
Post-Quantum Cryptography Standardization
Historical FAQs

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

11/18/2024 “Transition
&
Migration”

Is it possible for dual signature generation or verification to be performed in a FIPS 140 approved mode of
operation? (added 1/28/20)

A dual signature consists of two (or more) signatures on a common message. It may also be known as a
hybrid signature or composite signature. We will use the term dual signature below. The verification of the
dual signature requires all of the component signatures to be successfully verified.
Assume that in a dual signature, one signature is generated with a NIST-approved signature scheme as
specified in FIPS 186, while another signature(s) can be generated using different schemes, e.g., ones that
are not currently specified in NIST standards. Like hybrid key establishment schemes, dual signatures can be
accommodated by current standards in “FIPS mode,” as defined in FIPS 140, provided at least one of the
component methods is a properly implemented, NIST-approved signature algorithm. For the purposes of
FIPS 140 validation, any signature that is generated by a non-approved component scheme would not be
considered a security function, since the NIST-approved component is regarded as assuring the validity of
the dual signature. The format of a dual signature is out of scope for FIPS 140 validation. It is up to the
application to specify how to parse signatures and verify them separately.

Updated response based on
the release of NIST IR 8547
(ipd), Transition to Post-
Quantum Cryptography
Standards

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

11/18/2024 “Transition
&
Migration”

Is it possible for a hybrid key-establishment mode to be performed in a FIPS 140 approved
mode of operation? (added 1/28/20)

A hybrid key establishment mode is defined here to be a key-establishment scheme that is a
combination of two or more components that are themselves cryptographic key-establishment
schemes. The desired property is that keys derived by a hybrid key-establishment scheme remain
secure if at least one of the component schemes is secure. The case of interest is when one of the
components of the hybrid mode is NIST-approved - for example, a discrete-logarithm based
scheme from NIST SP 800-56A or an integer-factorization scheme from SP 800-56B—and another
component is a post-quantum cryptography scheme.
Current NIST standards, which were not necessarily designed to provide post-quantum security,
can accommodate several hybrid key establishment constructions in “FIPS mode,” as defined in
FIPS 140. For example, assume that the value Z is a shared secret that was generated within a
NIST-approved cryptographic scheme, and that a value T is generated or distributed through other
scheme(s), which could be the output of a key encapsulation method (KEM). The following are the
different ways to incorporate the value T in the key derivation procedure to achieve a hybrid
mode which is permitted by current standards:

1. For any one-step key derivation method that is specified in SP 800-56C, an input defined
as SuppPrivInfo can be included in an (optional) FixedInfo field, and T may be included in
that field.

2. In any of the key derivation methods specified in SP 800-56C, whether one-step or
extraction-then-expansion, the value T may be included in the salt field.

Additionally, NIST plans to incorporate a cleaner, and therefore preferable, hybrid key
establishment construction in a future revision of SP 800-56C:

3. In any of the key derivation methods specified in SP 800 - 56C, the revision would permit a
concatenation of Z and T, e.g., Z||T, to serve as the shared secret instead of Z. This would
require the insertion of T into the coding for the scheme and the FIPS 140 validation code
may need to be modified.

Updated response based on
the release of NIST IR 8547
(ipd), Transition to Post-
Quantum Cryptography
Standards

10/27/2021 “Transition
&
Migration”

Is it possible for a hybrid key-establishment mode to be performed in a FIPS 140 approved mode of
operation?

First sentence in answer edited:
NEW: A hybrid key establishment mode is defined here to be a key-establishment scheme that is a
combination of two or more components that are themselves cryptographic key-establishment schemes.

PREVIOUS: A hybrid key establishment mode—sometimes referred to elsewhere by other names, such as
a composite mode—is defined here to be a key-establishment scheme that is a combination of two or more
components that are themselves cryptographic key-establishment schemes.

Clarification: Terminology for
hybrids is being clarified
recently from the usage of a
few years ago.

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

1/28/2020 Q1 (old) The call for proposals briefly mentions hybrid modes that combine quantum-resistant cryptographic
algorithms with existing cryptographic algorithms (which may not be quantum-resistant). Can these
hybrid modes be FIPS-validated? (old Q1)

Assuming one of the components of the hybrid mode in question is a NIST-approved cryptographic
primitive, such hybrid modes can be approved for use for key establishment or digital signatures. In
particular, a hybrid mode for signatures consists of two signatures. The mode is valid if and only if both
signatures are valid. FIPS 140 validation can only validate the part of the hybrid signature which is currently
approved by NIST. Similarly, a hybrid key establishment scheme derives keying material from two or more
secret values established by different key establishment primitives. Only the NIST approved key
establishment primitive can be validated according to FIPS 140.

