

SHA3 
WHERE WE’VE BEEN 
WHERE WE’RE GOING

Bill Burr – May 1, 2013 
 
updated version of John Kelsey’s
RSA2013 presentation

 
 
 

 
 

 
 
 

 Overview of Talk

► Where We’ve Been:

► Ancient history

► 2004

► The Competition

► Where We’re Going

► What to standardize

► Extras

► Speculative plans

2

3

Ancient History 
(before 2004)

 
 

 

 
 

 

Origins

►	 Hash functions appeared as an important idea at the dawn of modern public crypto.

►	 Many ideas floating around to build hash functions from block ciphers (DES) or

mathematical problems.

►	 Ways to build hash functions from compression functions

►	 Merkle-Damgaard

►	 Ways to build compression functions from block ciphers

►	 Davies-Meyer, MMO, etc.

4

 
 

Merkle-Damgaard

► Used in all widespread hash functions before 2004

► MD4, MD5, RIPE-MD, RIPE-MD160, SHA0, SHA1, SHA2

Image from Wikipedia

5

 

 
 

 

 
 

The MD4 Family

►	 Rivest published MD4 in
1990

►	 128-bit output

►	 Built on 32-bit word

operations

►	 Add, Rotate, XOR, bitwise

logical operations

►	 Fast

►	 First widely used dedicated

hash function

Image from Wikipedia MD4 Article

6

 

 

 
 
 

 
 

MD5

►	 Several researchers
came up with attacks on
weakened versions of
MD4

►	 Rivest created stronger
function in 1992

►	 Still very fast

►	 Same output size

►	 Some attacks known

►	 Den Boer/Bosselaers

►	 Dobbertin
 Image from Wikipedia MD5 Article

7

 
 

 
 
 

 

 

 

SHA0 and SHA1

►	 SHA0 published in 1993

►	 160-bit output

►	 (80 bit security)

►	 NSA design

►	 Revised in 1995 to SHA1

►	 Round function (pictured) is

same

►	 Message schedule more

complicated

►	 Crypto ‘98 Chabaud/Joux
attack on SHA0

Image from Wikipedia SHA1 Article

8

 
 

 
 

 
 

 

SHA2

► Published 2001

► Three output sizes

► 256, 384, 512

► 224 added in 2004

► Very different design

► Complicated

message schedule

► Still looks strong

Image from Wikipedia SHA2 Article

9

 

 

 
 
 
 

As of 2004, we thought we

knew what we were doing.

►	 MD4 was known to be broken by Dobbertin, but still saw
occasional use

►	 MD5 was known to have theoretical weaknesses from
Den Boer/Bosselaers and Dobbertin, but still in wide use.

►	 SHA0 was known to have weaknesses and wasn’t used.

►	 SHA1 was thought to be very strong.

►	 SHA2 looked like the future, with security up to 256 bits

►	 Merkle-Damgaard was normal way to build hashes

10

11

2004: The Sky
Falls

 

 
 

 

 
 

 

 Crypto 2004: The Sky Falls

Conference:

► Joux shows a surprising property in Merkle-Damgaard

hashes

► Multicollisions

► Cascaded hashes don’t help security much

► Biham/Chen attack SHA0 (neutral bits)

Rump Session:

► Joux shows attack on SHA0

► Wang shows attacks on MD4, MD5, RIPEMD, some Haval

variants, and SHA0

► Much better techniques used for these attacks

12

 

 
 
 

 
 
 
 

 Aftermath: What We Learned

►	 We found out we didn’t understand hashes as well as we
thought.

►	 Wang’s techniques quickly extended

►	 Better attacks on MD5

►	 Claimed attacks on SHA1 (2005)

►	 Joux’s multicollisions extended and applied widely

►	 Second preimages and herding

►	 Multicollisions even for multiple passes of hash

►	 Much more

13

 
 
 

 

 

 
 

 What to do next?

►	 All widely used hash functions were called into question

►	 MD5 and SHA1 were very widespread

►	 SHA2 and RIPE-MD160, neither one attacked, were not widely

used.

►	 At same time, NIST was pushing to move from 80- to

112-bit security level

►	 Required switching from SHA1 to SHA2

►	 Questions about the existing crop of hash functions

►	 SHA1 was attacked, why not SHA2?

