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Introduction

Fountain v1 is a lightweight authenticated cipher with a 128-bit secret key and a
96-bit IV. It is oriented to be efficiently implemented in the constrained hardware
environments and to have a reasonably good performance in software. Fountain
v1 is designed bo be secure in the nonce-respecting setting. So far, no attack
faster than 2112 has been identified in the single key model.
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Chapter 1

Specification

The specification of Fountain v1 is given in this charpter.

1.1 Parameters

Fountain v11 is a stream cipher-based authenticated encryption primitive. It
has three parameters: key length, nonce length and tag length. The parameter
space is as follows. The key length is 16 bytes, the nonce length is 12 bytes
and the tag length is 8-byte or 16-byte. From a 128-bit secret key K and a
96-bit Nonce, or initialization vector (IV ), Fountain generates the keystream
of length up to 264 bits.

The inputs are a public message number Nonce, i.e., IV , and a secret key
key, a plaintext M = (m0,m1, · · · ,mml−1) of ml bits, the associated data
A = (ad0, ad1, · · · , adal−1) of al bits. The length of M is up to 264 bits, i.e.,
less than or equal to 261 bytes. The length of A is up to 250− 1 bytes. There is
no secret message number, i.e., the secret message number is empty. Formally,
the authenticated encryption procedure is

Fountain_AE (K, IV,A,M) = (C, T )

The output of the authenticated encryption is (C, T ), where C is the ciphertext
of the plaintext M and T is the authenticated tag of 16-byte or 8-byte, which
authenticates both A and M . The length of the ciphertext is exactly the same
as the plaintext M . Thus, the number of bytes in M plus the tag length in
bytes equals to the output length in bytes.

The verification and decryption procedure takes as input the same secret key
K and the public IV , the associated data A, the ciphertext C and the received
authenticated tag T , and outputs the plaintext M only if the verification of
the tag is correct or ⊥ when the verification of the tag fails. Formally, this
procedure can be written as

Fountain_VD (K, IV,A,C, T ) = {M,⊥}
1We use Fountain to denote Fountain v1 hereafter.
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1.2 Recommended Parameter Sets

Primary recommended parameter set of Fountain v1: 16-byte (128-bit) key,
12-byte (96-bit) nonce, 16-byte (128-bit) tag. Second recommended parameter
set of Fountain v1: 16-byte (128-bit) key, 12-byte (96-bit) nonce, 8-byte (64-
bit) tag.

1.3 Operations and Variables

The following operations and variables are used in the description.

- The bitwise logic AND is denoted by ·

- The bitwise exclusive OR is denoted by ⊕

- The bit or bit-string concatenation is denoted by ‖

- The associated data is A, which will not be encrypted or decrypted

- One bit of the associated data is adi

- The bit length of the associated data is al with 0 ≤ al < 8(250 − 1)

- The plaintext is M with one bit of plaintext as mi

- The bit length of the plaintext is ml with 0 ≤ ml < 264

- The ciphertext is C with one bit of ciphertext as ci

- The authenticated tag is T of length 128-bit or 64 bit

- K = (k127, k126, · · · , k1, k0), the 128-bit secret key used in Fountain, where
ki for 0 ≤ i ≤ 127 are the binary values with k0 being the least significant
bit and k127 being the most significant bit

- IV = (iv95, iv94, · · · , iv1, iv0), the 96-bit initialization vector IV used in
Fountain, where ivi for 0 ≤ i ≤ 95 are the binary values with iv0 being
the least significant bit and iv95 being the most significant bit

- di for 0 ≤ i ≤ 3 are the 8-bit constants used in Fountain

- The sub-string xb · · ·xa+1xa of X is X[b : a]

1.4 Mode of Operation

The mode of operation of Fountain is depicted in Figure 1.1, where F is the
state updating function that operate on an internal state of 256 bits, and f is
the output function that takes 16 state bits to generate 1 keystream bit. For a
more detailed description, please see the following sections.
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Figure 1.1: The authenticated encryption mode of Fountain v1

