
Email Comments on Block Cipher Modes of Operation
 

Updated comments will be posted at http://www.nist.gov/modes
 

Commenter (MM-DD-YYYY) Page
 
(Response messages are indented)
 

Eric Boesch (12-27-1999) 1
 

Frank Constantini (01-26-2000) 2
 
Chip McGrogan (01-26-2000) 2
 

Richard Schroeppel (05-15- 2000 3
 

Paulo Barreto (about 05-30-2000) 5
 

John Myre (07-03-2000) 6
 

David Scott (08-03-2000) 8
 

Mats Naslund (08-21-2000) 9
 

Gideon Yuval (09-29-2000) 10
 

David Scott (10-01-2000) 11
 

Brian Gladman (10-02-2000) 12
 

Tom Phinney (10-04-2000) 13
 
Bill Burr (10-05-2000) 14
 
Tom Phinney (10-05-2000) 14
 
Jim Foti (10-05-2000) 17
 

Charanjit Jutla (10-10-2000) 19
 

Virgil Gligor (10-11-2000) 21
 

Lars Knudsen (10-11-2000) 22
 

Paul Crowley (10-14-2000) 23
 
Paul Crowley (10-17-2000) 23
 

Helger Lipmaa (10-19-2000) 24
 

i 

http://www.nist.gov/modes


Date: Mon, 27 Dec 1999 16:54:12 +0100 
From: Eric Boesch <ebo@dannet.dk> 
Subject: Modes of operation 

1. PCBC is desirable for fast verification of ciphertext integrity. The need for checksums to 
verify message integrity is commonplace, even in unencrypted network applications. CBC and 
CFB MACs authenticate their plaintext only -- they do not authenticate their ciphertext. Using 
PCBC allows you to simultaneously generate ciphertext and a MAC that can be applied to the 
ciphertext, at little extra cost. PCBC's behavior is simple, unforgiving, and often desirable: all 
errors propagate forward indefinitely. 

2. Why output feedback mode instead of counter mode? Output feedback involves XORing the 
plaintext with an independent codestream E(IV),E(E(IV)),E(E(E(IV))),.... If the block size is 
128 bits and E() is a random one-to-one mapping, then you can expect, by the birthday paradox 
rules, to have your codestream repeat after about 2^64 blocks on average. If the encryption 
function is secure, then under no circumstances does output feedback appear to offer significant 
advantages over an appropriate use of counter mode, where the plaintext is XORed with 
E(IV),E(IV+1),E(IV+2),.... 

1
 

mailto:ebo@dannet.dk


_ _ _ 

From: "Costantini, Frank @ CSE" <fcostant@mail.cse.l-3com.com> 
Subject: AES modes of operation 
Date: January 26, 2000 16:02 

AES Evaluation Group: 
While I do not have any specific comments on any of the particular AES candidates, I would like 
to propose that NIST evaluate the security of the proposed algorithms when employed using 
counter-mode cryptographic operation. Counter-mode has advantages over OFB, CBC, and ECB 
modes for high-speed packet-based applications (like ATM), and as well as packet based 
communications over bandwidth-restricted channels. This mode requires little synchronization 
overhead and allows the keystream to be calculated in advance of the plaintext (for transmit) and 
ciphertext (for receive) becoming available. Furthermore, I would like to propose that the 
counter mode of operation be included in any "modes of operation" standard that is produced as 
part of the AES process. 

Thank you for your consideration. 

Respectfully, 
Frank Costantini 
L-3 Communications 
Communication Systems-East 
1 Federal Street, AE-3C, Camden, NJ 08103 
*856-338-3480 Fax: 856-338-3150 
email: frank.costantini@L-3COM.com 

From: "Chip McGrogan" <chip.mcgrogan@L-3COM.com> 
Subject: RE: AES modes of operation 
Date: Wed, 26 Jan 2000 19:03:53 -0500 

Frank: Great! Keep me up to date on how NIST reacts. 
BTW you forgot to mention one big advantage of Counter Mode, particularly for high data rate 
applications like ATM - - Since there is no feedback of previous information, parallel 
(concurrent) engines can be used to increase the data rate above that of a single engine. A 48
byte ATM cell payload can be encrypted by three parallel engines, each encrypting a 16-byte 
portion of the cell payload in a manner that is interoperable with an implementation using a 
single engine.Keep up the initiative!Chip 

2
 

mailto:chip.mcgrogan@L-3COM.com
mailto:frank.costantini@L-3COM.com
mailto:fcostant@mail.cse.l-3com.com


From: "Schroeppel, Richard" <rschroe@sandia.gov> 
Subject: comment for AES cipher selection 
Date: Mon, 15 May 2000 14:18:37 -0600 

Excerpts extracted relative to modes (full text may be found in the AES Round 2 comments at 
http://www.nist.gov/aes): 

[SNIP] 

CBC mode must be replaced. I suggest LFSR-counter mode, described in Appendix C. 

