
 DRAFT

 1

High Level PKI Services API
3/20/2002

This document specifies a high-level Application Programming Interface (API) for public-key
based cryptographic services. Currently, PKI-enabled applications must use proprietary, vendor-
provided APIs to interface with their PKI, thus making support across multiple PKI products
difficult. To facilitate the development and wide-deployment of PKI-enabled applications, NIST
is working with several federal agencies to make this interface to a PKI consistent, regardless of
the PKI product being used. If each PKI product and each application can meet at a common
interface, more applications will become PKI enabled for all PKIs. Figure 1 illustrates the
components of a PKI-enabled application and the specific interface that this document attempts to
address.

Figure 1. High-Level PKI Services API

The application requiring security services is any application that needs digital signature and/or
encryption services. The security services/vendor products are the existing vendor products that
provide the signing and encryption functionality. The product API is the vendor-specific
interface provided by the product for calling the signing and encryption services. The high-level
PKI services API is the common API that this document specifies to provide a consistent
interface to signing and encryption services irrespective of the product being used. The high-level
API is designed to hide the complexity of the underlying security mechanisms but facilitate
service requests through simple service calls. The glue layer is the code necessary to translate the
high-level PKI services API into the product API.

In this specification, the term “PKI” is loosely used to refer to all the components below the high-
level API. Several assumptions are made with respect to this API specification. They are:

1. All calls are made on behalf of one user at a time.

2. This API is designed for an authentication framework where end entity certificates are used

for authentication purpose only. The specific roles that a user is authorized to play is handled
by the applications, and the use of attribute certificates is out of scope of this API.

3. A PKI-enabled application may use a single login process for a user to login to the

application and the PKI. If a user is not logged in when a PKI service is invoked, the user will
be prompted to login. Once logged in, the user’s PKI identity is maintained, possibly through
a context object opaque to the application but accessible to the PKI, until the user logs out of
the PKI or exits the application. Therefore, it is unnecessary for the application to pass the
user’s identity each time a cryptographic function is called. A PKI can provide a mechanism

 DRAFT

 2

for a user to log in and out of the PKI independent from the application. Implementers of the
API should be aware of this fact and always make sure that a user is logged in before a PKI
service can be rendered to the user. The PKI should allow a user to reauthenticate himself
after a timeout from inactivity. Certain calls in this API include a parameter authent_required
to enforce reauthentication for applications that require specific high level of assurance.

4. The PKI can be preconfigured to contain certain information that is needed by most PKI-

enabled applications. Information such as the location of the certificate repository, the default
signing, encryption algorithms, the policy or assurance level required by certain applications,
can be summarized in a configuration file, and accessed, enforced during the provision of the
PKI services. A configuration file may be generated automatically by a PKI product when a
user registers with a Certification Authority and obtains his certificate. The PKI can provide
tools such as address book to help user search for needed certificates. Similarly, policy or
assurance levels such as BASIC, LOW, MEDIUM, HIGH or 0, 1, 2, 3 can be mapped to
registered policy OIDs in the configuration file. It is assumed that a higher policy number
implies a higher assurance level.

X.509 allows the specification of an initial policy set as well as two flags - one inhibiting
policy mapping, and the other requiring policies to be present in all certificates in the path.
These settings can be used to constrain certificate path processing. The API does not expose
these settings. The system administrator should configure these settings when the CA's
certificate or the end entity’s certificate is generated, and perhaps document such settings in
the configuration file.

5. For signature generation, only one piece of information will be signed at a time. This decision

is made from the security point of view. Signing information should be a conscious effort
where a user knows exactly what he is signing. It is therefore preferable that only one piece
of information is signed at a time.

6. When a digital signature is generated, the DER-encoded signature octet string is encapsulated

in the SignedData type of RFC 2630 [1]. The original signed content can be encapsulated in
the EncapsulatedContentInfo of the SignedData type as is the case with “opaque signing”, but
this inclusion is optional (RFC 2630, section 5.2). In the case of “clear signing” where the
signed content is not encapsulated, the application will have to pass the signed content to the
API for signature verification. And it is the application’s responsibility to properly
manage the association of the signed content and the associated signature. Both clear
signing and opaque signing have merits for certain applications. The technical and legal
ramifications of using clear signing vs. opaque signing are beyond the scope of this
specification, and are more suitable for inclusion in an implementation guidance document.
Nonetheless, an application should choose between the two based on its specific need and
must be vigilant about maintaining the integrity of the data that is signed and its signature.

7. For signature verification, it is assumed that a receiving party will receive enough
information that is needed to verify a signature. However, the receiving party is not expected
to receive all the certificates and CRLs that are needed for certificate path validation. The
receiving party’s PKI is responsible for such path construction and validation in the process
of signature verification.

