
Status Update on Elephant

Tim Beyne1, Yu Long Chen1, Christoph Dobraunig2, and Bart Mennink3

1 KU Leuven and imec-COSIC, Leuven, Belgium
2 Intel Labs, USA

3 Radboud University, Nijmegen, The Netherlands
elephant@cs.ru.nl

September 26th, 2022

1 Elephant v2

We first briefly summarize the Elephant authenticated encryption scheme. The
mode of Elephant is a nonce-based encrypt-then-MAC construction, where en-
cryption is performed using counter mode and message authentication using a
variant of the protected counter sum [2, 29] MAC function. Both modes inter-
nally use a cryptographic permutation masked using LFSRs, akin to the masked
Even-Mansour construction of Granger et al. [16]. The current Elephant v2 is
depicted in Figure 1.

The Elephant v2 mode is permutation-based, only evaluates this permutation
in the forward direction, and it is highly parallelizable. Whereas permutations
are a popular approach in lightweight cryptography (6 finalists are permutation-
based), Elephant v2 is unique in its parallelizability (it is the only finalist sat-
isfying this property). Due to this paralellizability, there is no need for large
permutations, we can go as small as 160-bit permutations while still matching
the security goals recommended by the NIST lightweight call [30]. In detail, the
Elephant family consists of three members:

1. Dumbo: Elephant-Spongent-π[160]. This instance achieves 112-bit security
provided that the online complexity is at most around 246 blocks. This in-
stance is particularly well-suited for hardware, as Spongent [10] itself is;

2. Jumbo: Elephant-Spongent-π[176]. This is a slightly more conservative in-
stance of Elephant, and achieves 127-bit security under the same conditions
on the online complexity. We note, in particular, that Spongent-π[176] is
ISO/IEC standardized [10,20];

3. Delirium: Elephant-Keccak-f [200]. This variant performs well in both software
and hardware. It also achieves 127-bit security, with a higher bound of around
270 blocks on the online complexity. The permutation is the smallest instance
that is specified in the NIST SHA-3 standard [3, 15] that fits our needs.

2 New Proofs Supporting the Security Claims

Elephant v1 [6] and v1.1 [8], the predecessors of the current Elephant v2 [7],
already came with a tight generic security analysis. The security analysis (of

A1

P

A2

mask1,0K
P

A`A

mask`A−1,0
K

· · ·

P

C1

mask0,2K
P

C`C

mask`C−1,2
K

· · · P

mask0,0K

b·ct T

P

N‖0n−m

mask0,1K
P

N‖0n−m

mask`M−1,1
K

M1 M`M

C1 C`M

· · ·

Fig. 1: Depiction of Elephant v2. For the encryption part (top): message is
padded as M1 . . .M`M

n←− M , and ciphertext equals C = bC1 . . . C`M c|M |. For
the authentication part (bottom): nonce and associated data are padded as
A1 . . . A`A

n←− N‖A‖1, and ciphertext is padded as C1 . . . C`C
n←− C‖1.

v1/v1.1) has been published in [4]. The updated specification [7] included a
security proof of Elephant v2. In detail, in this specification, the following is
proven about the mode of Elephant v2 (in the ideal permutation model):

– confidentiality in the nonce-respecting model;
– authenticity in the nonce-respecting model;
– authenticity in the nonce-misuse model.

In a recent work, multi-user security of Elephant v2 has been analyzed [5], and it
was demonstrated that above three security properties also hold in the multi-user
setting (up to a logical and negligible security loss).

3 Overview of Third-Party Analysis and Implications

Since the original introduction of Elephant, various third-party analyses have
appeared. We distinguish between generic attacks on the Elephant mode in Sec-
tion 3.1, dedicated analysis of Elephant in Section 3.2, and specific analysis on
Spongent and Keccak in Section 3.3.

3.1 Generic Cryptanalysis

Bonnetain and Jaques [12] considered quantum security of the Elephant mode
(both v1.1 and v2), in the setting where the adversary has classical access to
the construction but can make quantum evaluations of the primitive. Although
the attack is very interesting, it is not a threat for Elephant: the quantum key
recovery attack requires more quantum operations than a direct key search.