1.5 Description of Fountain

As depicted in Fig.1.2, there are 4 parts involved in the algorithm: 4 linear
feedback shift registers (LFSR) defined over the finite field GF(2); a lightweight
4-bit to 4-bit S-box (SR), which extracts the contents of 4 LFSR cells to form the
4-bit input bits to a MDS matrix; a lightweight MDS matrix with the variable
input patterns for different functionalities in AEAD; a filter function h to take
the content of the current internal state to produce 1-bit keystream. Next, we
will present Fountain’s 4 components one-by-one.

1.5.1 The State of Fountain

Now we first look at the internal state, i.e., the 4 LFSRs in Fig.1.2. The primitive
feedback polynomials of the 4 LFSRs are:

LFSR1 : 1 + x12 + x25 + x31 + x64

LFSR2 : 1 + x9 + x19 + x31 + x64

LFSR3 : 1 + x14 + x20 + x31 + x64

LFSR4 : 1 + x6 + x10 + x31 + x64.
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Figure 1.2: The 4 parallel LFSRs and S-box+MDS in Fountain

Table 1.1: The GIFT S-box in Fountain

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

For i ≥ 0, the corresponding linear recursions are:

LFSR1 : α64+i = α31+i ⊕ α25+i ⊕ α12+i ⊕ αi

LFSR2 : β64+i = β31+i ⊕ β19+i ⊕ β9+i ⊕ βi
LFSR3 : γ64+i = γ31+i ⊕ γ20+i ⊕ γ14+i ⊕ γi
LFSR4 : ζ64+i = ζ31+i ⊕ ζ10+i ⊕ ζ6+i ⊕ ζi .

Note that the 4 linear recursions (together with the following h(x) and S-
box+MDS) can be efficiently paralleled 32 times in harware/software imple-
mentations.

Further, for i ≥ 0, we denote the internal state of the 4 LFSRs and the shift
operation as

LFSR1 : (αi, αi+1, · · · , αi+63)← (αi+1, αi+2, · · · , αi+64)

LFSR2 : (βi, βi+1, · · · , βi+63)← (βi+1, βi+2, · · · , βi+64)

LFSR3 : (γi, γi+1, · · · , γi+63)← (γi+1, γi+2, · · · , γi+64)

LFSR4 : (ζi, ζi+1, · · · , ζi+63)← (ζi+1, ζi+2, · · · , ζi+64) .

Note that the variables of each LFSR internal state are indexed from 0.

1.5.2 The Variable Non-linear Feedbacks

The 4-bit to 4-bit S-box is defined as above in hexadecimal. This is the 4-bit
S-box used in the GIFT block cipher [4], which is known to be lightweight and
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Table 1.2: The integrated S-box when generating keystream

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 9 5 6 D 8 A 7 2 E 4 C 1 F 0 B 3

Table 1.3: The integrated S-box when processing the associated data

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 9 D E 5 8 A F 2 6 C 4 1 7 0 B 3

can be implemented in hardware in 16 GE. The MDS matrix B is defined over
GF(22) as

B =

(
1 2
2 1

)
where the finite field GF(22) is defined by the primitive polynomial x2 + x+ 1
over GF(2). This is a lightweight MDS matrix as well, which has the maximal
differential branch number 3.

For i ≥ 0, let yi+3yi+2yi+1yi be the 4 output bits of the matrix B, where yi
is the least significant bit and yi+3 is the most significant bit, then we have

yi+3

yi+2

yi+1

yi

 = B ◦ x = B ◦


xi+3

xi+2

xi+1

xi

 = B ◦ SR


ζi+1

γi+1

βi+1

αi+1


where x = (xi+3, xi+2, xi+1, xi) is the 4 input bits to the matrix B with the
concrete patterns discussed below and ◦ is the matrix-vector production. The
4 second least significant bits of the LFSRs are used as the 4 input bits to the
S-box SR, i.e., αi+1 from LFSR1, βi+1 from LFSR2, γi+1 from LFSR3 and ζi+1

from LFSR4. On the output side of the S-box, we regard the two bits xi+3‖xi+2

as an element over the finite field GF(22) and xi+1‖xi as another element over
GF(22).