[SNIP] 

CBC MUST GO! 
CBC mode encryption is a problem for any parallel or pipelined hardware system. The fixup is to 
use lagged CBC, with a lag greater than or equal to the number of pipeline stages. This requires 
an unreasonable amount of IV, and forces even non-pipelined hardware to remember the 
intermediate IVs. There are proposals for two or three pipeline stages per cipher round. That's a 
lot of lag. 

Many folks suggested Counter Mode as an alternative. I propose LFSR-Counter Mode. It's as 
easy to implement as Counter Mode, and allows arbitrary lookahead and so arbitrary parallelism 
or pipeline depth. The details are in Appendix C. The ATM Forum has a Counter Mode 
standard. Other modes are also possible; almost anything is better than CBC. 

[SNIP] 

Appendix C: Replacing Cipher Block Chaining (CBC) Mode 

CBC MUST GO! 

CBC mode encryption is a problem for any parallel or pipelined hardware system. The fixup is to 
use lagged CBC, with a lag greater than or equal to the number of pipeline stages. This requires 
an unreasonable amount of IV, and forces even non-pipelined hardware to remember the 
lagged IVs. Counter Mode has been suggested as an alternative. I propose LFSRC (Linear 
Feedback Shift Register Counter) Mode. It's as easy to implement as Counter Mode, but allows 
arbitrary lookahead and arbitrary parallelism or pipeline depth. 

LFSRC copes with the two main problems of Counter Mode: (1) It's a little too likely that two 
adjacent plaintext blocks have consecutive values that become equal when the counter is xored 
with the plaintext, and hence encrypt to the same ciphertext; and (2) CM encrypts a long 
plaintext block of 0s as the encryption of a sequence of consecutive integers, a worrisome 
practice if our cipher has an unknown weakness. In LSFRC Mode, a 128-bit linear feedback shift 
register is initialized from an IV. The register is xored into the plaintext before each encryption, 
and is stepped after each block. The step function is to shift the register one bit to the left; if the 

3
 

http://www.nist.gov/aes
mailto:rschroe@sandia.gov


bit that fell off the end was a 1, we xor 0x87 into the low byte. This corresponds to the 
polynomial u^128 + u^7 + u^2 + u + 1, the first (mod 2) irreducible polynomial of degree 128. It 
has maximal period, 2^128-1. 

The register can be initialized from a full 128 bit IV, or by a shorter IV of length 32 or 64 bits. 
The shorter IVs are replicated to make up the full register length. An IV of 0 means ECB Mode. 

4
 



Suggestion from Paulo Barreto 
Subject: AES Modes 
Date: about 30, May, 2000 

NIST will standardize encryption modes of operation for AES and even asked 
for comments on this subject. However, I have found no mention to *hashing 
function* modes. I wonder whether the AES standard will specify any 
hashing function construction (e.g. Davies-Meyer or Matyas-Meyer-Oseas) on 
top of the AES block cipher? 

5
 



Date: Mon, 03 Jul 2000 09:26:45 -0600 
From: John Myre <jmyre@sandia.gov>
 Subject: Some thoughts on the requirements 

To the NIST team, 
Although NIST asked for input relating to encryption modes as part of the AES comment 
process, I did not see much on this subject in the published AES comments. I am glad to see 
NIST taking the initiative to address the subject separately. In this note I will mention a number 
of general ideas. Here is a quick list of the points raised below: 

1. NIST should consider defining modes based on application requirements. 
2. Disk (sector) encryption has requirements that are not met just by one of the standard modes. 
3. Dropping the requirement for encrypting only in the forward direction may provide methods 
for enhanced security. 
4. Padding methods and ciphertext stealing should be addressed together with encryption modes. 
5. If possible, NIST should provide guidance on making choices within the standard. 

I will not attempt to advocate any particular mode; this is the job of the cryptographers. I do want 
to point out, however, that the usual modes (ECB, CBC, OFB, CFB) are all designed for use by 
communication channels. Thus, all of the modes are used in the "forward" direction, not 
requiring access to past data. There are, however, many other applications, each with their own 
requirements. I would hope that NIST address the needs of these other applications. 
For example, consider disk encryption. In this case, what we really want is a block cipher with a 
large block, the size of a disk sector (512 bytes or larger). Various methods have been designed 
for this; the good ones all seem to require something more complex than choosing one of the 
standard modes. The main requirements to meet are that no data expansion is allowed, and 
that data in a location (sector) may often be replaced with small changes. 

Other examples of encryption of large data blocks are e-mail and file encryption. Just as for disk 
encryption, it is correct to assume that we have access to all of the data at once. Although CBC 
(with a unique, random IV for each encryption) is usually thought adequate for this, one can 
consider use of other modes to enhance security. The concept of an "all-or-nothing transform" is 
attractive, when the extra processing is worth it. In any case, NIST should consider defining 
modes that are appropriate for use in these situations. 

Perhaps other users can name other application areas. Clearly NIST can not undertake the job of 
designing protocols for every application. However, I think that NIST can, and should, go 
beyond the simple modes already defined. It should be possible to categorize the basic 
application types, based on their needs for encryption modes. 

