3.2ms
HPPC192 3.03s - 3.05s 1s - 1.7.s 10.7ms - 10.9ms
HPPC256 9s - 9s 1.2s -2.4s 25.1ms - 25.2ms

Table 4: Median - Average time of distinct Parametrizations in 20 rounds in Workstation

Scheme Gen Sign Verify
HPPC128 2.3s - 2.5s 2.57s - 2.85s 9.12ms - 9.13ms
HPPC192 16s - 16.3s 2.4s - 5.4s 29.84ms - 33ms
HPPC256 49.2s - 50.4s 10.5s -11.7s 80.2ms - 83.33ms

Table 5: Median - Average time of distinct Parametrizations in 20 rounds in Embedded
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5.4.2 Strassen Fast test

Here the Strassen fast test is measured. Notice that it may run in parallel.

Scheme Gen Sign Verify
HPPC128 405.1ms - 407.3ms 700ms - 720.1ms 3.19ms - 3.2ms
HPPC192 2s - 2.1s 1.2s - 1.7ms 11.47ms - 11.5s
HPPC256 6s - 6.2s 1.2s - 2.5s 24ms - 24.9ms

Table 6: Median - Average time of distinct Parametrizations in 20 rounds in Workstation

Scheme Gen Sign Verify
HPPC128 1.3s - 1.5s 1.93s - 2.95s 8.50ms - 9.03ms
HPPC192 13.4s - 13.6s 2.5s - 4.89s 29.4ms - 29.97ms
HPPC256 45.8s - 46.1s 8.28s - 11.9s 80.1ms - 81.32ms

Table 7: Median - Average time of distinct Parametrizations in 20 rounds in Embedded

5.5 Workstation vs Embedded

The results of the execution of both tests in the workstation and embedded lead to the
conclusion of the workstation having more than 3 times speedup in computation time per
operation mode (Sign, Verify and Gen). Still the embedded system performs the operations
in time, at least for HPPC128.
The other interesting result is that the Strassen option has noticeable speedup on both
machines, which is passed as an optional compiler flag to turn on Strassen’s method for
matrix multiplication, reducing computation time in matrix tensor operations.
In resume, workstations comply for generating keys and message signing-verifying in time
and embedded systems are capable of performing all the operations, however, the one that
escalates well in time is verifying.
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6 Expected Strength (part of 2.B.4)

6.1 EUF-CMA security

The presented scheme must be analyzed from the perspective of the EUF-CMA security
model applied to digital signatures. The model proposes the following conditions:

• Challenger C generates a pair of public-private keys (pk, sk) and sends the public key
pk to the adversary A.

• The adversary A has access to the oracle and queries for the message m.

• The oracle returns the signature θ ← Sign(sk,m) and stores the message m into the
message list Q, so every submitted message by A has to be not repeated or it will be
discarded by the Oracle and/or the Challenger C.

• A wins when finds a valid pair (m∗, θ∗) where Verifypk(m
∗, θ∗) = 1 and m∗ ̸∈ Q, this

is, the message m∗ must not be submitted to the oracle and θ∗ is a valid signature
for m∗.

Given the message m∗ ̸∈ Q the adversary A looks for solving the equation P (θ∗)− v =
H(m∗), where v ∈ F n

2 has first k randomized entries and last n − k entries set to zero.
Obtaining such signature is as hard as solving the underlying MQ problem.

6.1.1 Security

For example if we don’t restrict the vector v ∈ F n
2 to have n − k entries set to zero, the

adversary A computes H(m∗) and selects a random θ∗ ∈ F n
2 such that v = P (θ∗)+H(m∗).

Then the signature pair (θ∗,m∗, v,H) is valid as Verifypk(m
∗, θ∗) = P (θ∗) + v = H(m∗).

However, for k = 8 if we restrict the vector v to have last n− 8 entries set to zero and the
first 8 entries randomized the thing changes for the adversary A. Like in the previous case,
the adversary computes H(m∗) and selects a random θ∗ ∈ F n

2 such that v = P (θ∗)+H(m∗).
But notice that now v doesn’t have the mentioned structure, this is, the last n− 8 entries
are not set to zero so the verifier rejects the signature.

