
CRYSTALS:
(Cryptographic Suite for Algebraic Lattices)

Dilithium
Leo Ducas Eike Kiltz Tancrede Lepoint Vadim Lyubashevsky

Peter Schwabe Gregor Seiler Damien Stehle

www.pq-crystals.org/dilithium

Dilithium

Lattice-based digital signature

Based on Generalized (a.k.a Module)-LWE / SIS problems

For all security levels, only need two main operations:
1. SHAKE (or any other XOF)
2. Operations in the polynomial ring

R = Zp[X]/(X256+1) for prime p = 223 – 213 + 1

Basic Computational Domain:
Polynomial ring Zp[x]/(x256+1)

small coefficients

Dilithium Operations

Modular Security

to increase the security margin, do more of the same operation

Dilithium Features
• Very simple to implement – all sampling is uniform

• It’s fast (for all operations) and has the 2nd-smallest pk+sig
size (after FALCON)

• Uses NTT for multiplication – very fast and can be done in
place to reduce stack size

• Lattices over Zp[X]/(Xn+1) used in concrete schemes since
SWIFFT [LMPR ’08]. Algebraic lattices since NTRU [HPS ’96].

• The algorithmic framework for cryptanalysis is stable since [S ’87] and [AKS
’01]. These techniques are being “squeezed out” right now.

• Some parameter increase due to conservative considerations of “sieving”
attacks requiring exponential space

Parameters and Runtime
Quantum Security: 90 128 160

pk size (bytes) 1184 1472 1760

sig size (bytes) 2044 2701 3366

key gen. cycles 110K 156K 221K

verify cycles 110K 155K 220K

sign cycles (median) 315K 440K 465K

sign cycles with 64B sk 345K 475K 496K

Changes from round 1 submission:

• No changes in the design or parameter settings
• Included randomized signing mode in addition to deterministic
• Optimizations of the code (and fixed 1 implementation bug in Dec. 2017)

* on an Intel Core-i7 6600U (Skylake) CPU using SHAKE as the XOF

=
LWE / SIS - Fiat-Shamir [L ‘09] + [L ‘12]

+
Signature Size Reduction [BG ‘14]

+
Public Key Reduction [DKL+ ‘18]

Dilithium

Sign(μ)

y [-γ, γ]4

c := H(high(Ay), μ)
z := y + cs1
Restart if |z| > γ - β or
|low(Ay - cs2)|> γ - β
Create a small carry bit

hint vector h
Signature = (z, c, h)

Verify(z, c, h, μ)

Use h and Az - c∙high(t) to reconstruct
high(Az - ct)

Verify: |z| ≤ γ – β and c=H(high(Az - ct), μ)

Dilithium Algorithms
KeyGen()

AR5 x 4; s1 [-5, 5]4 , s2  [-5, 5]5

As1+s2 = t = low(t)+high(t)
SK: (s1, s2), PK: (AR5 x 4 , high(t))

Carry bits caused by
ignoring c∙low(t)

Makes the distribution
of z independent of si = high(Ay)

Security Proof Reduction in the
QROM

Tight reduction from:
1. LWE
2. ST-SIS: given random A,t, find

μ, short c≠0, zi satisfying H(Az1+z2 - ct, μ)=c

In the ROM, ST-SIS = SIS: (with the usual Schnorr-type security loss)

given random A, t, find short c≠0, zi satisfying Az1+z2 - ct = 0

Dilithium Security
1. In the QROM, tightly based on LWE and STSIS [Unr ’17, KLS ’18]

• For a ring R with a bigger p, ST-SIS is vacuously hard, so the scheme is
based on just LWE in the QROM. Dilithium-Q [KLS ‘18]

2. In the ROM, based on LWE and SIS [L ‘09, L ’12]

3. In the QROM, based on the special-sound and collapsing
properties of the underlying interactive protocol [DFMS ‘19].

• Special soundness based on SIS [L ‘12, DKL+ ‘18]
• It is conjectured in [DFMS ‘19] that the Dilithium protocol is collapsing