For the different functionalities in AEAD, we set different input patterns of
the 4 input bits to the matrix B. Precisely, for the normal keystream generation,
the input pattern is x = (xi+3‖xi+2, xi+1‖xi) with the xi+1‖xi being the least
significant element over GF(22) and xi+3‖xi+2 being the most significant one
over GF(22). The integrated S-box is shown in Table 1.2.

When processing the associated data A, the input pattern to B is x =
(xi+3‖xi+1, xi+2‖xi) with the two bits xi+2, xi+1 swapping their positions. The
corresponding integrated S-box is shown in Table 1.3.

For the finalization phase to produce the tag T , the input pattern is x =
(xi‖xi+3, xi+2‖xi+1), i.e., we make a 1-bit right rotation of the input pattern
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Table 1.4: The integrated S-box in finalization and the tag generation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) B F E 8 7 A 2 D 9 3 4 C 5 0 6 1

(xi+3, xi+2, xi+1, xi) in the keystream generation phase. The corresponding in-
tegrated S-box is shown in Table 1.4.

The purpose of these different input patterns is to make the domain separa-
tion in AEAD, i.e., we use different state updating functions when dealing with
different kinds of functionality.

Hence, the 4 feedback bits to the 4 LFSRs are

LFSR1 : α64+i = α31+i ⊕ α25+i ⊕ α12+i ⊕ αi ⊕ yi
LFSR2 : β64+i = β31+i ⊕ β19+i ⊕ β9+i ⊕ βi ⊕ yi+1

LFSR3 : γ64+i = γ31+i ⊕ γ20+i ⊕ γ14+i ⊕ γi ⊕ yi+2

LFSR4 : ζ64+i = ζ31+i ⊕ ζ10+i ⊕ ζ6+i ⊕ ζi ⊕ yi+3 .

1.5.3 The Output Function

The output function of Fountain h(x) is defined as h(x0, x1, x2, x3, x4, x5, x6, x7,
x8) = x0x1⊕x2x3⊕x4x5⊕x6x7⊕x0x4x8, where (x0, x1, x2, x3, x4, x5, x6, x7, x8) =
(ζi+2, αi+5, βi+4, γi+11, ζi+23, γi+27, βi+24, αi+29, ζi+30). To generate the keystream
bit zi, there are 7 bits added to the output of the h function as

zi = αi+3 ⊕ αi+11 ⊕ βi+20 ⊕ γi+5 ⊕ γi+16 ⊕ ζi+7 ⊕ ζi+29 ⊕ h(x),

at the time instant i. Note that this output function is also used in the Grain-
128a stream cipher [2].

1.5.4 The Initialization Phase

The initialization of Fountain consists of first loading the key and IV into the
state, and then running the cipher for 384 steps.

The Key/IV loading scheme is as follows.