2

3.2 Dedicated Analysis

Zhou et al. [41] derived an interpolation attack against round-reduced Keccak-
f , and applied it to Delirium. Their analysis targets a round-reduced version of
the encryption of Delirium, where the number of rounds of the used variant of
the Keccak permutation is reduced from the specified 18 rounds to 8 rounds.
The time complexity of the attack is estimated as 298.3 XOR operations, the
memory complexity is 270 bits, and the required amount of data 270 blocks. The
attack makes use of the fact that an affine space of dimension 65 sums to zero
after 6 rounds, which are then followed by 2 rounds for key recovery. Since the
encryption of Elephant v1.1 and Elephant v2 are the same (the sole change is in
the authentication), the analysis is applicable in a similar manner. We note that
algebraic attacks on 8-round Delirium were anticipated in the original Elephant
specification [6, 8, Section 5.3].

Vialar presented a side-channel key recovery attack against Dumbo [36],
where he uses correlation power analysis to attack the first round of the underly-
ing Spongent permutation. In a nutshell, it recovers the mask mask1,0K that is fed
into the first round of the permutation, and recovers the key from that. The au-
thor also extends the work to Jumbo. Ultimately, this attack is mostly an attack
on the unprotected Spongent permutation. In our original specification [6–8],
we do not claim provable leakage resilience. When implementing Elephant, it is
important to use proper protection of the underlying primitives.

Takemoto et al. [35] present a malicious implementation of Elephant (hard-
ware Trojan) that makes side-channel attacks easier. This design does not have
implications on the security of non-malicious implementations.

In [21], a statistical fault attack on an unprotected implementation of Elephant
is shown. Since Elephant is not a tamper-resilient design, fault attacks on unpro-
tected implementations are possible. If fault attacks are a threat, it is important
to account for implementation-level countermeasures.

3.3 Spongent and Keccak Permutation

An extensive summary of the state-of-the-art cryptanalysis of the Spongent and
Keccak permutation is included in the original specification [7, Section 5.3 and
Section 5.4]. In this section, we will only discuss new articles investing the
strength of these two permutation families.

To the best of our knowledge, only two new articles investigating the strength
of the Spongent permutation have appeared [33, 34]. Sun, Wang and Wang [34]
search for bit-based division properties in round-reduced versions of the Spongent
permutation. Schrottenloher and Stevens [33] present improved meet-in-the-
middle attacks on reduced-round Spongent. These works form no threat to
Dumbo and Jumbo (neither v1.1 nor v2).

Furthermore, various works investigating the strength of the Keccak per-
mutation have appeared [9, 11, 14, 17–19, 22–28, 31, 37–40]. These only consider
round-reduced versions of the Keccak permutation or usage of this permutation
in different modes. They form no threat to Delirium (neither for v1.1 nor for v2).

3

4 New Implementations

A reference implementation of Dumbo, Jumbo, and Delirium written in C99 can
be found at https://github.com/TimBeyne/Elephant. We have released
an additional parallelized reference implementation for Delirium.4 This imple-
mentation processes up to eight blocks in parallel using an optimized parallel
Keccak-f [200] implementation. The Keccak-f [200] implementation was gener-
ated using the KeccakTools package, by making suitable modifications to the
Keccak-f [1600] parameters. Thus, the same strategy can be directly applied to
obtain implementations with varying levels of parallelism suited to the target
word size.

In the remainder of this section, we discuss new third-party software imple-
mentations in Section 4.1, and hardware implementations in Section 4.2, includ-
ing ones that protect against side channel attacks.

4.1 Software Implementations

Campos et al. [13] provided a C implementation of Delirium which exploits par-
allelism on platforms with 32-bit words. For messages longer than 64 bytes, their
implementation achieves a speedup of about 1.5 to 2 over the original reference
implementation. However, we remark that their parallel Keccak-f [200] imple-
mentation is based on a reference rather than an optimized implementation.
Our own experiments with the new parallel reference implementation suggest
that this can have a strong performance impact.

Beläıd et al. [1] introduced a tool to automatically generate masked (and
unmasked) bitsliced implementations. They apply the tool to several primitives,
including Spongent-π. Their work illustrates that, despite the hardware-oriented
nature of Spongent-π, reasonable software performance can be obtained by means
of bitslicing. Due to its inherent parallelism, the Elephant mode is a good match
for such implementations. The implementation in [1] processes up to eight blocks
in parallel, but the target word size (32 bits) would allow increasing this to up
to 32 blocks. We also note that there is significant room for improvement in
the efficiency of bitsliced implementations of Spongent-π, because alternative
representations of Spongent-π could be exploited (as for Present [32]).

