
Submission to NIST:

Counter with CBC-MAC (CCM)

AES Mode of Operation

Submitter:

Russ Housley
RSA Laboratories
918 Spring Knoll Drive
Herndon, VA 20170
Phone: +1 703-435-1775
E-mail: RHousley@rsasecurity.com

Authors:

Doug Whiting
Hifn
5973 Avenida Encinas, #110
Carlsbad, CA 92009
Phone: +1 760-827-4502
E-mail: DWhiting@hifn.com

Russ Housley
RSA Laboratories
918 Spring Knoll Drive
Herndon, VA 20170
Phone: +1 703-435-1775
E-mail: RHousley@rsasecurity.com

Niels Ferguson
MacFergus BV
Bart de Ligtstraat 64
1097 JE Amsterdam, Netherlands
Phone: +31 20 463 0977
E-mail: Niels@ferguson.net

1. Mode Specification

CCM is a generic authenticate-and-encrypt block cipher mode. CCM is only defined for use with 128-bit
block ciphers, such as AES. The CCM ideas can easily be extended to other block sizes, but this will
require further definitions.

1.1. Generic CCM Mode
For the generic CCM mode there are two parameter choices. The first choice is M, the size of the
authentication field. The choice of the value for M involves a trade-off between message expansion and the
probability that an attacker can undetectably modify a message. Valid values are 4, 6, 8, 10, 12, 14, and 16
octets. The second choice is L, the size of the length field. This value requires a trade-off between the
maximum message size and the size of the Nonce. Different applications require different trade-offs, so L is
a parameter. Valid values of L range between 2octets and 8 octets (the value L=1 is reserved).

Name Description Field Size Encoding of field

M Number of octets in authentication field 3 bits (M-2)/2

L Number of octets in length field 3 bits L-1

Parameters of CCM mode

1.2. Inputs
To send a message, the sender must provide the following information:

• An encryption key K suitable for the block cipher.

• A nonce N of 15-L octets. Within the scope of any encryption key K, the nonce value shall be unique.
That is, the set of nonce values used with any given key shall not contain any duplicate values. Using
the same nonce for two different messages encrypted with the same key destroys the security
properties of this mode.

• The message m, consisting of a string of l(m) octets where 0 ≤ l(m) < 28L. The length restriction ensures
that l(m) can be encoded in a field of L octets.

• Additional authenticated data a, consisting of a string of l(a) octets where 0 ≤ l(a) < 264. This
additional data is authenticated but not encrypted, and is not included in the output of this mode. It can
be used to authenticate plaintext packet headers, or contextual information that affects the
interpretation of the message. Users who do not wish to authenticate additional data can provide a
string of length zero.

Name Description Field Size Encoding of field

K Block cipher key Depends on block cipher String of octets.

N Nonce 15-L octets Not specified

m Message to be encrypted and sent l(m) octets String of octets.

a Additional authenticated data l(a) octets String of octets.

Inputs to CCM mode

1.3. Authentication
The first step is to compute the authentication field T. This is done using CBC-MAC. We first define a
sequence of blocks B0, B1, ... Bn and then apply CBC-MAC to these blocks.

The first block B0 is formatted as follows, where l(m) is encoded in most-significant-byte first order:

Octet no: 0 1 ... 15-L 16-L ... 15

Contents: Flags Nonce N l(m)

Within the first block B0, the Flags field is formatted as follows:

Bit no: 7 6 5 4 3 2 1 0

Contents: Reserved Adata M L

The Reserved bit is reserved for future expansions and should always be set to zero. The Adata bit is set to
zero if l(a)=0, and set to one if l(a)>0. The M field encodes the value of M as (M-2)/2. As M can take on the
even values from 4 to 16, the 3-bit field can take on the values from 1 to 7. The L field encodes the size of
the length field used to store l(m). The parameter L can take on the values from 2 to 8 (recall, the value L=1
is reserved). This value is encoded in the 3-bit field using the values from 1 to 7 by choosing the field value
as L-1 (the zero value is reserved).

If l(a)>0 (as indicated by the Adata field) then one or more blocks of authentication data are added. These
blocks contain l(a) and a encoded in a reversible manner. We first construct a string that encodes l(a).

If 0 < l(a) < 216-28 then the length field is encoded as two octets which contain the value l(a) in most-
significant-byte first order.

If 216-28 ≤ l(a) < 232 then the length field is encoded as six octets consisting of the octets 0xff, 0xfe, and
four octets encoding l(a) in most-significant-byte-first order.