In addition to the essential encryption mode, often a user must choose a padding method. I think 
that NIST should endeavor to address this area, as well. The padding mode can have security 
implications in some cases. Note also the concept of "ciphertext stealing", which is conceptually 
a "padding" method (that avoids padding) but is really a modification of the encryption mode. 

6
 

mailto:jmyre@sandia.gov


There are cases where this technique is important, and it would be very helpful for NIST to 
define how to implement it correctly. 

Of course there are other places one can go for information. ANSI X9, IEEE P1363, and 
RSADSI PKCS come to mind. NIST is certainly free to take advantage of work done there, as 
for example the association of FIPS 117 and X9.17. 

Finally, the best service that NIST could provide would be to provide guidance on when each 
encryption mode is appropriate. Indeed, the same could be said about choosing an encryption 
algorithm. When, for example, would Skipjack be a better choice than AES? Perhaps, in the 
uncertain world of cryptography, NIST feels unqualified to document such considerations. Still, 
many (if not most) implementors would welcome advice of this type. 

To summarize, I hope that NIST will consider the requirements of different application classes in 
defining encryption modes. Examples include disk encryption and file encryption. Also, padding 
methods are sometimes related to encryption modes, and need to be standardized, as well. 
Finally, the most difficult problem to solve, and therefore the area in which NIST can help the 
most, is choosing among alternatives. 

Thank you for your time 
John Myre 
Sandia National Labs 
jmyre@sandia.gov 
These comments are mine alone, and do not necessarily represent 
the position of Sandia Labs or its associated entities. 

7
 

mailto:jmyre@sandia.gov


Date: Thu, 03 Aug 2000 13:58:34 -0600 
From: David Scott <dscott@elpasonet.net> 
Organization: retired
 Subject: Modes of Operation Workshop 

Will the use of other than the normal standard modes of chaining, such as "wrapped PCBC" be 
considered. I would be willing to speak on the use of such secure chaining methods. And on the 
use of bijective mapping to get files to match the block sizes used in the encryption. 
David A. Scott 

8
 

mailto:dscott@elpasonet.net


Date: Mon, 21 Aug 2000 16:03:00 +0200 
From: Mats Näslund (ERA) <mats.naslund@era-t.ericsson.se> 
Subject: Enquiry 

Dear Sirs 
We have a new mode of encryption that we feel should be of interest for the AES work. Like 
OFB it provides a key-stream generator, but in addition, this new mode has provable security 
properties. 

Can you please give some further information concerning how submissions to this workshop is 
handled (I trust there _will_ be submissions?), deadline etc. Will there be any review process of 
submissions? Finally, will it be required that one of the authors present the work at the 
workshop? (I would guess so, and I am sure we can arrange for that in such case). 

Kind regards 
/Mats 

9
 

mailto:mats.naslund@era-t.ericsson.se


From: Gideon Yuval <gideony@microsoft.com>
 Subject: If modes are to be as secure as AES itself, 
Date: Fri, 29 Sep 2000 12:37:56 -0700 

naive counter-mode is weak: after 2^64 cycles, the absence of birthday-paradox collisions 
indicates a clear difference between AES & real random. 

Adding successive pairs of results, modulo 2^128 (NOT xor!!) will fix it -- remaining 
nonrandomness is a 2^-128 bias in favor of odd numbers, which needs 2^256 encryptions (!) to 
detect. 

I'm told there are much cheaper fixes, though. 

10
 

mailto:gideony@microsoft.com


Date: Sun, 01 Oct 2000 08:09:11 -0600 
From: David Scott <dscott@elpasonet.net> 
Organization: retired 
Subject: Modes of operation 

I have noticed the old 3 letter modes do not provide for a degree of secutiry for individuals who 
wish to isolate the individual plaintext ciphertext block pairs from one using chosen plaintext 
type of attacks. Will there be any consideration for modes that allow a more wide spread 
diffusion through a file such as "wrapped PCBC". 
Thank You 
David A. Scott 

11
 

mailto:dscott@elpasonet.net


Date: Mon, 02 Oct 2000 08:30:56 -0400 
From: "Brian Gladman" <brg@gladman.plus.com> 
Subject: Re: Modes of Operation
 In-Reply-To: <000901c02acc$9f6168b0$592a9fd4@fortytwo> 

It seems to me that the various modes of operation comments spread throughout the papers and 
public comments are not really in a form that is easy to deal with for the upcoming Modes of 
Operation workshop. 

I started to go through all the papers with the aim of documenting each proposal but it is a big 
job just to find them all and this led me to wonder whether it would be better to ask those who 
have discussed modes of operation to provide short decriptions of their proposals prior to the 
workshop. Even asking for confirmation that they wish their proposal to be tabled would help 
sort out those that are real contenders. 

Doing this would have the merit of allowing people who won't be there to comment and this in 
turn will help those at the workshop. Maybe this is all too late but I am slightly worried that the 
workshop may not succeed unless there is some preparatory activity and my guess is that you 
folks have had other things on your mind! 