8. For encryption, a piece of information may be encrypted for multiple recipients with one call

using the same encryption algorithm. The encryption and key management algorithms, and

 DRAFT

 3

the location of the certificate repository…etc., can be preconfigured in a file and modified as
needed.

When a piece of information is encrypted, the cipher text (optional) and other relevant
information needed for decryption is DER-encoded and encapsulated in the EnvelopedData
type of RFC 2630. The cipher text can be omitted from the EncryptedContentInfo field of the
EnvelopedData type (RFC 2630, section 6.1). In this case, the cipher text must be supplied by
other means. To avoid the additional data management for the application, it is assumed in
this API that the cipher text will be included in the EncryptedContentInfo.

An implementation to support the API may provide a tool to help users search for end entity
certificates and construct the recipient list for encrypted messages. Depending on what is
expected by the underneath vendor-specific encryption function, this tool may guide the user
to provide information suitable for identifying an intended recipient such as a name or an
email address. The tool will use such information to search the repository for the desired
certificates and construct the recipient list needed by the encryption function. The sender of
an encrypted message may not be automatically on the recipient list. Therefore, if the sender
wishes to receive a copy of the cipher text, his name should be added to the list.

9. If the application wishes to encrypt and sign the same piece of data, RFC 2630 does not

require the two procedures to be performed in a specific order. The application may receive
encapsulated data that has been signed and/or encrypted in any order.

Note:

For FDIC PKI applications, if an object needs to be signed and encrypted, it is recommended
that the object be signed first, then encrypted, then optionally resigned. The rationale being
that if an object is encrypted then signed, it will be difficult to establish technical non-
repudiation. The optional resigning can be used to prevent denial of service attack; if the
outer signature does not verify then there is no need to decrypt the data and verify the inner
signature. If the data is only signed then encrypted, the application must decrypt the data and
attempt to verify the inner signature. The downside of sign-encrypt-resign is that processing
authentic data will require two signature verifications and one decryption.

10. It is assumed that the application will allocate and deallocate the memory for all the input and
output parameters. For output that has fixed size or relatively small size, the application
should simply allocate a reasonable amount of memory for such parameter. In cases where
the length of the output is more difficult to predict, the application should supply a length
parameter along with the actual output. As input to the API, this length parameter specifies
the size of memory, in bytes, that has been allocated for the associated output. If the PKI
determines that more space is needed, the API will return INSUFFICIENT_BUFFER_SIZE
as the error code and indicate the actual size needed in the length parameter. Based on this
information, the application should free up the space previously allocated and reallocate the
needed space before calling the specific function again. Alternatively, the application can
allocate nothing and specify zero for the length and NULL for the associated output on the
first attempt, wait for returned information from the API, then make the necessary allocation
and call the function again. The API developers should check the incoming length and the
associated buffer. If the length comes in as zero and/or the buffer comes in as a NULL
pointer, the API should return INSUFFICIENT_BUFFER_SIZE and return the amount of
space that is needed in the length parameter. When the application receives an

 DRAFT

 4

INSUFFICIENT_BUFFER_SIZE error code, other than the length and status message, it
should not assume any valid information would be contained in the other output parameters.

11. Two sets of cryptographic functions are specified in this API: one set for file oriented
operations, and another for buffer oriented operations. Each function will return a return
code. If there is no error encountered, the function will return 0; otherwise it will return an
error code listed in the Appendix. Additional information may be returned in error_data for
debugging purpose.

For a glue-layer implementation that maps the high-level API to low-level vendor-specific
cryptographic API, the glue-layer must also map the vendor-specific error codes to the return
codes specified in the Appendix. This will allow an application to handle error codes from
different PKI implementations. A unique code ERR_UNKNOWN is defined for vendor
specific error codes that do not correspond to any other error code specified in the Appendix.
In this case, it is recommended that the vendor specific error code, plus error description, be
included in error_data for tracking purpose.

In describing the following functions, the input and output parameters are listed along with
specific data types for the arguments. Data types such as SignedData and EnvelopedData are
DER-encoded octet strings that are defined in RFC 2630. GeneralizedTime is an ASN.1 [2]
data type used to represent time and date in the YYYYMMDDHHMMSS.SSS form with
some permitted variations.