If 232 ≤ l(a) < 264 then the length field is encoded as ten octets consisting of the octets 0xff, 0xff, and eight
octets encoding l(a) in most-significant-byte-first order.

The length encoding conventions are summarized in the following table. Note that all fields are interpreted
in most-significant-byte first order.

First two octets Followed by Comment

0x0000 Reserved

0x0001 ... 0xFEFF For 0 < l(a) < 216 - 28

0xFF00 ... 0xFFFD Reserved

0xFFFE four octets l(a) For 216 - 28 ≤ l(a) < 232

0xFFFF eight octets l(a) For 232 ≤ l(a) < 264

Length encoding for additional authenticated data

The blocks encoding a are formed by concatenating this string that encodes l(a) with a itself, and splitting
the result into 16-octet blocks, and then padding the last block with zeroes if necessary. These blocks are
appended to the first block B0.

After the (optional) additional authentication blocks have been added, we add the message blocks. The
message blocks are formed by splitting the message m into 16-octet blocks, and then padding the last block
with zeroes if necessary. If the message m consists of the empty string, then no blocks are added in this
step.

The result is a sequence of blocks B0, B1, ..., Bn. The CBC-MAC is computed by:

X1 := E(K, B0)

Xi+1 := E(K, Xi ⊕ Bi) for i=1, ... , n

T := first-M-bytes(Xn+1)

where E() is the block cipher encryption function, and T is the MAC value. Note that the last block Bn is
XORed with Xn and the result is encrypted with the block cipher. If needed, the ciphertext is truncated to
give T.

1.4. Encryption
To encrypt the message data we use Counter (CTR) mode. We first define the key stream blocks by:

Si := E(K, Ai) for i=0, 1, 2,

The values Ai are formatted as follows, where i is encoded in most-significant-byte first order:

Octet no: 0 1 ... 15-L 16-L ... 15

Contents: Flags Nonce N Counter i

Within the each block Ai, the Flags field is formatted as follows:

Bit no: 7 6 5 4 3 2 1 0

Contents: Reserved Reserved 0 L

The Reserved bits are reserved for future expansions and shall be set to zero. Bit 6 corresponds to the Adata
bit in the B0 block, but as this bit is not used here, it is reserved and shall be set to zero. Bits 3, 4, and 5 are
also set to zero, ensuring that all the A blocks are distinct from B0, which has the non-zero encoding of M in
this position. Bits 0, 1, and 2 contain L, using the same encoding as in B0.

The message is encrypted by XORing the octets of message m with the first l(m) octets of the concatenation
of S1, S2, S3, Note that S0 is not used to encrypt the message.

The authentication value U is computed by encrypting T with the key stream block S0 and truncating it to
the desired length.

U := T ⊕ first-M-bytes(S0)

1.5. Output
The final result c consists of the encrypted message m, followed by the encrypted authentication value U.

1.6. Decryption and Authentication Checking
To decrypt a message the following information is required:

• The encryption key K.

• The nonce N.

• The additional authenticated data a.

• The encrypted and authenticated message c.

Decryption starts by recomputing the key stream to recover the message m and the MAC value T. The
message and additional authentication data is then used to recompute the CBC-MAC value and check T.

If the T value is not correct, the receiver shall not reveal any information except for the fact that T is
incorrect. The receiver shall not reveal the decrypted message, the value T, or any other information.

1.7. Restrictions
All implementations shall limit the total amount of data that is encrypted with a single key. The sender shall
ensure that the total number of block cipher encryption operations in the CBC-MAC and encryption
together shall not exceed 261. (This allows nearly 264 octets to be encrypted and authenticated using CCM,
which should be more than enough for most applications.) Receivers that do not expect to decrypt the same
message twice may also check this limit.

The recipient shall verify the CBC-MAC before releasing any information such as the plaintext. If the
CBC-MAC verification fails, the receiver shall destroy all information, except for the fact that the CBC-
MAC verification failed.

1.8. Security Claim
We claim that this block cipher mode is secure against attackers limited to 2128 steps of operation if the key
K is 256 bits or larger. There are fairly generic precomputation attacks against all block cipher modes that
allow a meet-in-the-middle attack on the key K. If these attacks can be made, then the theoretical strength
of this, and any other, block cipher mode is limited to 2n/2 where n is the number of bits in the key. The
strength of the authentication is of course limited by M.

Users of smaller key sizes (e.g. 128-bits) should take precautions to make the precomputation attacks more
difficult. Repeated use of the same nonce value (with different keys of course) must be avoided. One
solution is to include a random value within the nonce. Of course, a packet counter is also needed within
the nonce. Since the nonce is of limited size, a random value in the nonce provides a limited amount of
additional security.