α[7 : 0] = K0, α[15 : 8] = IV0, α[23 : 16] = K1, α[31 : 24] = IV1,

α[39 : 32] = K2, α[47 : 40] = IV2, α[55 : 48] = K3, α[63 : 56] = IV3

β[7 : 0] = K4, β[15 : 8] = IV4, β[23 : 16] = K5, β[31 : 24] = IV5,

β[39 : 32] = K6, β[47 : 40] = IV6, β[55 : 48] = K7, β[63 : 56] = IV7

γ[7 : 0] = K8, γ[15 : 8] = IV8, γ[23 : 16] = K9, γ[31 : 24] = IV9,

γ[39 : 32] = K10, γ[47 : 40] = IV10, γ[55 : 48] = K11, γ[63 : 56] = IV11

ζ[7 : 0] = K12, ζ[15 : 8] = K13, ζ[23 : 16] = d0, ζ[31 : 24] = K14,

ζ[39 : 32] = K15, ζ[47 : 40] = d1, ζ[55 : 48] = d2, ζ[63 : 56] = d3,
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where K = K0, · · · ,K15 is the 16 secret key bytes and IV = IV0, · · · , IV11 is
the 12 IV bytes, where K0 and IV0 are the least significant bytes, while K15

and IV15 are the most significant bytes.
The constants di for 0 ≤ i ≤ 3 are defined as follows.

d0 = 0xff

d1 = 0x3f

d2 = 0x00

d3 = 0x80.

There are 384 rounds in the initialization phase in Fountain currently, which is
shown as below.

1. Load the key, IV and constants into the LFSRs as specified above.

2. for i = 0 to 383 do

compute the keystream bit zi

run the 4 LFSRs 1 step with zi being feedback to the 4 LFSRs

Note that in the initialization phase, the keystream bit is used to update the
internal state of Fountain.

1.5.5 Processing the Associated Data

After the initialization, the associated data A is used to update the state.

1. for i = 0 to al − 1 do.

compute the keystream bit zi

run the 4 LFSRs 1 step with zi ⊕ adi being feedback to the 4 LFSRs

2. for i = 0 to 63 do.

compute the keystream bit zi

run the 4 LFSRs 1 step with zi being feedback to the 4 LFSRs

3. β[0] = β[0]⊕ 1

Note that even when there is no associated data, we still need to run the ci-
pher for 64 steps. When we process the associated data, the keystream bit is
used to update the state according to the concrete input pattern to B when
computing non-feedbacks, detailed in section 1.5.2. Then we xor 1 bit infor-
mation to the LFSR2’s cell β[0] so as to separate the associated data from the
plaintext/ciphertext.
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1.5.6 Processing the Plaintext

After processing the associated data, at each step of the encryption, one plain-
text bit mi is used to update the state, and mi is encrypted to ci.

1. for i = 0 to ml − 1 do.

compute the keystream bit zi

ci = zi ⊕mi

run the 4 LFSRs 1 step with mi being feedback to the 4 LFSRs

2. ζ[1] = ζ[1]⊕ 1

When we process the plaintext, the keystream bit is not used to update the
state, but with the concrete input pattern to B when computing non-feedbacks,
detailed in section 1.5.2. The cipher specification is changed so as to separate
the processing of plaintext/ciphertext and the finalization.

1.5.7 Finalization and the Tag Generation

After processing all the plaintext bits, we generate the authentication tag T .

1. for i = 0 to 383 do.

compute the keystream bit zi

run the 4 LFSRs 1 step with zi being feedback to the 4 LFSRs

The authentication tag T is the xored result of the secret key and the last 128
keystream bits generated from the newest updated internal state, i.e.,

T = (zfin+127‖ · · · , zfin+1‖zfin)⊕K.

For the 64-bit tag version, only the xored result of the least significant 64 bits
of K and the last 64 keystream bits generated from the newest internal state
is adopted as the tag value. Note that in the finalization phase, the state is
updated according to the concrete input pattern to the matrix B when comput-
ing non-feedbacks, detailed in section 1.5.2. This is mainly used for the domain
separation.

1.5.8 The Verification and Decryption

The verification and decryption procedures are very similar to the encryption
and tag generation rountine. The finalization in the decryption process is the
same as that in the encryption process. We emphasize that if the verification
fails, the decrypted plaintext and the newly generated authentication tag should
not be given as output.
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Chapter 2

Security Goals

In Fountain, each (key, IV) pair is used to protect only one message. If verifi-
cation fails, the new tag and the decrypted ciphertext should not be given as
output.