As you know, I am happy to help and that was my aim in trying to collect all the proposals 
together. Unfortunately, however, I just don't have the time to go through the massive volume of 
public comments to actually find the proposals that have been made. Once they are found its 
probably easy to document them - finding them is the problem! 

And this was the reason for my recent question in the discussion forum. Let me know what you 
think (when you catch your breath after Monday!). 

all the best, 

Brian 

12
 

mailto:brg@gladman.plus.com


From: "Phinney, Tom (AZ15)" <tom.phinney@honeywell.com> 
Subject: Rijndael - Encryption vs decryption 
Date: Wed, 4 Oct 2000 23:53:05 -0700 

To: NIST AES post-selection comments 
Subject: Rijndael suggestion re encryption vs. decryption 

First, I would like to complement the AES selection team on an even-handed  assessment of the 
strengths and weaknesses of the five candidates from the second selection round. The rankings 
given in the detailed report were clearly supported by the facts of record. 

Second, I would like to applaud the selection of Rijndael. I submitted comments in the final 
comment round, presenting the needs of the U.S. Industrial Automation and Control community 
relative to the AES. My evaluation showed that Rijndael and Twofish best met those needs, 
which with respect to the selection process were primarily for an algorithm with limited 
computational requirements when used on 8-bit and 16-bit microprocessors. 

Now NIST has the task of finalizing the FIPS for AES. I would like to suggest, as others did in 
the public comments, that the preferred roles of encryption and decryption be reversed from 
those of Rijndael as submitted. This is relevant because Rijndael is asymmetrical with respect to 
the energy and processing time required for encryption and decryption. The reasons for 
suggesting this generic role reversal are as follows: 

1) In many common applications, each encrypted message will be decrypted many times. This is 
true in multicast communications where many receivers decode each transmission (e.g., satellite 
broadcasts or cell-phone reception by multiple base stations). It is also true in storage 
applications (e.g., encrypted disk partitions or file contents), where reading dominates writing. In 
this "green" era of energy conservation, and of battery-operated equipment, the more frequently 
occurring operation (decryption) should be the one with the lower energy requirement. 

2) It is easier to anticipate the session key required for transmission than for reception. This 
occurs because the transmitter usually schedules transmissions, either from a queue or by other 
means (e.g., dedicated transmission). Receivers, on the other hand, frequently have no ability to 
anticipate what will be received (e.g., TCP/IP or Ethernet) and must react immediately. When 
anticipation is possible, the Rijndael-required development of all round subkeys before the 
commencement of what is now called "decryption" can be concurrent with a prior transmission. 
Thus the current "decryption" operation should be used for encryption prior to transmission, and 
the current "encryption" operation for decryption upon reception, since the latter does not require 
that intermediate-key precomputation. 

3) When Rijndael is used for storage access, the time-critical operation is always reading, not 
writing. Thus reading and decrypting (e.g., of encrypted information on a disk) should be the 
faster operation. Again this is best provided by using the current "encryption" mode for 
decryption after reading, and the current "decryption" mode for encryption before writing. This 
change places the burden of full precomputation of round subkey to the writing mode in those 
cases where the round subkeys are not readily precomputed, such as when the keying nformation 

13
 

mailto:tom.phinney@honeywell.com


_ _ _ 

_ _ _ 

is address dependent.
 

Respectfully submitted,
 
Tom Phinney
 
US Technical Advisor for IEC/SC 65C (which writes Industrial Automation and
 
Process Control communications standards)
 
Convenor, IEC/SC 65C/WG 1 and /MT 9 (the Fieldbus standards)
 

From: Bill Burr <william.burr@nist.gov>
 
Date: Thursday, 05 October 2000 06:38
 
Subject: Re: Rijndael - Encryption vs decryption
 

Tom,
 
A couple of questions or observations:
 

1. Isn't the difference between encryption and decryption, that is the time or computation 
required to work forward through the key schedule, essentially trivial compared to the actual 
encryption round times? Moreover, it really matters only for the first block decrypted doesn't it, 
as long as you save the starting point for the decryption key schedule? Is the difference enough 
to really worry about? 

2. Of our four present modes, two use only encryption (that is OFB and CFB modes). If we add a 
counter mode, that will do encryption, I would think. So, for these, it makes sense to make 
encryption the more efficient operation. Or would you argue that we should then redefine OFB, 
CFB and counter modes to yes the decryption operation? 

Regards, 
Bill Burr 

From: "Phinney, Tom (AZ15)" <tom.phinney@honeywell.com>
 
To: "'Bill Burr'" <william.burr@nist.gov>
 
Subject: RE: Rijndael - Encryption vs decryption
 
Date: Thu, 5 Oct 2000 14:05:48 -0700
 

Bill,
 

First, the choice of e(x) or d(x) could be mode-specific. I agree that OFB, CFB and the hoped-for
 
counter mode would use only encryption, and in those cases the currently-defined encryption
 
mode is preferable. Presumably, that's why Daemen and Rijmen made the e(x) vs. d(x) choice
 
they did.
 

