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1 Introduction

Background. A scheme for format-preserving encryption (FPE) is supposed to do that which
a conventional (possibly tweakable) blockcipher does—encipher messages within some message
space X—except that message space, instead of being something like X = {0, 1}128, is more gen-
eral [1, 3]. For example, the message space might be the set X = {0, 1, . . . , 9}16, in which case
each 16-digit plaintext X ∈ X gets enciphered into a 16-digit ciphertext Y ∈ X . In a string-
based FPE scheme—the only type of FPE that we consider here—the message space is of the form
X = {0, 1, . . . , radix− 1}n for some message length n and alphabet size radix.

One way to achieve FPE is with a Feistel-based mode of operation. The underlying round function
can be based on a conventional blockcipher, say AES. Two proposals along these lines were recently
submitted to NIST. One is FFX, by the present authors [2]. Another is BPS, by Brier, Peyrin, and
Stern [4], which was developed independently and submitted soon after FFX.

The FFX scheme is more open-ended than BPS; by itself, it is more a framework than a mode.
To turn FFX into a concrete mode one has to fix a variety of parameters—some nine parameters
in all. To make things concrete, the authors of FFX suggest two parameter collections, named A2
and A10. Scheme FFX-A2 encrypts binary strings of 8–128 bits, while FFX-A10 encrypts decimal
strings of 4–36 digits. For sufficiently long strings, both schemes use 12 rounds of Feistel. But the
number of rounds escalate as messages get shorter, going as high as 24 rounds (for FFX-A10) or
36 rounds (for FFX-A2) for the shortest permitted message lengths.

BPS brings to the table two new characteristics that a user might like. First is a more aggressive
round count: exactly eight rounds are used, regardless of the input’s length. Fewer rounds mean
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greater speed (and, of course, a less conservative design). Second, BPS includes a CBC-like chaining
mode to allow for the encryption of very long strings.

We note that the CBC-like mode of BPS—or, more generally, any CBC-like mode—cannot possibly
meet the security requirements specified in the literature for an FPE [1, 3]: you will not get a
pseudorandom permutation (PRP). To begin with, the first bit of ciphertext does not depend on
the last bit of plaintext. We feel that any scheme that calls itself a scheme for format-preserving
encryption ought to achieve the PRP goal—and preferably the strong PRP goal as well.

The FFX[radix] mode. This document provides new FFX parameter collections. First, we expand
the allowed radix values; now, any reasonable radix may be used, not just 2 or 10. Second, we enlarge
the allowed message lengths, permitting effectively arbitrary strings to be enciphered. Finally, we
select more aggressive round counts than we did for FFX-A2 and FFX-A10.

To accomplish the above, we define the FFX scheme we call FFX[radix]. The bracketed value
compactly names an FFX parameter collection. The value of radix is a number between 2 and 216.
Messages to be enciphered under FFX[radix] are regarded as strings of characters drawn from the
alphabet Chars = {0, 1, 2, . . . , radix − 1}. Scheme FFX[radix] does its work using an AES-based
balanced Feistel network. If the message length is odd, an alternating, maximally-balanced Feistel
scheme is used instead.

Mode FFX[radix] effectively unifies and extends FFX-A2 and FFX-A10; we suggest its use in lieu
of the later modes. The radix is more general, messages can be longer, and the number of rounds
is made constant, rather than depending on the message length n. We have not tried to maintain
upward compatibility; mode FFX[2] and FFX[10] do not coincide with with FFX-A2 and FFX-A10,
and they would not coincide even if the same number of rounds had been employed (although, in
that case, there would be no cryptographically significant difference).

2 The Scheme FFX[radix]

Notation. We assume the notation from the FFX spec [2] but, for the user’s convenience, we
recall the most relevant definitions here. Plaintexts and ciphertexts are regarded as strings over
the alphabet Chars = {0, 1, . . . , radix− 1}. By |X| we denote the length of string X, the number of
characters in it. Let Byte denote {0, 1}8, the set of 8-bit bytes. By |T |8 we denote the length, in
bytes, of the byte string T ∈ Byte

∗. With radix understood, the blockwise addition function � is
defined by a1 · · · an�b1 · · · bn = c1 · · · cn where c1 · · · cn is the unique string such that

∑
ci radix

n−i =(∑
ai radix

n−i +
∑

bi radix
n−i

)
mod radixn. By X � Y we mean the unique string Z such that

Y �Z = X. By [s]i we mean the i-byte string that encodes the number s ∈ [0..28i−1]. The function
numradix(X) takes a nonempty string X ∈ {0, . . . , radix− 1}∗ and converts it to the corresponding
number, where the number is interpreted in the given radix, most-significant character first. The
function str

m
radix(x) takes a number x ∈ [0 .. radixm − 1] and returns the m-character string that

represents it in the the given radix, most significant character first.