In any case, such validation is only certifying that the NIST-approved portion is correctly implemented and
used, and it says nothing about the security of the quantum-resistant portion of the hybrid mode. Hybrid
modes may be an initial step for the migration to post-quantum primitives. However, NIST continues to
believe that the long term solution to the threat of quantum computers is to provide standards for post-
quantum public key cryptography, through the process outlined in our call for algorithms.

Replaced with 3 more detailed
FAQs under Transition &
Migration

11/18/18 Regrouped all questions into related “topics”:
Standardization process: 002, 007,011, 012, 013
CFP requirements: 003, 004, 015, 016, 018, 019
Evaluation criteria: 005, 006, 008, 009, 010, 014, 017
Transition and Migration: 001

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

11/18/18 16 Q16. Can third party open-source code be used in submissions?

A16: In both the mandatory reference implementation and the mandatory optimized implementation,
submissions may use NTL Version 10.5.0 (http://www.shoup.net/ntl/download.html), GMP Version 6.1.2
(https://gmplib.org), the Keccak code package (https://github.com/gvanas/KeccakCodePackage), and
OpenSSL Version 1.10f (https://www.openssl.org/source). Submitters may assume that these libraries are
installed on the reference platform and do not need to provide them along with their submissions.

If a submitter wishes to use a third-party open source library other than the ones specified above, they
must send a request to NIST at pqc-comments@nist.govby September 1st, 2017, with the name of the
library and a link to the primary website hosting it from which it may be downloaded. NIST will either
approve or deny this request within 2 weeks of receiving it. Should a request be approved, it will be added
to the above list of acceptable third-party open source libraries provided in this FAQ.

All submission packages using third-party open source code should contain build scripts which will allow for
seamless “one-stop” building of the submissions.

For example, on a Linux platform, it should require no more work to build the than running the standard

> ./configure [--options]
> make
> make install

succession of commands. In particular, the build process should be able to find the versions of these
libraries specified above that will be pre-installed on the reference platform.

Separate build scripts should be included for the reference Windows platform and reference Linux platform
that work using the GNU Compiler Collection version 6.4.0 and related tools as well as any platform-specific
commands required.

In addition, as part of the written submission, the submitter shall describe in their own words the
functionalities provided by any algorithms from third-party open-source libraries that are used in the
implementations.

Replaced 1st paragraph with
new text

http://www.shoup.net/ntl/download.html
https://gmplib.org/)
https://github.com/gvanas/KeccakCodePackage
https://www.openssl.org/source/)
mailto:pqc-comments@nist.gov
mailto:comments@nist.gov

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

9/5/17 15 Q15: How does a submission obtain secure randomness?

A15:The function randombytes() will be available to the submitters. This is a function from the SUPERCOP
test environment and should be used to generate seed values for an algorithm.

For functional and timing tests a deterministic generator is used inside randombytes() to produce the seed
values. If security testing is being done simply substitute calls to a true hardware RBG inside randombytes().

Function prototype for randombytes() is:

// The xlen parameter is in bytes
void randombytes(unsigned char *x,unsigned long long xlen)

The following demonstrate the use of the KAT and non-KAT versions of the functions to generate a key pair
for encryption:

int crypto_encrypt_keypair_KAT(
 unsigned char *pk,
 unsigned char *sk,
 const unsigned char *randomness
)

int crypto_encrypt_keypair(unsigned char *pk, unsigned char *sk)
{
 unsigned char pk[CRYPTO_PUBLICKEYBYTES];
 unsigned char sk[CRYPTO_SECRETKEYBYTES];
 unsigned char seed[CRYPTO_RANDOMBYTES];

 randombytes(seed, CRYPTO_RANDOMBYTES);
 crypto_encrypt_keypair_KAT(pk, sk, seed);
}

New answer removes last
paragraph with code.

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

8/10/17 3 Q3: What exceptions, if any, are there to the requirement for ANSI C source code? In particular, may C++
code or assembly optimizations be used?

A3: For both the mandatory reference implementation and the mandatory optimized implementations, all
new code written by submitters for the submission should be written in as ANSI C-like a manner as possible,
subject to some caveats.

In particular, implementations that use NTL (see Question and Answer 16 for details on the use of third-
party open source libraries) are necessarily allowed to be written in C++. However, the original and new
code in this submission must still be as ANSI C-like as possible, and should only use C++ functionality where
absolutely required in order to use NTL. In particular, as with code using any other third-party open source
code, the submission must contain build scripts for both Windows and Linux that compile properly on the
Intel x64 reference platform using version 6.4.0 of the GNU Compiler Collection (GCC).

