
CCM Use Requirements Specification

The Counter with CBC-MAC (CCM) mode is designed to use the Advanced Encryption
Standard (AES) block cipher, or any other block ciphers with a block size of 128 bits or
more, to provide authentication and encryption using a single block cipher key that is
established beforehand. Thus, CCM requires a well-designed key management structure.
CCM is intended for use in a packet environment; the plaintext input includes a header,
which is authenticated but not encrypted, and a payload, which is authenticated and
encrypted. CCM operates on the whole packets; it does not support partial processing or
stream processing. A packet must be an integral number of octets. Each packet must be
assigned a unique value, called a nonce. The size of the nonce determines the maximum
number of packets that can be authenticated and encrypted with a single block cipher key.
The total number of octets protected with a single block cipher key is limited to 2^64
octets.

CCM processing expands the packet size by appending an encrypted authentication tag.
Successful verification of the authentication tag provides assurance that the packet
originated from a source with access to the block cipher key. Consequently, successful
verification of the authentication tag also provides assurance that the packet was not
altered after the generation of the authentication tag. Failed verification of the
authentication tag is designed to reveal intentional, unauthorized modifications of the
packet, as well as accidental modifications.

CCM protects the packet payload from disclosure. A breach of confidentiality is as
unlikely as guessing the block cipher key.

CCM allows pre-computation of the key stream if the nonce value is known, allowing
half of the computational load to be pre-processed. This property can be used to improve
the efficiency of an implementation.

CCM uses only the encryption function of the block cipher. This property can be used to
minimize the size of an implementation.