When K ∈ {0, 1}128 and X ∈ {0, 1}∗ and |X| is divisible by 128, algorithm CBC-MACK(X) is
defined as follows. First, let X1 · · ·Xm ← X where |Xi| = 128 and let Y ← 0128. Then, for j ← 1
to m, set Y ← AESK(Y ⊕Xi). Finally, return Y .
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10 algorithm FFX.Encrypt(K,T,X)
11 if K �∈ Keys or T �∈ Tweaks or
12 X �∈ Chars∗ or |X| �∈ Lengths
13 then return ⊥
14 n← |X |; �← split(n); r ← rnds(n)
15 A← X[1 .. �]; B ← X[�+ 1 .. n]
16 for i← 0 to r − 1 do
17 C ← A� FK(n, T, i, B)
18 A← B; B ← C
19 return A ‖B

20 algorithm FFX.Decrypt(K,T, Y )
21 if K �∈ Keys or T �∈ Tweaks or
22 Y �∈ Chars∗ or |Y | �∈ Lengths
23 then return ⊥
24 n← |Y |; �← split(n); r ← rnds(n)
25 A← Y [1 .. �]; B ← Y [�+ 1 .. n]
26 for i← r − 1 downto 0 do
27 C ← B; B ← A
28 A← C � FK(n, T, i, B)
29 return A ‖B

radix a number radix ∈ [2 .. 216] alphabet is Chars = {0, 1, . . . , radix− 1}
Lengths [minlen .. maxlen] where minlen = 2 if radix ≥ 10

and minlen = 8 otherwise; and maxlen = 232− 1.
permitted message lengths

Keys {0, 1}128 128-bit AES keys

Tweaks Byte
≤maxlen where maxlen = 232 − 1 tweaks are arbitrary byte strings

addition 1 blockwise addition

method 2 alternating Feistel

split (n) 	n/2
 maximally balanced Feistel

rnds (n) 10 number of rounds

F given below AES-based round function

30 algorithm FK(n, T, i, B)
31 vers← 1; t← |T |8; β ← �n/2�; b← � �β log2(radix)� / 8�; d← 4�b/4�
32 if even(i) then m← 	n/2
 else m← �n/2�
33 P ← [vers]1 ‖ [method]1 ‖ [addition]1 ‖ [radix]3 ‖ [rnds(n)]1 ‖ [split(n)]1 ‖ [n]4 ‖ [t]4

34 Q← T ‖ [0](−t−b−1) mod 16 ‖ [i]1 ‖ [numradix(B)]b

35 Y ← CBC-MACK(P ‖Q)
36 Y ← first d+ 4 bytes of

(
Y ‖ AESK(Y ⊕ [1]16) ‖ AESK(Y ⊕ [2]16) ‖ AESK(Y ⊕ [3]16) · · · )

37 y ← num2(Y )

38 z ← y mod radixm

39 return str
m
radix(z)

Figure 1: Definition of FFX[radix]. The mode enciphers strings over Chars = {0, 1, . . . , radix − 1}. It
does so using a maximally-balanced Feistel network and a round function based on the AES CBC-MAC.

We do not repeat further material from the FFX spec [2] except, for the reader’s convenience, we
do give the definition of FFX itself, as specialized to alternating Feistel (method = 2). This makes
our specification terse but self-contained.

Specification. In Figure 1 we specify FFX and the parameter collection [radix]. When FFX
is instantiated with this parameter collection one obtains the scheme FFX[radix]. In Figure 2 we
graphically illustrate the latter mode.
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Figure 2: Illustration of FFX[10]. The left-hand side depicts the behavior for an odd-length input (in
which case alternating, almost-balanced Feistel is used); the right-hand side shows an even-length input (in
which case balanced Feistel is employed). The indicated round-function outputs are fictitious; the actual
values depend on the key K and tweak T , neither of which has been specified.

3 Comments

A thorough discussion of FFX is given in the spec to which that this documents is an addendum [2];
we confine ourselves here to a few quick comments.

First, we would emphasize that, while we have permitted enciphering very long strings, mode
FFX[radix]—and indeed FFX in general—is intended for enciphering relatively short strings. For
binary strings whose length exceeds 128 bits, EME2 [5] may be a better choice than FFX[radix].
For long non-binary strings, one can, similarly, do “better” than FFX[radix], both in terms of speed
and proven-security results. However, nobody has written a spec for such a mode, one reason we
have chosen to allow use of FFX[radix] even for quite long strings.
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Second, we would like to briefly comment on the number of rounds, rnds(n) = 10. Our earlier work,
in parameter collections A2 and A10, had used a rather complicated function (we have come to call
it 12+) in which the number of rounds rnds(n) was four more than the minimal number of rounds r
such that r · split(n) · log2(radix) ≥ 128; but at least 12 and always a multiple of 6. The rule was
heuristically motivated and extremely conservative. For radix = 10 it translates to rnds(n) = 12
when n ≥ 10; rnds(n) = 18 if 6 ≤ n ≤ 9; and rnds(n) = 24 if n is 4 or 5. The feedback we got—and
our own sensibilities as well—was that a non-constant number of rounds was rather too complex.
Also, it is unintuitive why one should increase the number of rounds as messages get shorter. While
the explanation for these choices make sense (see the appendices in the FFX spec [2]), we have come
to regard the conceptual cost as too high. In the meantime, there remains no real evidence that,
once one overcomes the “meet-in-the-middle” attack, more rounds are actually needed for shorter
strings. We have already noted that BPS [4] selected a round count of 8, independent of message
lengths. With all these considerations in mind, we have elected to simplify and cut back the round
count to 10, speeding up implementations yet leaving some margin of safety. The choice is certainly
not as (hyper-)conservative as a round count of 12+, but ultimately the designers of a mechanism
must make a choice, based on their informed judgment and the cryptographic state-of-the-art.

Third, as discussed in the FFX spec [2], implementation choices will greatly affect performance.
For example, the first AES computation implicit in line 35 need be done only once across all the
rounds. When the radix is not a power of two, the mod at line 38 may require significant attention.

Finally, we re-emphasize that FFX[radix] is an instantiated version of FFX, and that other instan-
tiations are compliant with the higher-level scheme.
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