14

15

Preparing for the
Competition

 

 

 
 
 
 

 Pressure for a Competition

►	 We started hearing from people who wanted a hash
competition

►	 AES competition had happened a few years earlier, and
had been a big success

►	 This would give us:

►	 Lots of public research on hash functions

►	 A new hash standard from the public crypto community

►	 Everything done out in the open

16

 
 

 

 

 Hash Workshops

►	 Gaithersburg 2005

►	 UCSB 2006

►	 In these workshops, we got feedback on what a
competition should focus on, what requirements should
be, etc.

►	 Lots of encouragement to have a hash competition

17

 

 
 
 
 

 2007: Call for proposals

►	 We spent a lot of time getting call for proposals nailed
down:

►	 Algorithm spec

►	 Security arguments or proofs

►	 Preliminary analysis

►	 Tunable security parameter(s)

18

 
 
 

 
 
 
 

 

 
 

Security Requirements

►	 Drop-in replacement

►	 Must provide 224, 256, 384, and 512 bit output sizes

►	 Must play well with HMAC, KDFs, and other existing hash uses

►	 N bit output:

►	 N/2 bit collision resistance

►	 N bit preimage resistance

►	 N-K bit second preimage resistance

► K = lg(target message length)

►	 Eliminate length-extension property!

►	 Tunable parameter to trade off between security and

performance.

19

20

The Competition

 Hash Competition Timetable

Date

 Event
 Candidates

Left

11/2/2007

10/31/2008

12/10/2008

2/25/2009

7/24/2009

8/23/2010

12/9/2010

3/22/2012

Call for Proposals published, competition began

SHA3 submission deadline
 64

First-round candidates announced
 51

First SHA3 workshop in Leuven, Belgium
 51

Second-round candidates announced
 14

Second SHA3 workshop in Santa Barbara, CA
 14

SHA3 finalists announced
 5

Third SHA3 workshop in Washington, DC
 5

21

10/2/2012
 Keccak announced as the SHA3 winner
 1

 
 
 

 
 
 

 Initial submissions

► We started with 64 submissions (10/08)

► 51 were complete and fit our guidelines

► We published those 51 on December 2008

► Huge diversity of designs

► 51 hash functions were too many to analyze well

► There was a *lot* of cryptanalysis early on, many hash

functions were broken

22

 

 

 

 

 Narrowing the field down to 14

BLAKE BMW Cubehash Echo Fugue Grostl Hamsi

JH Keccak Luffa SHABAL SHAVite SIMD Skein

► Many of the first 51 submissions were broken or seriously
dented in the first year of the competition.

► Others had unappealing performance properties or other
problems.

► AES competition had 15 submissions; we took a year to
get down to 14.

► Published our selections in July 2009

23

 
 

 
 

 
 
 
 
 

 Choosing 5 finalists

BLAKE Grostl JH Keccak Skein

► Published selection in Dec 2010

► Much harder decisions

► Cryptanalytic results were harder to interpret

► Often distinguishers of no apparent relevance

► All five finalists made tweaks for third round

► BLAKE and JH increased number of rounds

► Grostl changed internals of Q permutation

► Keccak changed padding rules

► Skein changed key schedule constant

24

 
 

 
 
 

 
 

 Choosing a Winner: Security

► Nobody was knocked out by cryptanalysis

► Different algorithms got different depth of cryptanalysis

► Grostl, BLAKE, Skein, Keccak, JH

► Keccak and Blake had best security margins

► Domain extenders (aka chaining modes) all had security

proofs

► Grostl had a very big tweak, Skein a significant one

► ARX vs non-ARX designs

Keccak looks very strong, and seems to have been analyzed
in sufficient depth to give us confidence.

25

 
 

 

 
 

 

 Choosing a Winner:

Performance

► All five finalists have acceptable performance

► ARX designs (BLAKE and Skein) are excellent on high-

end software implementations

► JH and Grostl fairly slow in software

► Slower than SHA2

► Keccak is very hardware friendly

► High throughput per area

Keccak performs well everywhere, and very well in

hardware.

26

 

 
 
 

 
 

 Complementing SHA2

► SHA3 will be deployed into a world full of SHA2
implementations

► SHA2 still looks strong

► We expect the standards to coexist.

► SHA3 should complement SHA2.

► Good in different environments

► Susceptible to different analytical insights

Keccak is fundamentally different from SHA2. Its

performance properties and implementation tradeoffs
have little in common with SHA2.

27

 
 
 
 
 
 
 
 

 Wrapup on Selecting a Winner

► Keccak won because of:

► High security margin

► Fairly high quality, in-depth analysis

► Elegant, clean design

► Excellent hardware performance

► Good overall performance

► Flexability: rate is readily adjustable

► Design diversity from SHA2

28

 

 

 
 
 
 

 

 How Did It Work Out?