Algorithm Encryption Authentication (128/64-bit tag)
Fountain 112-bit 128/64-bit

There is no secret message number in Fountain. The public message number
is a nonce, i.e., the IV. The cipher does not promise any integrity or confiden-
tiality if the legitimate key holder uses the same nonce (IV) to encrypt two
different (plaintext, associated data) pairs under the same key.

The security claim of Fountain is the 112-bit security in the single key setting.
For the forgery attacks on the authentication tag, the security level is the same
as the tag size and the IV is not allowed to be re-used. If the tag verification
failed, no output should be generated.
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Chapter 3

Security Analysis

In this section, we will analyze the security of Fountain with respect to several
attacks.

3.1 Period and Time/Memory/Data Tradeoffs

The 256-bit state of Fountain ensures that the period of the keystream is large
enough for any practical applications, but the exact value of the keystream
period of Fountain is difficult to predict in theory. The average period of the
keystream is estimated to be larger than 2128, if we assume that the invertible
state updating function of Fountain is random. Besides, the 256-bit size internal
state also eliminates the threat of the known form of the time/memory/data
tradeoff attacks [5, 6, 15] with respect to 112-bit security, when taking into
account the pre-computation/memory/time/data complexities.

3.2 Linear Distinguishing Attacks

Here we use the linear sequential circuit approximation (LSCA) method [14] to
evaluate the strength of Fountain against linear distinguishing attacks.

Let the state transition matrix after decomposition the non-linear feedback
functions of Fountain be A, then it is found that the algebraic degree of the
minimal polynomial of A is m = 256, which is denoted by ϕ(x) =

∑m
k=0 φkx

k,
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precisely

ϕ(x) =x256 + x223 + x222 + x216 + x212 + x211 + x206 + x203+

x202 + x201 + x198 + x190 + x189 + x183 + x178+

x177 + x171 + x170 + x168 + x166 + x164 + x162+

x157 + x156 + x154 + x151 + x150 + x149 + x148+

x146 + x143 + x142 + x140 + x139 + x138 + x136+

x135 + x133 + x132 + x128 + x125 + x124 + x123+

x118 + x115 + x113 + x110 + x104 + x103 + x102+

x100 + x97 + x96 + x95 + x93 + x92 + x91 + x90+

x79 + x71 + x70 + x66 + x64 + x63 + x61 + x56+

x55 + x51 + x50 + x48 + x47 + x44 + x43 + x42+

x41 + x39 + x38 + x37 + x33 + x31 + x30 + x29+

x23 + x21 + x20 + x17 + x15 + x14 + x11 + x10+

x9 + x6 + 1,

where the Hamming weight of the polynomial ϕ(x) is 93. Based on this poly-
nomial, there is no linear trial with a weight of less than 56 active non-linear
operations found so far. Further, we have restricted the length of each keystream
generated from a (key, IV) pair to be less than or equal to 264 bits, thus we feel
that Fountain is immune to the linear distinguishing attacks.

3.3 Differential Cryptanalysis

In order to investigate the immunity of Fountain against differential attacks, we
introduce a single bit difference at each internal state position and try to trace
the propagation of this difference. We gather the difference biases after several
number of initialization rounds and try to distinguish it from the purely random
case.

Our experiments so far showed that for the full 384 rounds of initialization,
Fountain is non-distinguishable with the purely random case with respect to the
single bit differential cryptanalysis.

3.4 Cube Attacks and Variants

Cube attacks, formally introduced by Dinur and Shamir [1, 12, 13, 19], is a
generic key extraction technique exploiting the simple algebraic structure of
some output bits after a reasonable size of cube summation. The success of
cube attacks highly depends on the sparsity of the superpoly.