High Level PKI Service Calls

int signBuffer(

IN uint32 data_length,
IN char* data_to_sign,
IN Boolean authent_required,
IN Boolean encap_data_flag,
IN/OUT uint32* signed_data_length,
IN/OUT SignedData* signed_data,
OUT char* error_data

);

This function will cause the underlying components to
• Reauthenticate the user to the PKI if the authent_required flag is set to TRUE.
• Locate the signer’s key and generate digital signature over the data to be signed.
• DER-encode the signature and relevant information (such as signerInfo) in the SignedData

type of RFC2630.
• Return error code or success to the application.

signBuffer() arguments:
data_length: the length of data_to_sign.
data_to_sign: the buffer for the data to be signed.
authent_required: Specifies whether a user should be reauthenticated to the PKI before a digital

signature can be generated.
encap_data_flag: Specifies whether the signed content should be included in
EncapsulatedContentInfo.

 DRAFT

 5

signed_data_length: A pointer to the size of the signed_data buffer. As input to the API, it points
to the memory size allocated for signed_data. As output, it points to the actual length of
signed_data.

signed_data: the buffer to hold the signature octet string.
error_data: the buffer to hold pertinent information about the error condition.

signBuffer() return values: See assumption 11.

int signFile(

IN char* infile,
IN Boolean authent_required,
IN Boolean encap_data_flag,
IN Boolean output_to_file,
IN char* outfile,
IN/OUT uint32* signed_data_length,
IN/OUT SignedData* signed_data,
OUT char* error_data

);

This function will cause the underlying components to
• Reauthenticate the user to the PKI if the authent_required flag is set to TRUE.
• Open and read the file to be signed; return error if it can not be opened or read.
• Locate the signer’s key and generate a digital signature over the file to be signed.
• DER-encode the signature and other relevant information (such as signerInfo) in the

SignedData type. Write the signature output to the signed_data buffer or to the outfile file,
depending on the choice specified in output_to_file.

• Return error code or success to the application.

signFile() arguments:
infile: the name of the file to be signed.

authent_required: Specifies whether a user should be reauthenticated to the PKI before a
digital signature can be generated.
encap_data_flag: Specifies whether the file to be signed should be included in
EncapsulatedContentInfo of SignedData. The default is FALSE. It is generally
undesirable to include the signed file, unless small in size, in EncapsulatedContentInfo.

output_to_file: Specifies whether the signature output should be sent to a file or a buffer. If the
output is sent to a buffer, signed_data_length and signed_data shall be used; and
verifyBuffer rather than verifyFile should be called to verify the signature contained in the
buffer. If the signature output is to be written to outfile, then verifyFile should be called
later on for signature verification.

outfile: the name of the file to receive the signature output.
signed_data_length: A pointer to the size of the signed_data buffer. As input to the API, it points

to the memory size allocated for signed_data. As output, it points to the actual length of
signed_data. Signed_data_length and signed_data shall be used only when output_to_file
is FALSE.
signed_data: the buffer to hold the signature octet string. Signed_data_length and

signed_data shall be used only when output_to_file is FALSE.
error_data: the buffer to hold pertinent information about the error condition.

signFile() return values: See assumption 11.

 DRAFT

 6

int verifyBuffer(

IN uint32 signed_data_length,
IN SignedData* signed_data,
IN ushort policy,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
IN/OUT uint32* data_verified_length,
IN/OUT char* data_verified,
OUT char* error_data

);

This function is used to verify the signature contained in the signed_data buffer. Upon a
successful verification, the signer identity, timestamp, and the original signed content are
returned.

verifyBuffer() arguments:
signed_data_length: the length of signed_data.
signed_data: the buffer that holds the signature octet string
policy: the required policy or assurance level under which the verification certificate must be

issued. Applications that do not require policy checking can set this to zero as input.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time.
data_verified_length: Specifies the length of data_verified, which is also the data signed.

Depending on whether the signed content was included in EncapsulatedContentInfo, this
parameter has different settings as input to the API. If the signed content was included in
EncapsulatedContentInfo, this parameter, as input to the API, points to the memory size
allocated for data_verified. As output, it points to the actual length of data_verified.
However, if the original signed content was not included in EncapsulatedContentInfo,
then it should be specified through data_verified and data_verified_length for signature
verification. In this case, as input and output to the API, this parameter always points to
the length of the signed content held in the data_verified buffer.

data_verified: the buffer to hold or holding the signed content depending on whether the content
was included in EncapsulatedContentInfo. If the signed content was included in
EncapsulatedContentInfo, this parameter, as input to the API, specifies an empty buffer.
As output, it holds the signed content whose signature is just verified. On the other hand,
if the signed content was not included in EncapsulatedContentInfo, this parameter, as
input and output to the API, buffers the data that was signed.

error_data: the buffer to hold pertinent information about the error condition.

verifyBuffer() return values: See assumption 11.

int verifyFile(

IN/OUT char* file_signed,
IN char* signature_file,
IN ushort policy,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
OUT char* error_data

);

 DRAFT

 7

This function is used to verify a digital signature contained in the signature_file. Upon a
successful verification, the signer identity, timestamp, and the original signed content are
returned.