►	 The competition brought forth a huge amount of effort by
people outside NIST

►	 The cryptographic community did the overwhelming
majority of the work:

►	 Submissions

►	 Analysis

►	 Proofs

►	 Reviews of papers for conferences/journals

►	 NIST's main job was to understand that work and make
decisions based on it.

29

30

SHA3: What
Function Will We
Standardize?

 
 

 
 

 
 
 

 

 Keccak as SHA3: Goals

► Play well with existing applications

► DRBGs, KDFs, HMAC, signatures

► Drop-in replacements

► SHA-224, -256, -384, -512, and even SHA1 and MD5

► Fast and efficient everywhere

► Benefit from tree hashing

► Benefit from Keccak extras

► Variable output, efficient PRF, authenticated encryption, DRBG

31

 

 
 
 
 
 

 

 Variable output length

►	 Keccak is equipped to provide variable-length output from
a hash.

►	 This is endlessly useful

►	 Protocols roll their own version of this all the time

►	 OAEP

►	 Key derivation functions

►	 DSA Vaudenay attack fix

►	 SHA3 standard will support variable output sizes

32

 
 

 
 

 

 

 

 

 Hash Function Security Notions

►	 Collision Resistance

►	 Needed so that Hash can be a proxy for message in a digital

signature and other commitment schemes

►	 Infeasible to find two messages, M1≠ M2 such the H(M1) = H(M1)

►	 “Birthday paradox:” a collision can be found for any n-bit hash in

about 2n/2 hash operations. Can’t do better than this.

►	 Preimage Resistance

►	 Needed for hash based message authentication codes, and other
keyed hash function applications.

►	 Given only an n–bit hash output, x, it should infeasible to find a
message, M, such that H(M) = x

►	 We expect to find a M by brute force in about 2n-1 operations

33

 

 
 

 
 

 
 
 

 Security and Output Size

►	 Traditionally, hash functions’ security level is linked to
their output size

►	 SHA256: 128 bit security against collisions, 256 against preimage

►	 Best possible security for hash with 256-bit output.

►	 Keccak has variable output length, which breaks this link

►	 Need a notion of security level separate from output size

►	 Keccak is a sponge

►	 Security level is determined by capacity

►	 Tunable parameter for performance/security tradeoff

34

 
 
 
 

 Capacity and Security

►Keccak’s security level is based on its capacity

► Adjustable parameter: more security = less performance

► C = 2*security level

► C/2 bits of security against both preimages and collisions

.

35

 
 
 

 

 
 

 

 Security Levels and Hashing

►	 SHA256 has a security level of 128 bits

►	 Determined by collision resistance

►	 Used with public key and symmetric algorithms of comparable

security level –

►	 Is 256 bits of security against preimages necessary?

►	 We propose changing this

►	 Hash function that supports k bit security level should require only

k bits of preimage resistance.

►	 Question: Is there any practical weakness introduced by this

decision?

36

 

 
 

 
 
 

 Smaller capacity, faster hash

►	 Keccak’s SHA3 submissions paid a substantial
performance cost to get these high preimage resistance
numbers.

►	 Keccak-512 has 1024-bit capacity

► Keccak-256 has 512-bit capacity

►	 Our proposal:

►	 Security of k means k bits of security needed for all attacks.

►	 This will make SHA3 considerably faster everywhere.

37

 
 

 
 
 

 
 

 

 Too Many Capacities!

►	 Keccak specified four different capacities

►	 448, 512, 768 ,1024

►	 But four seems needlessly complex

►	 224 not on a 64-bit boundary

►	 What do we gain for this added complexity?

►	 Our plan would drop those to

►	 256, 512

►	 However, the 4 different capacities in the Keccak
submission did provide domain separation for the 4 “drop
in replacement” variants of SHA3

38

 

 
 

 
 
 
 
 
 

 Drop-in replacements

►	 We need drop-in replacements for SHA-224, -256, -384,
and -512.

►	 Replace one with the other in protocols and apps

►	 Then with the variable length outputs we get something
like the following SHA-3 variants:

►	 SHA3-Dropin-224(message) (c=256)

►	 SHA3-Dropin-256(message) (c=256)

►	 SHA3-Dropin-384(message) (c=512)

►	 SHA3-Dropin-512(message) (c=512)

►	 SHA3-Fast(message, output length) (c=256)

►	 SHA3-Strong(message, output length) (c=512)

39

 

 

 

 

 

 
 

 Drop-in replacements

►	 SHA-384 uses the same compression function as
SHA-512, and truncates the output to 224-bits, but starts
with a different IV. SHA-224 and SHA-256 are similar.