Our experiments so far showed that for the full 384 rounds of initialization,
Fountain seems to be secure against the current forms of cube attacks.
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3.5 Guess and Determine Attacks

In guess-and-determine attacks, the adversary usually guesses the content of
some partial internal state, and then tries to derive the rest part of the internal
state with the knowledge of the corresponding keystream segment. We have
tried some simple form of guess-and-determine attacks, and have not found an
attack that has a complexity less than 2112.

3.6 Security of the Authenticated Mechanism

We have considered some simple forms of forgery attacks [3] against the final-
ization and tag generation phase, our experiments so far showed that for the
full 384 rounds of finalization, Fountain seems to be secure against the simple
forms of forgery attacks.
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Chapter 4

Features

Fountain has the following useful features.

• New structure of stream ciphers. Fountain is the result of some efforts to
parallelize the execution of the whole cipher. The challenge in this design
approach is to achieve faster diffusion speed, and this problem is solved
by using four parallel linear feedback shift registers with a common non-
linear feedback source. Thus it is expensive to eliminate the difference in
the internal state, and it is relatively easy to analyze the authentication
security.

• One message bit is injected into the internal state in 4 places in each
step. This feature benefits lightweight hardware implementation, and the
control circuit in the hardware implementation can be greatly simplified.

• Fountain allows parallel computation. In Fountain, 32 steps can be com-
puted in parallel. This parallel feature benefits high speed hardware and
software implementation.

• Length information of associated data and plaintext/ciphertext is not
needed in Fountain, i.e., Fountain does not need to check the length of
message. This feature reduces further the cost of hardware implementa-
tion.

• Efficient in Hardware. Fountain has an internal state of 256-bit, which
is smaller than that of Trivium [9] and each component is chosen to be
lightweight.

• Efficient in Software In Fountain, 32 steps can be computed in parallel, so
its software speed is reasonably fast.

• Fountain is more hardware efficient than AES-GCM (especially for con-
strained hardware resource and energy consumption).
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Chapter 5

Performance

5.1 Hardware

Since Fountain has an internal state of 256 bits and each component (4 LF-
SRs + GIFT S-box + MDS + Grain-128a filter function) is also very efficient
in hardware. Thus, it is expected that Fountain will have a reasonably good
performance in hardware.

5.2 Software

Since Fountain can be parallelled 32 steps in computation, it is expected that
its software performance after fully optimization will be reasonably good.
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Chapter 6

Design Rationale

Fountain is designed to be efficient in the constrained hardware environments,
and also efficient in software on some platforms.

In order to be efficient in hardware, we use a bit-based stream cipher for its
well-known hardware efficiency (such as A5/1 [15], Grain [2] and Trivium [9]).
In order to resist the traditional attacks (correlation attacks [7, 8, 16, 17, 18, 20]
and algebraic attacks [10, 11]) on stream cipher, the state is updated in a non-
linear way. We inject the message into the internal state so that we could obtain
authentication security almost for free. The challenge is that in a bit-based se-
quential stream cipher based on nonlinear feedback registers, it is tremendously
difficult to trace the differential propagation in the state, especially if we want
to achieve high authentication security (such as 128-bit). Our design focus is to
solve this problem so that the authentication security could be easily analyzed.
Our solution is to use the 4 parallel linear feedback shift registers to ensure
that once there is difference in the state, the number of difference bits in the
state would be sufficiently large before the difference gets eliminated. When
there are difference bits in the state, the linear feedbacks and the non-linear
feedback function (S-box + MDS) introduces the difference noise into the state
quickly to reduce the success rate of forgery attack. If an attacker intends to
modify the ciphertext, the difference in the keystream bits would also affect
the state through the decrypted plaintext bits. In order to further reduce the
hardware complexity, Fountain does not check the message length in decryption
and verification. In order to make the domain separation in AEAD, different
state updating functions are adopted in the different functionalities. Separating
the plaintext from the associated data means that an attacker cannot use part
of the plaintext bits as associated data, and vice versa. Separating the encryp-
tion/decryption from the finalization means that an attacker cannot use part of
the keystream as the authentication tag.
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Chapter 7

