

Overview of Talk

Where We’ ve Been:
Ancient history
2004

The Competition
Where We' re Going
What to standardize

Extras
Speculative plans

Origins

Hash functions appeared as an important idea at the dawn of modern public crypto.
Many ideas floating around to build hash functions from block ciphers (DES) or
mathematical problems.
Ways to build hash functions from compression functions

Merkle-Damgaard
Ways to build compression functions from block ciphers

Davies-Meyer, MMO, etc.

—Merkle-Damgaard

Message Messagr Messag LengthJ

blockl | block 2 block n| paddin

‘ =1 Finali-
@0 f | f pocep| f | > s;?o'n—»

Used in all widespread hash functions before 2004
MD4, MD5, RIPE-MD, RIPE-MD160, SHAO0, SHA1, SHA2

Image from Wikipedia

—The MD4 Family

Rivest published MD4 in e B | €
1990 v - F :_j'\ g)
128-bit output v Ml

Built on 32-bit word e

operations Ki—»

Add, Rotate, XOR, bitwise z<3

logical operations

Fast W

First widely used dedicated A B C

hash function

Image from Wikipedia MD4 Article

—MD5

Several researchers <« F
came up with attacks on
weakened versions of

MD4 Ki—»
Rivest created stronger <<
function in 1992 '

Still very fast

NS
|

Mi—F

Same output size W

Some attacks known A B C

Den Boer/Bosselaers

Dobbertin Image from Wikipedia MD5 Article

—SHAO and SHAT

SHAO published in 1993

160-bit output
(80 bit security)

NSA design
Revised in 1995 to SHAT1

Round function (pictured) is
same

Message schedule more
complicated

Crypto ‘98 Chabaud/Joux
attack on SHAO

Image from Wikipedia SHA1 Article

—SHAZ2

Published 2001

Three output sizes
256, 384, 512
224 added in 2004

Very different design

Complicated
message schedule

Still looks strong

L T

Image from Wikipedia SHA2 Article

LT

- =

A

As of 2004, we thought we
knew what we were doing.

MD4 was known to be broken by Dobbertin, but still saw
occasional use

MD5 was known to have theoretical weaknesses from
Den Boer/Bosselaers and Dobbertin, but still in wide use.

SHAO was known to have weaknesses and wasn’ t used.

SHA1 was thought to be very strong.
SHAZ2 looked like the future, with security up to 256 bits

Merkle-Damgaard was normal way to build hashes

10

Crypto 2004: The Sky Falls

Conference:

Joux shows a surprising property in Merkle-Damgaard
hashes

Multicollisions

Cascaded hashes don’t help security much

Biham/Chen attack SHAO (neutral bits)
Rump Session:
Joux shows attack on SHAO

Wang shows attacks on MD4, MD5, RIPEMD, some Haval
variants, and SHAO
Much better techniques used for these attacks

12

Aftermath: What We Learned

We found out we didn’t understand hashes as well as we
thought.

Wang’ s techniques quickly extended
Better attacks on MD5
Claimed attacks on SHA1 (2005)

Joux’ s multicollisions extended and applied widely
Second preimages and herding
Multicollisions even for multiple passes of hash
Much more

13

What to do next?

All widely used hash functions were called into question
MD5 and SHA1 were very widespread
SHA2 and RIPE-MD160, neither one attacked, were not widely
used.
At same time, NIST was pushing to move from 80- to
112-bit security level
Required switching from SHA1 to SHA2

Questions about the existing crop of hash functions
SHA1 was attacked, why not SHA2?

14

Pressure for a Competition

We started hearing from people who wanted a hash
competition

AES competition had happened a few years earlier, and
had been a big success

This would give us:
Lots of public research on hash functions
A new hash standard from the public crypto community
Everything done out in the open

16

Hash Workshops

Gaithersburg 2005
UCSB 2006

In these workshops, we got feedback on what a
competition should focus on, what requirements should
be, etc.

Lots of encouragement to have a hash competition

17

2007: Call for proposals

We spent a lot of time getting call for proposals nailed
down:

Algorithm spec

Security arguments or proofs
Preliminary analysis

Tunable security parameter(s)

18

Security Requirements

Drop-in replacement
Must provide 224, 256, 384, and 512 bit output sizes
Must play well with HMAC, KDFs, and other existing hash uses

N bit output:
N/2 bit collision resistance
N bit preimage resistance
N-K bit second preimage resistance
K = Ig(target message length)
Eliminate length-extension property!

Tunable parameter to trade off between security and
performance.