Furthermore, while submitters may not write their own new and original assembly (including inline
assembly) code for either the mandatory referenced implementation or the mandatory optimized
implementation, we are allowing the use of third party open-source libraries that themselves rely on
assembly optimizations, subject to the constraints described in Question and Answer 16.

Any optional additional implementations that submitters wish to include are subject to no constraints at all
regarding the language and platform.

Question reworded and new
clarified answer provided

8/10/17 4 Q4: Will NIST consider platforms other than the “NIST PQC Reference Platform” when evaluating
submissions?

A4: The reference platform was defined in order to provide a common and ubiquitous platform to verify the
execution of the code provided in the submissions. NIST will include performance metrics from a variety of
platforms in our evaluation, including: 64-bit “desktop/server class,” 32-bit “mobile class,” microcontrollers
(32-, 16-, and where possible, 8-bit), as well as hardware platforms (e.g., FPGA). Submitters are encouraged
to provide additional implementations for these platforms if possible.

The reference platform should be treated as a single core machine. If an algorithm can make particular use
of multiple cores or vector instructions, submitters are encouraged to provide additional implementations
for these platforms.

New answer contains
additional info

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

8/10/17 16 Q16: Can third party open-source code be used in submissions?

A16. In both the mandatory reference implementation and the mandatory optimized implementation,
submissions may use NTL Version 10.5.0 (http://www.shoup.net/ntl/download.html), GMP Version 6.1.2
(https://gmplib.org), and OpenSSL Version 1.10f (https://www.openssl.org/source). Submitters may assume
that these libraries are installed on the reference platform and do not need to provide them along with
their submissions.

If a submitter wishes to use a third-party open source library other than the ones specified above, they
must send a request to NIST at pqc-comments@nist.govby September 1st, 2017, with the name of the
library and a link to the primary website hosting it from which it may be downloaded. NIST will either
approve or deny this request within 2 weeks of receiving it. Should a request be approved, it will be added
to the above list of acceptable third-party open source libraries provided in this FAQ.
…..
…..

New answer adds library
information in 1st paragraph

8/3/17 3 Q3: Does the requirement for ANSI C source code preclude the use of assembly language optimizations?

A3: The optimized code required as part of the submission package should be ANSI C with no assembly (this
includes inline assembly). This code is meant to be portable. If significant optimizations can be made with
assembly, then it can be included as an additional implementation and discussed in the performance
analysis.

Question reworded and new
clarified answer provided

http://csrc.nist.gov/groups/ST/post-quantum-crypto/faq.html#Q16

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

8/3/17 16 Q16: Can third party open-source code be used in submissions?

A16: In short, they may be used, with the following caveats.

1. The library source code should be integrated into the submission package in a self-contained manner.
This means that the submission package should contain build scripts which will allow for seamless “one-
stop” building of the submitter’s original code and all dependencies.

For example, on a Linux platform, it should require no more work to build the than running the standard

> ./configure [--options]
> make
> make install

succession of commands. The build process should not require the installation of any new libraries that are
not contained in the submission package.

Separate build scripts should be included for the reference Windows platform and reference Linux platform
that work using the GCC Compiler Collection (or ports thereof) and related tools as well as any platform-
specific commands required.

2. As part of the written submission, the submitter shall describe in their own words the functionalities
provided by any algorithms from third-party open-source libraries that are used in the
implementations.

3. The submitter is responsible for ensuring that they abide by all requirements of the license (if any)
under which said library has been released.

Added two new paragraphs at
start of answer and clarified
the rest of the answer

4/26/17 15 Q15: How does a submission obtain secure randomness?

A15: The function randombytes() will be available to the submitters. This is a function from the SUPERCOP
test environment and should be used to generate seed values for an algorithm. Randombytes should only
be used to seed a NIST-approved DRBG. As stated in the call for algorithms, the DRBG should be NIST
approved. If a non-approved DRBG is used “the submitter shall provide an explanation for why a NIST-
approved primitive would not be suitable.” The length of the random value obtained from randombytes()
should be selected to match one of the security categories in the call for algorithms. That is, if the call to
generate a key pair is from category 1 the randomness value should be 192 bits (24 bytes), if the call is from
category 2 or 3 it should be 256 bits (32 bytes) and if it is from category 4 or 5 it should be 320 bits (40
bytes). The DRBG will be used to expand that if necessary.