4. In the QROM, the collapsing property is (non-tightly) based on
LWE. [LZ ‘19]

Comparison to qTESLA
same “style” as Dilithium (i.e. uses [L ‘09]+[L ’12]+[BG ‘14] as a starting point)
but … qTESLA had an incorrect security argument that bypassed the

requirement for SIS to be hard
qTESLA Round2

128-bit
qTESLA Round2

128-bit
qTESLA Round2

160-bit
qTESLA Round1

128-bit
Dilithium
128-bit

pk size (bytes) 800 2336 38432 2976 1472

sig size (bytes) 2432 2144 5664 2720 2701

completely
broken [LS ‘19]
(attack is faster
than real signing)

relies on a
version of SIS
with much less
security than
Dilithium

security claims like
Dilithium-Q [KLS ‘18]
which is based on only
LWE in the QROM

parameters for
160-bit Dilithium-Q:
pk: 9632
sig: 7098

proof of a
stronger claim
was wrong, but
may have the
same security as
Dilithium

instantiation of
[BG ‘14] – no
public key
reduction

Can be made somewhat fast using ideas from e.g. [B ‘19]. Guess: ≈ 10X slower than Dilithium

Dilithium and FALCON

Dilithium
(90-bit)

FALCON
(100-bit)

Dilithium
(128-bit)

Dilithium
(160-bit)

FALCON
(256-bit)

pk size
(bytes)

1184 897 1472 1760 1793

sig size
(bytes)

2044 652 2701 3366 1261

If the goals are:
• Compactness
• Very easy implementation

on all devices

If the goal is:
• Maximum Compactness

Use Fiat-Shamir
signatures with uniform
sampling: Dilithium

Use hash-and-sign
signatures over NTRU
lattices with Gaussian
sampling: FALCON

Dilithium
+ + Fast Verification
+ + Fast Signing
+ + Simple to implement

everywhere – particularly
important for low-power
devices where generic
signatures (e.g. SPHINCS)
are too slow [KRSS ‘19]

+ Compact

FALCON
+ + Fast Verification
+ + Fast Signing (if Floating Point

Unit is Present)
+ + Very compact
- Very delicate signing

procedure – messing up the
floating point precision can
lead to leaking the secret key

- Emulating the FPU using
integer arithmetic can lead to
significant slow-downs

? How easy is it to mask?

Both schemes serve a purpose

Dilithium and FALCON

Techniques lead to practical
ZK-based privacy primitives

Techniques lead to a practical IBE

Thank You

CRYSTALS:
(Cryptographic Suite for Algebraic Lattices)

Dilithium

www.pq-crystals.org/dilithium

Bibliography
• [AKS ‘01] Miklós Ajtai, Ravi Kumar, D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. STOC 2001
• [B ’19] Dan Bernstein. Comment on the PQC forum Jan. 19, 2019.

https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/VK9dROwgY0Y
• [BG ‘14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning with errors. CT-

RSA ‘14
• [DFMS ‘19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir transformation in the

quantum random-oracle model. CRYPTO 2019
• [DKL+ ‘18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

Crystals-Dilithium: A lattice-based digital signature scheme. CHES 2018
• [HPS ‘98] Jeffrey Hoffstein, Jill Phipher, Joseph Silverman. NTRU: A Ring-Based Public Key Cryptosystem. ANTS 1998
• [KLS ‘18] Eike Kiltz, Vadim Lyubashevsky, Christian Schaffner. A Concrete Treatment of Fiat-Shamir Signatures in the Quantum

Random-Oracle Model. EUROCRYPT 2018
• [KRSS ‘19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4: Testing and Benchmarking NIST

PQC on ARM Cortex-M4. Workshop Record of the Second PQC Standardization Conference
• [LMPR ’08] Vadim Lyubashevsky, Daniele Micciancio, Alon Rosen, Chris Peikert. SWIFFT: A Modest proposal for FFT hashing.

FSE ‘08
• [LS ’19] Vadim Lyubashevsky and Peter Schwabe. Official qTESLA comment on the NIST mailing list. April 14, 2019.
• [LZ ‘19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. CRYPTO 2019
• [L ‘09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. ASIACRYPT 2009.
• [L ‘12] Vadim Lyubashevsky. Lattice signatures without trapdoors. EUROCRYPT 2012
• [S ’87] Claus-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theor. Comp. Sci. 1987
• [Unr ’17] Dominique Unruh. Post-quantum security of Fiat-Shamir. ASIACRYPT 2017

https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/VK9dROwgY0Y

	CRYSTALS:�(Cryptographic Suite for Algebraic Lattices)�Dilithium
	Dilithium
	Dilithium Operations
	Modular Security
	Dilithium Features
	Parameters and Runtime
	Dilithium
	Dilithium Algorithms
	Security Proof Reduction in the QROM
	Dilithium Security
	Comparison to qTESLA
	Dilithium and FALCON
	Dilithium and FALCON
	Slide Number 14
	Bibliography