19

Hash Competition Timetable

11/2/2007

10/31/2008
12/10/2008
2/25/2009
7/24/2009
8/23/2010
12/9/2010
3/22/2012
10/2/2012

Call for Proposals published, competition began

SHA3 submission deadline

First-round candidates announced

First SHA3 workshop in Leuven, Belgium
Second-round candidates announced

Second SHA3 workshop in Santa Barbara, CA
SHAZS3 finalists announced

Third SHA3 workshop in Washington, DC

Keccak announced as the SHA3 winner

21

64
51
51

14
14

5

Initial submissions

We started with 64 submissions (10/08)
51 were complete and fit our guidelines
We published those 51 on December 2008

Huge diversity of designs
51 hash functions were too many to analyze well

There was a *lot* of cryptanalysis early on, many hash
functions were broken

22

Narrowing the field down to 14

BLAKE BMW Cubehash Echo Fugue Grostl Hamsi
JH Keccak Luffa SHABAL SHAVite SIMD Skein

Many of the first 51 submissions were broken or seriously
dented in the first year of the competition.

Others had unappealing performance properties or other
problems.

AES competition had 15 submissions; we took a year to
get down to 14.

Published our selections in July 2009

23

Choosing 5 finalists

BLAKE Grostl JH Keccak Skein

Published selection in Dec 2010

Much harder decisions
Cryptanalytic results were harder to interpret
Often distinguishers of no apparent relevance

All five finalists made tweaks for third round
BLAKE and JH increased number of rounds
Grostl changed internals of Q permutation
Keccak changed padding rules
Skein changed key schedule constant

24

Choosing a Winner: Security

Nobody was knocked out by cryptanalysis

Different algorithms got different depth of cryptanalysis
Grostl, BLAKE, Skein, Keccak, JH

Keccak and Blake had best security margins

Domain extenders (aka chaining modes) all had security
proofs

Grostl had a very big tweak, Skein a significant one
ARX vs non-ARX designs

Keccak looks very strong, and seems to have been analyzed
in sufficient depth to give us confidence.

25

Choosing a Winner:
Performance

All five finalists have acceptable performance

ARX designs (BLAKE and Skein) are excellent on high-
end software implementations

JH and Grostl fairly slow in software
Slower than SHA2

Keccak is very hardware friendly
High throughput per area

Keccak performs well everywhere, and very well in
hardware.

26

Complementing SHA2

SHAS3 will be deployed into a world full of SHA2
Implementations

SHAZ2 still looks strong
We expect the standards to coexist.
SHA3 should complement SHA2.

Good in different environments
Susceptible to different analytical insights

Keccak is fundamentally different from SHA2. Its
performance properties and implementation tradeoffs
have little in common with SHAZ2.

27

Wrapup on Selecting a Winner

Keccak won because of:
High security margin
Fairly high quality, in-depth analysis
Elegant, clean design
Excellent hardware performance
Good overall performance
Flexability: rate is readily adjustable
Design diversity from SHA2

28

How Did It Work Out?

The competition brought forth a huge amount of effort by
people outside NIST

The cryptographic community did the overwhelming
majority of the work:

Submissions

Analysis

Proofs

Reviews of papers for conferences/journals

NIST's main job was to understand that work and make
decisions based on it.

29

Keccak as SHA3: Goals

Play well with existing applications
DRBGs, KDFs, HMAC, signatures

Drop-in replacements
SHA-224, -256, -384, -512, and even SHA1 and MD5

Fast and efficient everywhere
Benefit from tree hashing

Benefit from Keccak extras
Variable output, efficient PRF, authenticated encryption, DRBG

31

Variable output length

Keccak is equipped to provide variable-length output from
a hash.

This is endlessly useful
Protocols roll their own version of this all the time
OAEP
Key derivation functions
DSA Vaudenay attack fix

SHAGS standard will support variable output sizes

32

Hash Function Security Notions

Collision Resistance

Needed so that Hash can be a proxy for message in a digital
signature and other commitment schemes

Infeasible to find two messages, M= M, such the H(M,) = H(M,)

“Birthday paradox:” a collision can be found for any n-bit hash in
about 272 hash operations. Can’t do better than this.

Preimage Resistance
Needed for hash based message authentication codes, and other
keyed hash function applications.
Given only an n—bit hash output, X, it should infeasible to find a
message, M, such that H(M) = x
We expect to find a M by brute force in about 2™ operations

33

Security and Output Size

Traditionally, hash functions’ security level is linked to
their output size

SHA256: 128 bit security against collisions, 256 against preimage
Best possible security for hash with 256-bit output.

Keccak has variable output length, which breaks this link
Need a notion of security level separate from output size

Keccak is a sponge

Security level is determined by capacity
Tunable parameter for performance/security tradeoff

34

——Capacity and Security

Keccak’ s security level is based on its capacity
Adjustable parameter: more security = less performance
C = 2*security level
C/2 bits of security against both preimages and collisions

|] |

74 + — BN) S
r P1600 P1600 | I:>1600
C

35

Security Levels and Hashing

SHA256 has a security level of 128 bits
Determined by collision resistance

Used with public key and symmetric algorithms of comparable
security level —

Is 256 bits of security against preimages necessary?

We propose changing this
Hash function that supports k bit security level should require only
k bits of preimage resistance.