For functional and timing tests a deterministic generator is used inside randombytes() to produce the seed
values. If security testing is being done simply substitute calls to a true hardware RBG inside randombytes().
…..
…..

Sentence “Randombytes
should only be used…”
removed from first paragraph.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/faq.html#Q16

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

4/11/17 15 Q15: How does a submission obtain secure randomness?

A15: The function randombytes() will be available to the submitters. This is a function from the SUPERCOP
test environment and should be used to generate seed values for an algorithm. If the algorithm needs
additional randomness beyond the seed value a NIST-approved DRBG should be used. As stated in the call
for algorithms, the DRBG should be NIST approved. If a non-approved DRBG is used “the submitter shall
provide an explanation for why a NIST-approved primitive would not be suitable.” The length of the random
value obtained from randombytes() should be selected to match one of the security categories in the call
for algorithms. That is, if the call to generate a key pair is from category 1 the randomness value should be
192 bits (24 bytes), if the call is from category 2 or 3 it should be 256 bits (32 bytes) and if it is from category
4 or 5 it should be 320 bits (40 bytes). The DRBG will be used to expand that if necessary.

For functional and timing tests a deterministic generator is used inside randombytes() to produce the seed
values. If security testing is being done simply substitute calls to a true hardware RBG inside randombytes().
.....
…..

Changes made to first
paragraph only.

12/29/2016 OLD Q Q: Why are hash functions assigned fewer bits of quantum security than classical security?

A: Bernstein1 is widely cited as demonstrating that the most efficient quantum algorithm for finding hash
collisions is the classical algorithm given by Van Oorschot and Wiener2 . NIST believes this analysis is correct.
Nonetheless, NIST’s security goal, that schemes claiming s bits of quantum security be at least as secure
against cryptanalysis as a 2s bit block cipher leads to differing definitions for quantum and classical security.
In particular, quantum search for a 2s bit key does not parallelize well. It is NIST’s judgement that, since
cryptanalysis in the real world tends to be most successful when it can take advantage of highly parallel
implementations for attacks, finding collisions in a 2s bit hash function must be considered easier than
searching for the key of a 2s-bit block cipher, even in a world with ubiquitous quantum computing. NIST
therefore assigns fewer than s bits of quantum security against collision to 2s bit hash functions.

1 Daniel J. Bernstein, Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?
https://cr.yp.to/hash/collisioncost-20090517.pdf
2 Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic applications, Journal of
Cryptology 12 (1999) http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf

Question removed from FAQ

https://cr.yp.to/hash/collisioncost-20090517.pdf
http://people.scs.carleton.ca/%7Epaulv/papers/JoC97.pdf

Date Moved
to Archive

Question

Old Questions and/or Answers Reason for Archive

11/30/2016 OLD Q Q: What is the rationale to convert time and space complexity of known attacks into a single number for
quantum and classical security?

A: NIST’s definition of s bits of quantum security is “as hard to break as a block cipher with a 2s bit key,
assuming a relatively efficient and scalable quantum computing architecture is available.” According to the
analysis of Zalka1 the best generic quantum attack on a 2s-bit block cipher requires a quantum circuit with
depth*(squareroot (space)) proportional 2^s. This would suggest that quantum security should be defined
as the minimum possible value of log(depth*(squareroot (space))) plus a constant (to put the quantum
security of AES 128 at precisely 64 bits of quantum security,) accross all quantum and classical algorithms.
This formula should only be taken as a rough guess, though, as there are additional factors to consider:
Extremely serial and extremely parallel attacks are likely to be of limited practical relevance, even if the
above formula rates them as most efficient. Likewise, even under the assumption that a relatively scalable
and efficient quantum computing architecture is available, it is still likely that purely classical algorithms will
be easier to implement than the formula suggests, and quantum algorithms that, unlike parallel versions of
Grover’s algorithms, cannot be divided into small, unentangled, subcircuits, will be harder to implement
than the formula suggests. NIST plans to take these practical considerations into account when making its
evaluations.

Similarly, NIST’s definition of s bits of classical security is “as hard to break as a block cipher with an s bit
key, assuming quantum computers are not available.” This suggests that classical security should be
estimated as the minimum value of log(depth*space) plus a constant, over all classical attack algorithms.

1 Christof Zalka, Grover’s quantum searching algorithm is optimal, Physical Review A, 60:2746-2751, 1999
http://arxiv.org/abs/quant-ph/9711070

Question removed from FAQ

http://arxiv.org/abs/quant-ph/9711070