To my mind, the default choice for ECB is still open; that's really the issue I had in mind when I
 
sent my note. I apologize for my lack of clarity about this; I should have waited until morning to
 
review it before sending it.
 

14
 

mailto:william.burr@nist.gov
mailto:tom.phinney@honeywell.com
mailto:william.burr@nist.gov


The problem with OFB, CFB and counter modes, as we know, is stream synchronization -- both 
sender and receivers must be able to identify the proper point in the keystream. This sometimes 
necessitates recovery, or at least counting, of messages which a receiver misses. Such recovery is 
not a problem with file transfer or browser page rendering, since they require the datastream to 
be recovered or retransmitted for other reasons. 

In the industrial real-time control environment which I represent, such recovery is a problem. 
Our environment uses multi-cast (unconnected) and multi-point connected transmission modes 
for conveying current-state data. Obsolete state data is not of interest, and no recovery is 
attempted. Most state-data transmissions are hard scheduled, and there is no communications 
time available for recovery of previously-missed information. 

This distinction between valuing old and new data has been referred to as the "milk vs. wine" 
problem -- one discards old milk and new wine. The industrial control industries' difficulties with 
AES use are anticipated to be associated with the "milk", not the "wine". 

Since the AES announcement on Monday, I have already initiated a discussion process among 
the U.S. Technical Advisory Group for IEC/SC 65C -- on industrial communications standards -
focussing on where and how we should plan to use AES. This letter is forcing me to progress 
that analysis now. (And for that I do give you thanks. :) 

Industrial communications protocols will use AES to encrypt only higher-layer parts of messages 
-- those representing application data or commands. In most cases this information is very small, 
and will require padding to reach the minimum AES block size. In such cases there is no 
potential reuse of keying material within a single message encryption or decryption. 

The choices of mode for these industrial multi-cast and multi-point communications seem to be 
either (1) ECB, or a variant of counter mode where the counter is derived from (2) an inferred 
message sequence number or (3) a quantized shared sense of time. Of these, the best would be 
(2) because of the potential to precompute keying material during periods of low compute usage, 
followed by (1). Alternative (3) is the worst because its time-sense sharing will occasionally give 
rise to the need of receivers to "hunt" for the quantized prior-time instant used by the sender. 

A typical plant environment consists of thousands of low-power microcomputers, each 
monitoring one or a few sensors, or controlling an actuator and associated feedback sensors. The 
vast majority of these "field devices" are built around simple sensors such as limit switches or 
silicon temperature sensors. The sensors, microcomputer (typically 8-bit) and communications 
circuitry are powered from the same twisted pair on which the device communicates. This has 
been the industry practice for the last 25 years with analog 4-20 mA signaling, and continues 
with today's various digital fieldbusses. 

If we use alternative (2), a message sequence number, for multi-point connections, then we have 
the difficulty of synchronizing new or recovering receivers with the sender. This is not a severe 
technical problem, but will necessitate changes in current IEC-standard communications 
protocols which the other two alternatives do not require. Because certain European markets 

15
 



have legal requirements for conformance to IEC standards, and because changes in the standards 
take time and will introduce incompatibilities, the progression of such a solution will be difficult. 
(Fortunately, I'm the convenor of the standards groups involved here, so at least there is no 
management impediment.) 

If we use alternative (1), ECB, for multi-point connections, then it is practical to save the 
decryption starting point along with the other state information for that connection. One 
weakness of ECB is that state data tends to be slowly changing, and we may find it necessary to 
conceal that change or lack thereof from eavesdroppers. This could be solved by prefixing an 
unencrypted salt value to the encrypted information field, providing non-repeatability of 
cyphertext (CT) for unchanging plaintext (PT). 

The time-based pseudo-counter mode of (3) solves the CT repeatability problem at the expense 
of more difficult synchronization. The reality of modern control systems is that they _do_ have a 
highly synchronized sense of time, usually to within one or a few milliseconds. This is a market 
>requirement for sequence-of-events recording, and all vendors provide it, at least in part as a 
CYA measure in anticipation of the need to reconstruct events following a major incident 
involving loss of life or plant of creation of a new superfund site. Approximate synchronization 
is easy, but exact synchronization (i.e., all devices incrementing their "counters" in parallel) is 
not. 

Based on the above, I believe I will back alternative (2) for multi-point connections and 
alternative (1) with a per-message salt for multi-cast connectionless traffic. I will initiate 
discussion of the needed changes in the IEC Type 1 and Type 5 Fieldbus standards, which are 
those used by the U.S.-based Fieldbus Foundation (FF), and in the FF specs themselves. (I am 
also on the FF's Technical Steering Committee and head it's Architectural Control Team, so this I 
can do.) 

To get back to my original message and your considered reply, the only real issue is with ECB. 
Connectionless communications (what we once called datagrams) will be the main industrial 
communications use of ECB. In this case, per-message keying agility is required by receivers 
and reception should be the more rapid operation. One-time precomputation of the starting round 
key for decryption is not onerous; that can be associated with the other information for a sending 
information stream. However, storage of all the round keys for each ECB stream would be an 
imposition. I don't recall whether Rijndael requires that, or whether the round key computation is 
invertible so that successive decryption round keys can be computed from the starting decryption 
round key. If the latter, then the choice of d(x) vs. e(x) is not an issue in the industrial markets. 