4.2 Hardware Implementations

The ATHENa (Automated Tools for Hardware EvaluatioN) project of the GMU
summarizes two hardware implementations of Elephant, one by Mueller and
Moradi (see https://github.com/Chair-for-Security-Engineering/LW

C-Masking) and one by Haeussler, Gaj, and Kaps (see https://github.com

/GMUCERG/Elephant). We refer to https://cryptography.gmu.edu/athena/

LWC/Lab Implementation Matching HW.html for more information about the
evaluation of these hardware implementations.

4 Available at https://github.com/TimBeyne/Elephant.

4

https://github.com/TimBeyne/Elephant
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/GMUCERG/Elephant
https://github.com/GMUCERG/Elephant
https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_HW.html
https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_HW.html
https://github.com/TimBeyne/Elephant

5 Target Applications

In general, the target application of Elephant is lightweight cryptography with a
small footprint, while still providing the option to speed up using parallel imple-
mentations. Note that, indeed, Elephant is the candidate in the competition with
the smallest cryptographic primitive, while still achieving comparable security,
and the only remaining candidate offering parallelizability. This, together with
the different levels of security that the mode achieves, additionally puts Elephant
v2 at advantage over the current NIST standards.

References

1. Beläıd, S., Dagand, P., Mercadier, D., Rivain, M., Wintersdorff, R.: Tornado: Auto-
matic Generation of Probing-Secure Masked Bitsliced Implementations. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp.
311–341. Springer (2020)

2. Bernstein, D.J.: How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (Jan-
uary 2011)

4. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, Jumbo, and Delirium:
Parallel Authenticated Encryption for the Lightweight Circus. IACR Transactions
on Symmetric Cryptology 2020(S1), 5–30 (2020)

5. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Multi-user Security of the
Elephant v2 Authenticated Encryption Mode. In: AlTawy, R., Hülsing, A. (eds.)
SAC 2021. LNCS, vol. 13203, pp. 155–178. Springer (2021)

6. Beyne, T., Chen, Y., Dobraunig, C., Mennink, B.: Elephant v1. First Round Can-
didate in NIST Lightweight Cryptography (February 25, 2019)

7. Beyne, T., Chen, Y., Dobraunig, C., Mennink, B.: Elephant v2. Finalist in NIST
Lightweight Cryptography (May 17, 2021)

8. Beyne, T., Chen, Y., Dobraunig, C., Mennink, B.: Elephant v1.1. Second Round
Candidate in NIST Lightweight Cryptography (September 27, 2019)

9. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided cube-attack-like crypt-
analysis on Keccak Keyed modes. Des. Codes Cryptogr. 87(6), 1271–1296 (2019)

10. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
Spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer (2011)

11. Boissier, R.H., Noûs, C., Rotella, Y.: Algebraic Collision Attacks on Keccak. IACR
Transactions on Symmetric Cryptology 2021(1), 239–268 (2021)

12. Bonnetain, X., Jaques, S.: Quantum Period Finding against Symmetric Primitives
in Practice. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems. 2022(1), 1–27 (2022)

13. Campos, F., Jellema, L., Lemmen, M., Müller, L., Sprenkels, D., Viguier, B.: As-
sembly or optimized C for lightweight cryptography on risc-v? In: Krenn, S., Shul-
man, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 526–545. Springer
(2020)

14. Chen, Y., Gao, X.: Quantum Algorithms for Boolean Equation Solving and
Quantum Algebraic Attack on Cryptosystems. Cryptology ePrint Archive, Report
2018/008 (2018)

5

15. FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions (August 2015)

16. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved Masking for Tweak-
able Blockciphers with Applications to Authenticated Encryption. In: Fischlin,
M., Coron, J. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer
(2016)

17. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical Collision Attacks
against Round-Reduced SHA-3. J. Cryptology 33(1), 228–270 (2020)

18. Guo, J., Liu, G., Song, L., Tu, Y.: Exploring SAT for Cryptanalysis: (Quantum)
Collision Attacks against 6-Round SHA-3. IACR Cryptol. ePrint Arch. p. 184
(2022)

19. He, L., Lin, X., Yu, H.: Improved Preimage Attacks on 4-Round Keccak-224/256.
IACR Transactions on Symmetric Cryptology 2021(1), 217–238 (2021)