1.9. Security Proof
Jakob Jonsson from RSA Laboratories has developed a security proof of CCM. The resulting paper has
been submitted for publication, so it will be available to everyone very soon. The proof shows that CCM
provides a level of confidentiality and authenticity that is in line with other proposed authenticated
encryption modes, such as OCB mode.

1.10. Rationale
The main difficulty in specifying this mode is the trade-off between nonce size and counter size. For a
general mode we want to support large messages. Some applications use only small messages, but would
rather have a larger nonce. Introducing the L parameter solves this issue. The parameter M gives the
traditional trade-off between message expansion and probability of forgery. For most applications, we
recommend choosing M at least 8.

The CBC-MAC is computed over a sequence of blocks that encode the relevant data in a unique way.
Given the block sequence it is easy to recover N, M, L, m, and a. The length encoding of a was chosen to be
simple and efficient when a is empty and when a is small. We expect that many implementations will limit
the maximum size of a.

CCM encryption is a straightforward application of CTR mode. As some implementations will support a
variable length counter field, we have ensured that the least significant octet of the counter is at one end of
the field. This also ensures that the counter is aligned on the block boundary.

By encrypting T we avoid CBC-MAC collision attacks. If the block cipher behaves as a pseudo-random
permutation, then the key stream is indistinguishable from a random string. Thus, the attacker gets no
information about the CBC-MAC results. The only avenue of attack that is left is a differential-style attack,
which has no significant chance of success if the block cipher is a pseudo-random permutation.

To simplify implementation we use the same block cipher key for the encryption and authentication
functions. In our design this is not a problem. All the A blocks are different, and they are different from the
B0 block. If the block cipher behaves like a random permutation, then the outputs are independent of each
other, up to the insignificant limitation that they are all different. The only places where the inputs to the
block cipher can overlap is an overlap between an intermediate value in the CBC-MAC and one of the
other encryptions. As all the intermediate values of the CBC-MAC computation are essentially random
(because the block cipher behaves like a random permutation) the probability of such a collision is very
small. Even if there is a collision, these values only affect T, which is encrypted so that an attacker cannot
deduce any information, or detect any collision.

Care has been taken to ensure that the blocks used by the authentication function match up with the blocks
used by the encryption function. This should simplify hardware implementations, and reduce the amount of
byte-shifting required by software implementations.

1.11. Nonce Suggestions
The main requirement is that, within the scope of a single key, the nonce values are unique for each
message. A common technique is to number messages sequentially, and to use this number as the nonce.
Sequential message numbers are also used to detect replay attacks and to detect message reordering, so in
many situations (e.g., IPsec ESP) the sequence numbers are already available.

Users of CCM, and all other block cipher modes, should be aware of precomputation attacks. These are
effectively collision attacks on the cipher key. Let us suppose the key K is 128 bits, and the same nonce
value N0 is used with many different keys. The attacker chooses a particular nonce N0. She chooses 264

different keys at random and computes a table entry for each K value, generating a pair of the form (K,S1).
(Given the key and the nonce, computing S1 is easy.) She then waits for messages to be sent with nonce N0.
We will assume the first 16 bytes of each message are known so that she can compute S1 for each message.
She looks in her table for a pair with a matching S1 value. She can expect to find a match after checking
about 264 messages. Once a match is found, the other part of the matched pair is the key in question. The
total workload of the attacker is only 264 steps, rather than the expected 2128 steps. Similar precomputation
attacks exist for all block cipher modes.

The main weapon against precomputation attacks is to use a larger key. Using a 256-bit key forces the
attacker to perform at least 2128 precomputations, which is infeasible. In situations where using a large key
is not possible or desirable (e.g., due to the resulting performance impact), users can use part of the nonce
to reduce the number of times any specific nonce value is used with different keys. If there is room in the
nonce, the sender could add a few random bytes, and send these random bytes along with the message. This
makes the precomputation attack much harder, as the attacker now has to precompute a table for each of the
possible random values. An alternative is to use something like the sender’s Ethernet address. Note that due
to the widespread use of DHCP and NAT, IP addresses are rarely unique. Including the Ethernet address
forces the attacker to perform the precomputation specifically for a specific source address, and the
resulting table could not be used to attack anyone else. Although these solutions can all work, they need
careful analysis and almost never entirely prevent these attacks. Where possible, we recommend using a
larger key, as this solves all the problems.