Disk encryption gives rise to a similar analysis. Since SEAL is still patent-protected, AES will be 
used for disk file encryption, sometimes with address-dependent keying. If there is no address-
dependent keying, then the analysis of the preceeding paragraph applies. If the keying is address-
dependent, then the suggested encryption mode would seem to be d(x), with the suggested 
decryption mode being e(x). However, real-world disk transfers involve a large number of AES 
16-byte blocks. In this environment, the precomputation cost of the d(x) first round key is 
negligible, and e(x) vs. d(x) doesn't make much real difference. 

16
 



_ _ _ 

The selected algorithm in a driver for disk encryption is clearly an implementer's local choice, 
but NIST's recommendation will be used without reconsideration by most implementers. 

In summary, I believe that NIST should consider recommending use of Rijndael's d(x) function 
for ECB encryption, and its e(x) for ECB decryption. The advantages are slight (and probably 
negligible) if the round key computation function is invertible, so that successive decryption 
round keys can be computed from a stored pre-computed initial decryption round key. Otherwise 
the advantages could be significant, particularly for short messages such as are common in the 
industrial real-time control environment. 

For all other modes -- OFB, CFB and the various counter modes -- Rijndael's e(x) function 
should be used for encryption, and decryption need not be used at all. 

I hope that this somewhat-rambling discussion clarifies my earlier message. I regret that that 
message was so poorly thought out and stated, but am glad that I sent it or this interchange would 
not have occurred. 

Please feel free to use this message as you feel appropriate. There is no need for it to appear in a 
public record, but you are free to so incorporate it if that seems useful. Likewise for my earlier 
ill-considered message. 
> 
Thanks again for your considerate response, and for inducing me to the above analysis and 
decisions, 

Best regards, 
Tom Phinney 
U.S. Technical Advisor for IEC/SC 65C 
Convenor, IEC/SC 65C/WG 1 and /MT 9 

=============== Addendum =============== 
It is possible to combine the underlying idea of the message sequence number mode of (2) with 
the ECB mode of (1). In this case the sequence number would be used to generate a low
computational-cost non-cryptographic-quality message-altering byte stream, rather than as a 
source of keying information. After XORing the two, ECB would be used to encrypt the 
modified PT, removing any observable correlation between CTs. The protocol changes required 
by (2) would still be required, but the proposed e(x) vs. d(x) swap would no longer be an issue. 

Tom 

Date: Thu, 05 Oct 2000 17:21:24 -0400
 From: Jim Foti <jfoti@nist.gov> 
Subject: RE: Rijndael - Encryption vs decryption 

>To get back to my original message and your considered reply, the only real issue is with ECB. 
>Connectionless communications (what we once called datagrams) will be the main industrial 

17
 

mailto:jfoti@nist.gov


>communications use of ECB. In this case, per-message keying agility is required by receivers 
>and reception should be the more rapid operation. One-time precomputation of the starting 
>round key for decryption is not onerous; that can be associated with the other information for a 
>sending information stream. However, storage of all the round keys for each ECB stream would 
>be an imposition. I don't recall whether Rijndael requires that, or whether the round key 
>computation is invertible so that successive decryption round keys can be computed from the 
>starting decryption round key. If the latter, then the choice of d(x) vs. e(x) is not an issue in the 
>industrial markets. 

Since Rijndael has on-the-fly keying for decryption I would think that this would not be an 
issue... 

[snip] 

>In summary, I believe that NIST should consider recommending use of Rijndael's d(x) function 
>for ECB encryption, and its e(x) for ECB decryption. The advantages are slight (and probably 
>negligible) if the round key computation function is invertible, so that successive decryption 
>round keys can be computed from a stored pre-computed initial decryption round key. 
>Otherwise the advantages could be significant, particularly for short messages such as are 
>common in the industrial real-time control environment. 

>For all other modes -- OFB, CFB and the various counter modes -- Rijndael's e(x) function 
>should be used for encryption, and decryption need not be used at all. 

Looking at the Rijndael spec, one interesting thing to note is that in the sections specifying the 
algorithm itself, the authors refer to the "Cipher" and "Inverse Cipher", instead of encryption and 
decryption functions. In one place, they refer to "encryption" in terms of the ECB mode: "The 
cipher input bytes (the 'plaintext' if the mode of use is ECB encryption)..." 

So, here's a thought: In the [AES] FIPS, which could really be thought of as "mode
independent", perhaps we should keep the references to "Cipher" and "Inverse Cipher". Then, in 
the modes [FIPS], we can say specifically that for ECB, encryption uses the Cipher function, etc. 
Then, we could add another mode, say "Reverse ECB" (RECB), which specifies that RECB 
encryption uses the Inverse Cipher function, etc. Is such a mode already defined somewhere, 
possibly under another name? 