Question: Is there any practical weakness introduced by this
decision?

36

Smaller capacity, faster hash

Keccak’ s SHA3 submissions paid a substantial
performance cost to get these high preimage resistance
numbers.

Keccak-512 has 1024-bit capacity

Keccak-256 has 512-bit capacity

Our proposal:
Security of k means k bits of security needed for all attacks.
This will make SHA3 considerably faster everywhere.

37

Too Many Capacities!

Keccak specified four different capacities

448, 512, 768 ,1024
But four seems needlessly complex

224 not on a 64-bit boundary

What do we gain for this added complexity?
Our plan would drop those to

256, 512
However, the 4 different capacities in the Keccak
submission did provide domain separation for the 4 “drop
in replacement” variants of SHA3

38

Drop-in replacements

We need drop-in replacements for SHA-224, -256, -384,
and -512.

Replace one with the other in protocols and apps

Then with the variable length outputs we get something
like the following SHA-3 variants:

SHA3-Dropin-224(message)

SHAS3-Dropin-256(message)

SHAS3-Dropin-384(message)

SHAS3-Dropin-512(message)

SHAS3-Fast(message, output length)

SHA3-Strong(message, output length)

39

Drop-in replacements

SHA-384 uses the same compression function as
SHA-512, and truncates the output to 224-bits, but starts
with a different IV. SHA-224 and SHA-256 are similar.

Don’t want the unexpected property in SHA-3 that:
SHAS3-Dropin-256(message) = abcdefgh
and,
SHAS3-Dropin-224(message) = abcdefg
or,

SHA3-Dropin-512(message) = ABCDEFGH
and,

SHAS3-Dropin-384(message) = ABCEDF
SHAZ2 does not have this property

40

Message Padding Scheme

Keccak designers have proposed a padding scheme that
will (among other things) distinguish the drop in
replacements from each other — A paper is coming

If we change message padding we can incorporate
other information

Tree structure/location
Alternative message encodings

Anything else?

41

Summing Up SHAS3

Variable-length output
Extended message padding scheme

Only two capacities

Requires encoding variable output length in message padding of
SHA-2 drop-in replacements.

Security decision: Preimages need only be as hard to find
as collisions.

42

Keccak offers a lot of extras

Ouir first job is to write a SHA3 FIPS

Write standard to allow later standards to build up these extras
Question: What should we call this? Keccak? SHA3?

PRF

Tree hashing
Not part of Keccak spec, but used with it

Authenticated encryption
Random number generation
Key derivation

44

PRF

Keccak defines a more efficient PRF

Can we specify this as a drop-in replacement for HMAC?
Note: HMAC-Keccak is also fine, just inefficient

Question: Are there uses of HMAC that wouldn’ t work
right with the Keccak PRF?

Question: Can we use PRF for randomized hashing?

45

Tree Hashing

NIST has committed to doing a standard for generic tree
hashing, using any approved hash function

Planning to incorporate some support for tree hashing in
message padding rules for SHAS.

Approach #1: Full hash tree

Specify leaf size, fan-out, maximum height

Approach #2: Interleave mode
N hashes done in parallel, until end when they’re all hashed together.

46

Tree Hashing, Cont’ d

Our current plan is to specify general mechanisms, and
recommend some parameters

Example: parallel interleaved mode with N=16

Example: tree mode with leaves of 8 message blocks and
fan-out of 8.

Question: Would we be better off allowing only small set
of parameters?

Comments or suggestions very much appreciated here
This effort is just beginning now.

47

Authenticated Encryption

Keccak designers defined “duplex mode” which can be
used to build authenticated encryption mechanism

Authentication is as secure as hash function

Encryption is secure if hash function behaves randomly in

some sense.
See Duplex Mode paper from Keccak team for details

Our Plan: after SHAS is published, we will strongly
consider writing a standard for authenticated encryption
with Keccak.

48

Random Number Generation

Keccak in duplex mode can also be used to build a
deterministic random number generator

SP 800-90A has several DRBGs specified

After the SHAS3 standard is published, NIST will strongly
consider adding a new DRBG based on Keccak in

Duplex mode

49

Speculative: Smaller Permutations

Keccak specifies several smaller permutations
Full SHAS is built on 1600-bit permutation
Smaller permutations are closely related

We may specify hashes based on these smaller
permutations at some point.

Useful for constrained devices

This depends on building up confidence in those small
permutations

So far, they have seen little analysis.
NIST would love to see more analysis

50

Speculative: Alternative Modes

The Keccak designers have proposed alternatives for
more efficient authenticated encryption or message
authentication

Different modes
Smaller permutations
Fewer rounds

NIST might eventually consider these for standardization,
if we become confident in their security.

51

Questions for Community

Is there a problem reducing preimage resistance to

security level?
What application will be broken with preimage resistance of 256
bits?

Tree hashing: Flexibility vs simplicity of standards?
What are important tree hashing applications?

What should we call it?

What are your questions?

53