1.12. Efficiency
Encrypting and authenticating the empty message, without any additional authentication data, requires two
block cipher encryption operations. For each block of additional authentication data one additional block

cipher encryption operation is required (if you include the length encoding). Each message block requires
two block cipher encryption operations. The worst-case situation is when both the message and the
additional authentication data are a single octet. In this case, CCM requires five block cipher encryption
operations.

CCM results in the minimal possible message expansion; the only bits added are the authentication bits.

Both the CCM encryption and CCM decryption operations require only the block cipher encryption
function. In AES, the encryption and decryption algorithms have some significant differences. Thus, using
only the encrypt operation can lead to a significant savings in code size or hardware size.

In hardware, CCM can compute the message authentication code and perform encryption in a single pass.
That is, the implementation does not have to complete calculation of the message authentication code
before encryption can begin.

2. Summary of Properties

Security Function authenticated encryption

Error Propagation none

Synchronization same nonce used by sender and recipient

Parallelizability encryption can be parallelized, but authentication cannot

Keying Material Requirements one key

Counter/IV/Nonce Requirements counter and nonce are part of the counter block

Memory Requirements requires memory for encrypt operation of the underlying block cipher,
plaintext, ciphertext (expanded for CBC-MAC), and a per-packet
counter (an integer; at most L octets in size)

Pre-processing Capability encryption key stream can be precomputed, but authentication cannot

Message Length Requirements octet aligned message of arbitrary length, up to 28L octets, and
octet aligned arbitrary additional authenticated data, up to 264 octets

Ciphertext Expansion 4, 6, 8, 10, 12, 14, or 16 octets depending on size of MAC selected

3. Test Vectors

The program used to generate test vectors is provided in CCM-TEST.ZIP. The expected output for the first
test vector is provided here to allow implementers to verify that the test program is working.

=============== Packet Vector #1 ==================

AES Key: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

 TA = A0 A1 A2 A3 A4 A5 48-bit pktNum = 0000.03020100

Total packet length = 31. [Input (8 cleartext header octets)]

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

CBC IV in: 59 00 00 00 03 02 01 00 A0 A1 A2 A3 A4 A5 00 17

CBC IV out:EB 9D 55 47 73 09 55 AB 23 1E 0A 2D FE 4B 90 D6

After xor: EB 95 55 46 71 0A 51 AE 25 19 0A 2D FE 4B 90 D6 [hdr]

After AES: CD B6 41 1E 3C DC 9B 4F 5D 92 58 B6 9E E7 F0 91

After xor: C5 BF 4B 15 30 D1 95 40 4D 83 4A A5 8A F2 E6 86 [msg]

After AES: 9C 38 40 5E A0 3C 1B C9 04 B5 8B 40 C7 6C A2 EB

After xor: 84 21 5A 45 BC 21 05 C9 04 B5 8B 40 C7 6C A2 EB [msg]

After AES: 2D C6 97 E4 11 CA 83 A8 60 C2 C4 06 CC AA 54 2F

MIC tag : 2D C6 97 E4 11 CA 83 A8

CTR Start: 01 00 00 00 03 02 01 00 A0 A1 A2 A3 A4 A5 00 01

CTR[0001]: 50 85 9D 91 6D CB 6D DD E0 77 C2 D1 D4 EC 9F 97

CTR[0002]: 75 46 71 7A C6 DE 9A FF 64 0C 9C 06 DE 6D 0D 8F

CTR[MIC]: 3A 2E 46 C8 EC 33 A5 48

Total packet length = 39. [Encrypted]

 00 01 02 03 04 05 06 07 58 8C 97 9A 61 C6 63 D2

 F0 66 D0 C2 C0 F9 89 80 6D 5F 6B 61 DA C3 84 17

 E8 D1 2C FD F9 26 E0

4. Performance Estimates

Performance depends on the speed of the block cipher implementation.

Encrypting and authenticating the empty message, without any additional authentication data, requires two
block cipher encryption operations. For each block of additional authentication data one additional block
cipher encryption operation is required (if you include the length encoding). Each message block requires
two block cipher encryption operations. The worst-case situation is when both the message and the
additional authentication data are a single octet. In this case, CCM requires five block cipher encryption
operations. In hardware, for large packets, the speed achievable for CCM is roughly the same as that
achievable with the CBC encryption mode.

5. Intellectual Property Statements
The authors hereby explicitly release any intellectual property rights to CCM to the public domain. Further,
the authors are not aware of any patent or patent application anywhere in the world that covers CCM mode.
It is our belief that CCM is a simple combination of well-established techniques, and we believe that CCM
is obvious to a person of ordinary skill in the arts.