6.1.2 Signature forgery

The only way for v having the last n− 8 entries set to zero is to have a collision on the last
n−8 entries of P (θ∗) and H(m∗) and to find such collision the attacker must solve a system
of n − 8 quadratic equations on n variables. The attacker must solve P (θ∗) +H(m∗) = 0
where the over-line in the equations indicates the selection of the last n − 8 equations of
P (θ∗) and the last n− 8 entries of the hash H(m∗). Solving such system equals to solving
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the underlying MQ problem at a minimum of 120 equations in 128 variables. Selecting
random values for (x120, . . . , x128) ∈ F 8

2 yields a m = n = 120 equation system which can
be translated to a semi-regular sequence adding equations x2

i + xi = 0 for applying F4

algorithm. In general the complexity of this system shows that dreg ≤ 16 [Sal] which is a
good indicative that the following analysis is consistent. Head to [SH] for a formal proof
on schemes HFE and UOV.

7 Analysis of known attacks (part of 2.B.5)

As the scheme belongs to BigField family, numerous attacks can be ruled out on HFE.
Here the goal is to estimate the complexity of these attacks applied to the parametrization
of the presented scheme.

7.1 Index & Degree Regularity

There are distinct cases for estimating attacks using Gröbner in multivariate polynomial
equation systems. For example, under some conditions, over-defined systems are easier
to solve than under-determined or systems where m = n which is the case of HPPC.
The goal is to demonstrate that a system belongs to the worst-case family of polynomials
such that the computed Gröbner basis has (almost) maximal degree of regularity, this is
dreg ≤ #MB =

∑n
i=1(di− 1) + 1, where MB is the Macaulay Bound, an upper bound that

defines the highest degree that a term can have in the resulting Gröbner basis.
In general, for regular systems where m = n the index of regularity plus one coincides with
the upper bound MB so we conclude that dreg ≤ ireg + 1. The index of regularity, ireg is

the degree of HSI(t) =
∏n

i=1(1−tdegpi )

(1−t)n
, the Hilbert Series polynomial of the Ideal generated

by the polynomials of the system P (X)− Y = 0.

7.1.1 HFEv schemes

The Degree of Regularity calculation of HFE, HFE- and HFEv- polynomials was previously
studied in [Fau] [FJ] [DK] [Sal]. Also in [DK] authors mention that using a binary extension
field has no effect as HFE can be carried out to q = 2 lowering the degree of regularity at
the cost of having a system with more variables and equations. In [DK] set d = ⌊log2(D)⌋
so the upper bound for the degree of regularity for an HFEv polynomial is estimated as:

dreg ≤
(q − 1)(d+ v − 1)

2
+ 2

Recently NIST candidate GeMSS [Cas] (QUARTZ based HFEv- variant) was considered
broken where parametrization must be tuned in order to achieve security [PD] [STV]. Hence
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the ”minus” modifier and vinegar variables do not enhance security, just by a polynomial
factor. In the presented scheme no ”minus” modified is used (nude HFE). A minimum
vector of vinegar variables is used to guarantee finding a root of the trapdoor polynomial
G(X) through distinct trapdoor inversions.

7.1.2 Semi-regular sequences

Solving multivariate equations over q = 2 has the advantage of adding n equations of type
x2
i + xi = 0, resulting in a quadratic system of 2n equations in n variables, which is a

semi-regular sequence of multivariate polynomials.
It results that there are estimations in Bardet’s work that can be applied for quadratic
systems over F2 where m = n [Sal], the case of HPPC. This estimation is called dmax. In
[DY] authors state that Bardet’s estimations won’t work when some structure is introduced
to the generated system. For example an HFE polynomial with n = 80 has dmax = 12
however if the degree of the polynomial is D = 29+1 = 513 then (q−1)(d+v−1)

2
+2 ≈ 6 which

is the half of dmax.

7.1.3 Degree of regularity for HPPC

Let m = 2n as the result of adding n equations x2 + xi = 0 to the system. The Hilbert
series for quadratic semi-regular sequences of 2n equations in n variables is given as [Sal]:

HSI(t) =

∏2n
i=1(1− t2)

(1− t)n

The value for dmax equals the degree of the first non-positive coefficient and serves for a
conservative bound.