Test Vectors

Some test vectors of Fountain are provided in this chapter.
===========================================
Length of plaintext: 1 bytes
Length of associated data: 0 bytes
The key is: 00000000000000000000000000000000
The iv is: 000000000000000000000000
The plaintext is: 01
The associated data is
The ciphertext is: 7c
The tag is: 9837767ba440b723aee10b981d60b28e
The verification is successful in decryption
The decrypted plaintext is: 01
=============================================
Length of plaintext: 0 bytes
Length of associated data: 1 bytes
The key is: 00000000000000000000000000000000
The iv is: 000000000000000000000000
The plaintext is:
The associated data is 01

The ciphertext is:
The tag is: 31ded1e44ebf34dce767f9b0bbd55807
The verification is successful in decryption
The decrypted plaintext is:
===========================================
Length of plaintext: 1 bytes
Length of associated data: 1 bytes
The key is: 01000000000000000000000000000000
The iv is: 000000000000000000000000
The plaintext is: 00
The associated data is 00

The ciphertext is: 4e
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The tag is: 78214d49298fa1ff38680b0a11a3530e
The verification is successful in decryption
The decrypted plaintext is: 00
===========================================
Length of plaintext: 1 bytes
Length of associated data: 1 bytes
The key is: 00000000000000000000000000000000
The iv is: 010000000000000000000000
The plaintext is: 00
The associated data is 00

The ciphertext is: 98
The tag is: 38ab1135ee8e7771e7a241d325241e12
The verification is successful in decryption
The decrypted plaintext is: 00
===========================================
Length of plaintext: 16 bytes
Length of associated data: 16 bytes
The key is: 01010101010101010101010101010101
The iv is: 010101010101010101010101
The plaintext is: 01010101010101010101010101010101
The associated data is 01010101010101010101010101010101

The ciphertext is: 3c73ebaca6d38599cbeab1e667229c61
The tag is: bd501e8bea8415dd1e8e7d026d938467
The verification is successful in decryption
The decrypted plaintext is: 01010101010101010101010101010101
==========================================
Length of plaintext: 16 bytes
Length of associated data: 16 bytes
The key is: 000102030405060708090a0b0c0d0e0f
The iv is: 000306090c0f1215181b1e21
The plaintext is: 01010101010101010101010101010101
The associated data is 01010101010101010101010101010101

The ciphertext is: 4d68e915da0d61f11eee119551056923
The tag is: e11db9d0e64739d93ddd949398ede405
The verification is successful in decryption
The decrypted plaintext is: 01010101010101010101010101010101
==========================================
Length of plaintext: 73 bytes
Length of associated data: 43 bytes
The key is: 000102030405060708090a0b0c0d0e0f
The iv is: 000306090c0f1215181b1e21
The plaintext is:
00070e151c232a31383f464d545b6269

70777e858c939aa1a8afb6bdc4cbd2d9

e0e7eef5fc030a11181f262d343b4249

50575e656c737a81888f969da4abb2b9
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c0c7ced5dce3eaf1f8

The associated data is
00050a0f14191e23282d32373c41464b

50555a5f64696e73787d82878c91969b

a0a5aaafb4b9bec3c8cdd2

The ciphertext is:
f72260e796a3f7179b1dc3a345fa7f40

bf588f52bd529f487fa841ed36c8a1a3

89021e0653c0303c44656ec5c128a060

4f92d2eaf47e1fac755ec5267586e503

0dcdc7705fcea00551

The tag is: 63e37ce690ed6371d6a3f35430e96d27
The verification is successful in decryption
The decrypted plaintext is:
00070e151c232a31383f464d545b6269

70777e858c939aa1a8afb6bdc4cbd2d9

e0e7eef5fc030a11181f262d343b4249

50575e656c737a81888f969da4abb2b9

c0c7ced5dce3eaf1f8
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