It seems to me that this arrangement would still allow us to do the intuitive: use the Cipher to 
"encrypt" for the majority of the modes. Meanwhile, those apps which absolutely needed the 
decrypt function to be faster could use RECB mode. 

This might be sufficient for Phinney (and would not necessitate a slew of new modes), since he 
also said that 

>For all other modes -- OFB, CFB and the various counter modes -- Rijndael's e(x) function 
>should be used for encryption, and decryption need not be used at all. 

18
 



Date: Tue, 10 Oct 2000 17:57:16 -0400
 
From: csjutla <csjutla@watson.ibm.com>

 Subject: Patent Letter
 

Hi,
 
Here is the patent licensing process that IBM intends to follow.
 
Please see the attached letter.
 
-Charanjit

 _ _ _
 

October 4, 2000
 

Mr. Edward Roback
 
NIST
 
100 Bureau Drive, Stop 8930
 
Gaithersburg, MD 20899-8930
 

Dear Mr. Roback:
 

This letter is to inform NIST of IBM’s patent licensing practices as related to standardization
 
activities. It is the belief of IBM that the IBM patent application listed in Attachment A is
 
relevant to a mode of operation proposed by IBM for inclusion in Federal Information
 
Processing Standards for Modes of Operation for Symmetric Key Block Ciphers.
 

In the event the proposed standard is adopted, and the standard can not be practiced without the
 
use of the aforementioned patent, IBM agrees upon request to grant a non-exclusive license
 
under this patent on a nondiscriminatory basis and on reasonable terms and conditions including
 
its then current royalty rates and provided a similar grant under licensee’s patents within the
 
scope of the license granted to licensee is made available upon request to IBM. Should other
 
IBM patents be required to implement this standard, they will be licensed under the same non
discriminatory, reasonable terms and conditions basis.
 

Any requests for license information may be directed to:
 

Frank Squillante
 
Director of Licensing
 
International Business Machines Corporation
 
North Castle Drive
 
Armonk, NY 10504
 

Internet ID:  fps@us.ibm.com
 
Telephone: 914-765-4260
 
Fax: 914-765-4360
 

IBM is pleased to make this offer in support of the standardization activities in NIST. If you
 
have any questions, please let me know.
 

19
 

mailto:fps@us.ibm.com
mailto:csjutla@watson.ibm.com


Sincerely, 

Stephen M. Matyas, Jr. 
for IBM Corporation 

Attachment A: SUBJECT PATENT APPLICATIONS 

Charanjit Jutla, “Encryption schemes with almost free integrity awareness,” docket number 
YOR920000194US1. Filed April 14, 2000. 

20
 



From: "Virgil D. Gligor" <gligor@po4.glue.umd.edu>
 
Date: Wed, 11 Oct 2000 11:39:28 -0400 (EDT)
 
Subject: Full disclosure
 

The proposals made in the paper
 
``Fast Encryption and Authentication: XCBC Encryption and XECB Authentication Modes,''
 
submitted to the NIST Modes of Operation Workshop are the subject of three patent applications
 
VDG Inc has submitted since January 1, 2000. The authors of those applications are Virgil D.
 
Gligor and Pompiliu Donescu.
 

Although I recall mentioning this in prior conversations, I'd like to make this part of the record in
 
view of NIST's posted disclosure requirement.
 

Best regards,
 
Virgil
 

21
 

mailto:gligor@po4.glue.umd.edu


 Date: Wed, 11 Oct 2000 14:55:46 -0700 (PDT) 
From: Lars Knudsen <lknudsen@cs.ucsd.edu>
 Subject: counter mode 

A comment on the second item in email from Eric Boesch from 27.12.99
 

It is correct what you say, that the expected cycle length of the output feedback mode using a
 
128-bit random function is 2^64. But a 128-bit block cipher is not a random function, it is
 
bijective and the expected cycle length of the output feedback mode is here 2^127, not
 
2^64.
 

You also say that output feedback mode does not offer any advantages over counter mode.
 
However, in counter mode an attacker knows the difference (modulo 2^128) of any two inputs to
 
the block cipher, which is not the case in output feedback mode. I'm not saying that this is a
 
major disadvantage, but it is at least a difference.
 

Lars
 
Lars R. Knudsen, Visiting Prof., University of California
 
San Diego, Dept. of Comp.Science and Engineering, Off. 4101,
 
Tlph. +1 (858) 534-6265, Facs. +1 (858) 534-7029.
 

22


http:27.12.99
mailto:lknudsen@cs.ucsd.edu


_ _ _ 

--

Subject: Intellectual property issues 
From: Paul Crowley <paul@cluefactory.org.uk> 
Date: 14 Oct 2000 16:42:34 +0100 

NIST made the right decision in the AES contest by requiring all those submitting proposed 
standards to provide a worldwide, royalty-free license to any of their intellectual property when 
used to implement the AES. The excellent quality of the submissions shows that this was 
not a problematic barrier to contribution. I hope that the same policy is taken with regard to 
modes of operation. For example, the very useful IAPM mode proposed by Charanjit S. Jutla is 
covered by patents held by IBM; it seems plausible that IBM might provide the necessary 
licenses for this to be used on the same terms as the AES if this were a requirement for becoming 
a US national standard. 