• For n = 128 first non-positive term is −6962621258288688000t17

• For n = 192 first non-positive term is −759963592123628272114009536t23

• For n = 256 first non-positive term is −92341817249200423510805160209529600t29

The degree of the central HFE polynomial F (X) is at most qn−1 which is big enough
for resisting against well-known attacks. The trapdoor polynomial F (S−1 ◦ L−1(X)) =
G(X ′) = X ′ ∗ l2(X ′) has degree qd + 1 instead, enough for Berlekamp’s algorithm to work
for root finding. For n = 128 the HFE polynomial has at most degree D = 2127 which gives
an upper bound of dreg ≤ 63 using concepts from [DY].
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7.2 Gröbner Basis and F4 algorithm

The MQ problem in MPKC is based on finding the set of roots over F2 from the Tensor
representation of the public key P (x)− y = 0. The normal approach is to solve it by using
Gröbner Basis, which finds an Algebraic Variety that contains the roots (solution) of the
system. This process is bounded by the nº of variables and the degree of regularity.
Testing has been conducted on instances of HPPC where 11 ≤ n ≤ 32 using Wolfram
Mathematica for generating the symbolic public key and SAGE for computing Gröbner
basis and dreg. Equations x

2
i + xi = 0 are appended to the polynomial P (X)− Y = 0 and

stored in a text file, then loaded via Sage to generate a Gröbner basis. Here dreg is the
degree of semi-regularity which is bounded by dmax [Sal]. It results that SAGE reports the
same degree of semi-regularity as dmax for each parameter n.
The output basis is always linear in variables (x1, . . . , xn) for n = 2k. For other values of n
quadratic monomials xi ∗ xj have been observed in the output basis. It’s an open question
if the selected parametrization is the most optimal from the point of view of security.
The following table represents the degree of regularity for each instance of HPPC for the
parameter list previously given.

Scheme Ding-Yang [DY] Bardet [Sal]
HPPC128 70 17
HPPC192 102 23
HPPC256 134 29

Table 8: Analysis of dreg in distinct studies

The degree of regularity serves for estimating the required number of field operations
for computing a Gröbner basis, which is:

O(
(
n+ dreg
dreg

)w

)

Scheme Ding-Yang [DY] Bardet [Sal]
HPPC128 2360 2145

HPPC192 2536 2204

HPPC256 2712 2264

Table 9: Complexity for distinct dreg setting w = 2
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7.3 MinRank

The MinRank problem MR(m,n, r) consists of finding a linear combination of m matrices
of size n× n to obtain a n× n matrix of rank r. MinRank problem is NP-complete [Bus].

7.3.1 Attacks

• The first one was the Kipnis-Shamir attack [KS], where the HFE public key is com-
puted as Quadratic Form xTQx ∈ Fqn . From here linear/affine transformations T
and S are computed by polynomial solving applying the Relinearization technique.

• The linear algebra technique, which was presented by Goubin and Courtois [GC]
was applied to the triangular system TTM. It finds a linear combination M =∑n

i=1

∑n
j=1 αjMjXi = 0, where matrices Mj and vectors Xi have been previously

defined.

• The Minor’s attack [PD] is more popular in literature and is applicable to other
families [STV] where elements of the underlying algebraic structure are not defined
in a Finite Field (base or extension). The goal is to obtain a Matrix with rank r
where the determinant of submatrices of size (r + 1) × (r + 1) vanish, these are the
minors of rank r + 1. This is a well-known property on Linear Algebra, as a matrix
M of rank r has rank r only if it’s r+1 minors do vanish. The estimation from [PD]
is used for complexity calculation:

O(
(
n+ d+ v + 1

d+ 1

)w

)

Minor’s method for HFE depends entirely on the rank of the central polynomial F (X)
which is at most d = log2(D) = n− 1.

Scheme (n, d, v) Minors
HPPC128 (128, 127, 8) 2518

HPPC192 (192, 191, 8) 2774

HPPC256 (256, 255, 8) 21030

Table 10: Complexity for Minor’s method
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7.4 Conclusion

F4 algorithm is exponential in dreg where Minors seems intractable as the degree D of
central HFE polynomial grows. In literature covered cases for HFE variants are those with
D is small. At the moment HPPC is expected to be resistant to existing attacks for the
selected parametrization.

8 Advantages and limitations (part of 2.B.6)

8.1 Advantages

• Small Signatures: Schemes based on Multivariate Cryptography are well known for
their small signature size. Signatures are sent along with the message to the verifier,
so it doesn’t take much bandwith over a network.