►	 Don’t want the unexpected property in SHA-3 that:

►	 SHA3-Dropin-256(message) = abcdefgh 

 and,

►	 SHA3-Dropin-224(message) = abcdefg  

or,

►	 SHA3-Dropin-512(message) = ABCDEFGH 

 and,

►	 SHA3-Dropin-384(message) = ABCEDF

►	 SHA2 does not have this property

40

 

 

 
 
 

 Message Padding Scheme

►	 Keccak designers have proposed a padding scheme that

will (among other things) distinguish the drop in
replacements from each other – A paper is coming

► If we change message padding we can incorporate

other information

►	 Tree structure/location

►	 Alternative message encodings

►	 Anything else?

41

 
 
 

 

 

 Summing Up SHA3

►	 Variable-length output

►	 Extended message padding scheme

►	 Only two capacities

►	 Requires encoding variable output length in message padding of
SHA-2 drop-in replacements.

►	 Security decision: Preimages need only be as hard to find
as collisions.

42

43

What comes next?

 
 
 

 
 

 
 
 
 

 Keccak offers a lot of extras

► Our first job is to write a SHA3 FIPS

► Write standard to allow later standards to build up these extras

► Question: What should we call this? Keccak? SHA3?

► PRF

► Tree hashing

► Not part of Keccak spec, but used with it

► Authenticated encryption

► Random number generation

► Key derivation

44

 

 
 

 

 

PRF

►	 Keccak defines a more efficient PRF

►	 Can we specify this as a drop-in replacement for HMAC?

►	 Note: HMAC-Keccak is also fine, just inefficient

►	 Question: Are there uses of HMAC that wouldn’t work
right with the Keccak PRF?

►	 Question: Can we use PRF for randomized hashing?

45

 

 

 
 

 
 

 Tree Hashing

►	 NIST has committed to doing a standard for generic tree
hashing, using any approved hash function

►	 Planning to incorporate some support for tree hashing in
message padding rules for SHA3.

►	 Approach #1: Full hash tree

►	 Specify leaf size, fan-out, maximum height

►	 Approach #2: Interleave mode

►	 N hashes done in parallel, until end when they’re all hashed together.

46

 

 
 

 

 
 

 Tree Hashing, Cont’d

►	 Our current plan is to specify general mechanisms, and
recommend some parameters

►	 Example: parallel interleaved mode with N=16

►	 Example: tree mode with leaves of 8 message blocks and

fan-out of 8.

►	 Question: Would we be better off allowing only small set
of parameters?

►	 Comments or suggestions very much appreciated here

►	 This effort is just beginning now.

47

 

 
 

 

 

 Authenticated Encryption

►	 Keccak designers defined “duplex mode” which can be
used to build authenticated encryption mechanism

►	 Authentication is as secure as hash function

►	 Encryption is secure if hash function behaves randomly in

some sense.

►	 See Duplex Mode paper from Keccak team for details

►	 Our Plan: after SHA3 is published, we will strongly
consider writing a standard for authenticated encryption
with Keccak.

48

 

 
 

Random Number Generation

►	 Keccak in duplex mode can also be used to build a
deterministic random number generator

►	 SP 800-90A has several DRBGs specified

►	 After the SHA3 standard is published, NIST will strongly

consider adding a new DRBG based on Keccak in
Duplex mode

49

 
 
 

 

 
 

 
 

 Speculative: Smaller Permutations

►	 Keccak specifies several smaller permutations

►	 Full SHA3 is built on 1600-bit permutation

►	 Smaller permutations are closely related

►	 We may specify hashes based on these smaller
permutations at some point.

►	 Useful for constrained devices

►	 This depends on building up confidence in those small

permutations

►	 So far, they have seen little analysis.

►	 NIST would love to see more analysis

50

 

 
 
 
 

 Speculative: Alternative Modes

►	 The Keccak designers have proposed alternatives for
more efficient authenticated encryption or message
authentication

►	 Different modes

►	 Smaller permutations

►	 Fewer rounds

►	 NIST might eventually consider these for standardization,

if we become confident in their security.

51

52

Wrapup and
Questions

 

 

 
 

 
 

Questions for Community

►	 Is there a problem reducing preimage resistance to
security level?

►	 What application will be broken with preimage resistance of 256

bits?

►	 Tree hashing: Flexibility vs simplicity of standards?

►	 What are important tree hashing applications?

►	 What should we call it?

►	 What are your questions?

53