20. ISO/IEC 29192-5:2016. Information technology – Security techniques – Lightweight
cryptography – Part 5: Hash-functions (2016)

21. Joshi, P., Mazumdar, B.: Single Event Transient Fault Analysis of ELEPHANT
Cipher. CoRR abs/2106.09536 (2021)

22. Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 Round Keccak-384. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 120–
133. Springer (2018)

23. Kumar, R., Rajasree, M.S., AlKhzaimi, H.: Cryptanalysis of 1-Round KECCAK.
In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831,
pp. 124–137. Springer (2018)

24. Li, T., Sun, Y.: Preimage Attacks on Round-Reduced Keccak-224/256 via an Al-
locating Approach. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 556–584. Springer (2019)

25. Li, Z., Dong, X., Bi, W., Jia, K., Wang, X., Meier, W.: New Conditional Cube
Attack on Keccak Keyed Modes. IACR Transactions on Symmetric Cryptology
2019(2), 94–124 (2019)

26. Lin, X., He, L., Yu, H.: Improved Preimage Attacks on 3-Round Keccak-224/256.
IACR Transactions on Symmetric Cryptology 2021(3), 84–101 (2021)

27. Liu, F., Cao, Z., Wang, G.: Finding Ordinary Cube Variables for Keccak-MAC
with Greedy Algorithm. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 287–305. Springer (2019)

28. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-Reduced
Keccak. In: Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 91–110.
Springer (2021)

29. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC Mode for Lightweight
Block Ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer
(2016)

30. National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the lightweight cryptography standardization process
(Aug 2018)

31. Rajasree, M.S.: Cryptanalysis of round-reduced KECCAK using non-linear struc-
tures. In: Hao, F., Ruj, S., Gupta, S.S. (eds.) INDOCRYPT 2019s. LNCS, vol.
11898, pp. 175–192. Springer (2019)

32. Reis, T.B.S., Aranha, D.F., López-Hernández, J.C.: PRESENT Runs Fast - Effi-
cient and Secure Implementation in Software. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 644–664. Springer (2017)

6

33. Schrottenloher, A., Stevens, M.: Simplified MITM Modeling for Permutations: New
(Quantum) Attacks. In: Advances in Cryptology - CRYPTO 2022. LNCS, Springer
(2022), to appear

34. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primi-
tives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020)

35. Takemoto, S., Ikezaki, Y., Nozaki, Y., Yoshikawa, M.: Hardware Trojan for
Lightweight Cryptoraphy Elephant. In: GCCE 2021. pp. 944–945. IEEE (2021)

36. Vialar, L.: Fast Side-Channel Key-Recovery Attack against Elephant Dumbo.
Cryptology ePrint Archive, Report 2022/446 (2022)

37. Wang, R., Li, X., Gao, J., Li, H., Wang, B.: Quantum Rotational Cryptanalysis for
Preimage Recovery of Round-Reduced Keccak. IACR Cryptol. ePrint Arch. p. 13
(2022)

38. Wei, C., Wu, C., Fu, X., Dong, X., He, K., Hong, J., Wang, X.: Preimage Attacks
on 4-Round Keccak by Solving Multivariate Quadratic Systems. In: Park, J.H.,
Seo, S. (eds.) ICISC 2021. LNCS, vol. 13218, pp. 195–216. Springer (2021)

39. Zhao, Z., Chen, S., Wang, M., Wang, W.: Improved cube-attack-like cryptanalysis
of reduced-round Ketje-Jr and Keccak-MAC. Inf. Process. Lett. 171, 106124 (2021)

40. Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W., Ashur, T.: Practical Key-Recovery
Attacks On Round-Reduced Ketje Jr, Xoodoo-AE And Xoodyak. Comput. J.
63(8), 1231–1246 (2020)

41. Zhou, H., Zong, R., Dong, X., Jia, K., Meier, W.: Interpolation Attacks on Round-
Reduced Elephant, Kravatte and Xoofff. Comput. J. 64(4), 628–638 (2021)

7

	Status Update on Elephant
	Elephant v2
	New Proofs Supporting the Security Claims
	Overview of Third-Party Analysis and Implications
	Generic Cryptanalysis
	Dedicated Analysis
	Spongent and Keccak Permutation

	New Implementations
	Software Implementations
	Hardware Implementations

	Target Applications