• Fast Verification: The verification of a signature is really fast for all the covered
parameters.

• Simplicity: The mathematics behind the scheme are based on concepts found in
BigField schemes like HFE, which is a very well known scheme, counting with multiple
variations and cryptanalytic techniques.

• Arithmetic: The operations done by the scheme are easily handled by any electronic
device as the scheme mainly relies in Linear Algebra over F2 and operations in a binary
Finite Field.

8.2 Limitations

• Public key size: The size of the compressed Public Key is n × n(n+1)
2

thus bigger
than other PQC schemes.

• Key Generation: Tensor product of matrices over F2 is a costly operation when
their dimension is relatively big, which is the case. Optimization must be done to cut
time from the key generation.

• Signing time: The signature process must find the roots of the polynomial equation
G(X) − Y over a Finite Field. This process may not yield a root, so new vinegar
values must set-up and the equation must be solved again. This is a limitation of the
private polynomial of HFEv- schemes like QUARTZ and GeMSS. This is because the
private polynomial is not bijective, thus needing to change the constant term using
new vinegar values, in order to find a new root.
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9 2.D.1 Statement by Each Submitter

I, Borja Gómez Rodŕıguez, of PZ Landabaso 8 - 5ºA, Bilbao 48015, Spain, do hereby de-
clare that the cryptosystem, reference implementation, or optimized implementations that I
have submitted, known as HPPC: Hidden Product of Polynomial Composition, is my own
original work, or if submitted jointly with others, is the original work of the joint submitters.
I further declare that (check one):

a.✓□ I do not hold and do not intend to hold any patent or patent application with a
claim or that could be amended to include a claim that may cover the cryptosystem,
reference implementation, or optimized implementations that I have submitted, known
as HPPC: Hidden Product of Polynomial Composition; OR (check one or both of the
following):

b.□ to the best of my knowledge, the practice of the cryptosystem, reference implementa-
tion, or optimized implementations that I have submitted, known as
HPPC: Hidden Product of Polynomial Composition may be covered by the following
U.S. and/or foreign patents: (describe and enumerate or state “none” if applicable)
None

c.□ to the best of my knowledge, the following pending U.S. and/or foreign patent applica-
tions may cover the practice of my submitted cryptosystem, reference implementation
or optimized implementations: (describe and enumerate or state “none” if applicable)
None

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to
the public for review and will be evaluated by NIST, and that it might not be selected for
standardization by NIST. I further acknowledge that I will not receive financial or other
compensation from the U.S. Government for my submission. I certify that, to the best of
my knowledge, I have fully disclosed all patents and patent applications which may cover my
cryptosystem, reference implementation or optimized implementations. I also acknowledge
and agree that the U.S. Government may, during the public review and the evaluation pro-
cess, and, if my submitted cryptosystem is selected for standardization, during the lifetime
of the standard, modify my submitted cryptosystem’s specifications (e.g., to protect against
a newly discovered vulnerability)
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I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment. I do hereby agree to provide the statements required
by Sections 2.D.2 and 2.D.3, below, for any patent or patent application identified to cover
the practice of my cryptosystem, reference implementation or optimized implementations
and the right to use such implementations for the purposes of the public review and evalu-
ation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may re-
move my cryptosystem from consideration for standardization. If my cryptosystem (or the
derived cryptosystem) is removed from consideration for standardization or withdrawn from
consideration by all submitter(s) and owner(s), I understand that rights granted and assur-
ances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference
and optimized implementations, may be withdrawn by the submitter(s) and owner(s), as
appropriate.

Signed: Borja Gómez Rodŕıguez

Title: HPPC: Hidden Product of Polynomial Composition
Date: 31/05/2023
Place: Santiago, Chile
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10 2.D.3 Statement by Reference/Optimized Imple-

mentation’s Owner

I, Borja Gómez Rodŕıguez, PZ Landabaso 8 - 5ºA, Bilbao 48015, Spain, am the owner or
authorized representative of the owner of the submitted reference implementation and op-
timized implementations and hereby grant the U.S. Government and any interested party
the right to reproduce, prepare derivative works based upon, distribute copies of, and dis-
play such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected
for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed: Borja Gómez Rodŕıguez

Title: HPPC: Hidden Product of Polynomial Composition
Date: 31/05/2023
Place: Santiago, Chile
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