Thank you for your consideration, 

paul@cluefactory.org.uk 
http://www.cluefactory.org.uk/paul/ 

From: Paul Crowley <paul@cluefactory.org.uk> 
Date: 17 Oct 2000 15:09:30 +0100 

Elaine Barker <elaine.barker@nist.gov> writes: 
> IBM has supplied a letter. See page 20 of the comments on the modes page 
(http://www.nist.gov/modes). Elaine 

Thank-you! This letter indicates that IBM do not intend to grant a worldwide, royalty-free 
license as I have hoped. I would still urge NIST not to standardise any mode that cannot be made 
available on the terms originally demanded for AES itself - the usefulness of nearly halving the 
computational demands of encryption and MAC would certainly be outweighed by the 
inconvenience of having to license an IBM patent under the tems they demand. Other approaches 
to fast MACs, including SHA based approaches, may be more appropriate, though I still hope 
IBM can be persuaded to change their position. 

paul@cluefactory.org.uk 
http://www.cluefactory.org.uk/paul/ 

23
 

http://www.cluefactory.org.uk/paul
http://www.nist.gov/modes
mailto:elaine.barker@nist.gov
http://www.cluefactory.org.uk/paul


Date: Thu, 19 Oct 2000 22:28:08 +0300 (EET DST)
 
From: Helger Lipmaa <helger@tml.hut.fi>

 Subject: Comment on Hashing Modes
 

Hi,
 
here comes a belated comment on the hashing modes that I still hope to be discussed in the
 
Encryption Modes workshop. It's belatedness is purely my fault and is a result of my workaholic
 
lifestyle.
 

Lately, Eric Young posted a message on the coderpunks mailing list, announcing that the SHA
256 hashing algorithm has throughput performance ~9.7 Mbytes/s. On the other hand, my own
 
implementation of Rijndael, the new AES, has throughput performance of ~15.8 Mbytes/s,
 
which is almost twice the performance of SHA-256. Both measurements were done on a Pentium
 
II 256, and correspond to a C implementation.
 

Traditionally, customized hash algorithms have been several times faster than the standard block
 
ciphers; however, with the AES and the SHA-256 it now seems to be the other way around. This
 
makes an AES-derived (unkeyed) hash mode now practically more relevant as before.
 

The well-known benefits of having a block-cipher based standard construction are:
 
* simplicity - no need to implement two, usually very different, algorithms. 
* security - given that block cipher is secure, it _seems_ that for several of the standard 
constructions, the resultant hash function is also secure. Hence, one does not spend time to 
cryptanalyze two functions, aassurance we have in a block cipher could be transfered to a hash 
function. 

Now, given that Rijndael is almost twice faster than the SHA-256, and that the time required to 
expand a 128-bit key is about 60% of the speed required to encrypt a 128-bit block (in my 
implementation), I propose to study the possibility---this is not equivalent of proposing a 
standard---of having a standard hash function with the next parameters: 

* Underlying block cipher is a 256-bit block length, 256-bit key length Rijndael, with 14 rounds, 
as specified in the Rijndael original submission document. 
* One of the standard block cipher -> hash function conversions is applied. Candidates include: 
Matyas-Meyer-Oseas, Davies-Meyer, Miyaguchi-Preneel. All three modes require one key 
scheduling and one run of the Rijndael per block. 

(Cautionary) notes: 
1. There is not much cryptanalysis of the 256/256-Rijndael, so the number of rounds could be 
raised to 16 or 18. 
2. I do not have an implementation of the 256/256-Rijndael, so I cannot yet measure the speed. 
Empirically, this variant of Rijndael should have better throughput than the 128/128-Rijndael 
(for both including the time for key scheduling), and therefore faster than SHA-256. 
3. Implementation of both the 128/128-Rijndael and the 256/256-Rijndael would still be more 
complicated than the implementation of the first. However, in software it is quite easy to 

24
 

mailto:helger@tml.hut.fi


implement both by the same subroutine. (The code, submitted originally with Rijndael proposal 
is a good, even if not efficient, example.) 
4. The key schedule of Rijndael, which some think to be over-simplistic, has been less studied 
than it's encryption function. More research should be directed in this direction. 

But: However, if Rijndael would badly interfere with one of the standard modes, one should 
reconsider its suitability as an AES. 

Based on the first three cautionary notes, another proposal would be to use one of the double-
length hash function constructions by Knudsen and Prenel ("Hash Functions Based on Block 
Ciphers and Quaternary Codes", 1996), built on the 128/128-bit Rijndael. Unfortunately the 
latter construction would be far less efficient than the first proposal. 

I hope to give more feedback (a more concrete proposal) after the workshop, including 
measurements data of an actual optimized 256/256-Rijndael. I'd also like to thank David Wagner 
for his---as always---useful comments. 

Regards, 
Helger 

25
 