verifyFile() arguments:
file_signed: names the file to receive or holding the signed data depending on whether the

original signed content was included in EncapsulatedContentInfo. If the signed file
content was included in EncapsulatedContentInfo, this parameter should specify a file
name to receive the content signed upon a successful verification. If the file content was
not included in EncapsulatedContentInfo, this parameter, as input and output to the API,
names the file that was signed.

signature_file: names the file that contains the signature octet string.
policy: the required policy or assurance level under which the verification certificate must be

issued. Applications that do not require policy checking can set this to zero as input.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time.
error_data: the buffer to hold pertinent information about the error condition.

verifyFile() return values: See assumption 11.

int encryptBuffer(

IN uint32 data_length,
IN char* data_to_encrypt,
IN ushort encryption_algorithm,
IN Boolean authent_required,
IN/OUT uint32* enveloped_data_length,
IN/OUT EnvelopedData* enveloped_data,
OUT char* error_data

);

This function will cause the underlying components to
• Construct the recipient list and locate each recipient’s encryption certificate or key agreement

public key certificate depending on the choice of key management techniques. Check the
validity of the recipient’s certificate. Locate the sender’s private key if key agreement is
selected.

• Generate a random session or one-time symmetric key. If key transport is the choice for
deriving the same encrypting key between the sender and the recipient, then the session or
one-time key should be encrypted under the recipient’s public encryption key. If key
agreement is the choice, then the sender’s private key and the recipient’s key agreement
public key are used to generate a pair wise symmetric key, which is then used to encrypt the
session or one-time key. If the key management choice is neither key transport nor key
agreement, but rather to use a previously distributed symmetric key encryption key, then the
session or one-time key should be encrypted under this key encryption key. In order for this
key management scheme to work, the sender must have a previously distributed key
encryption key with each recipient that the sender may communicate with. Since this key
management scheme does not scale well to a large user community, we recommend that only
key transport or key agreement be used.

• Encrypt the data buffer under the session or one-time key using the encryption algorithm
specified in encrytion_algorithm.

 DRAFT

 8

• DER-encode the recipient-specific information and cipher text in the envelopedData type of
RFC2630. Note that the application will send the same DER-encoded envelopedData to all
the recipients. It is the responsibility of each recipient’s PKI to decode the envelopedData and
parse the recipient-specific information in order to derive the encryption key that is to decrypt
the cipher text.

encryptBuffer() arguments
data_length: the length of the data_to_encrypt buffer.
data_to_encrypt: the data buffer to be encrypted.
encryption_algorithm: the encryption algorithm to be used.
authent_required: Relevant only if key agreement is used during the encryption process, this flag

specifies whether the user needs to be reauthenticated to the PKI before the private key
can be used to perform key agreement. If key agreement is not used, this flag should be
set to FALSE.

enveloped_data_length: A pointer to the size of the enveloped_data buffer. As input to the API, it
points to the memory size allocated for enveloped_data. As output, it points to the actual
size of enveloped_data.

enveloped_data: the buffer to hold the encrypted octet string that corresponds to the
EnvelopedData type of RFC 2630.

error_data: the buffer to hold pertinent information about the error condition.

encryptBuffer() return values: See assumption 11.

int encryptFile(
IN char* file_to_encrypt,
IN ushort encryption_algorithm,
IN Boolean authent_required,
IN Boolean output_to_file,
IN char* encrypted_file,
IN/OUT uint32* enveloped_data_length,
IN/OUT EnvelopedData* enveloped_data,
OUT char* error_data

);

This function will cause the underlying components to
• Open the specific files for reading/writing. Return error code if it encounters a problem.
• Construct the recipient list and locate each recipient’s encryption certificate or key agreement

public key certificate depending on the choice of key management techniques. Check the
validity of the recipient’s certificate. Locate the sender’s private key if key agreement is
selected; the sender may need to be reauthenticated if authent_required is set to TRUE.

• Generate a random session or one-time symmetric key. If key transport is the choice for
deriving the same encrypting key between the sender and the recipient, then the session or
one-time key should be encrypted under the recipient’s public encryption key. If key
agreement is the choice, then the sender’s private key and the recipient’s key agreement
public key are used to generate a pair wise symmetric key, which is then used to encrypt the
session or one-time key. If the key management choice is neither key transport nor key
agreement, but rather to use a previously distributed symmetric key encryption key, then the
session or one-time key should be encrypted under this key encryption key. In order for this
key management scheme to work, the sender must have a previously distributed key
encryption key with each recipient that the sender may communicate with. Since this key

 DRAFT

 9

management scheme does not scale well to a large user community, we recommend that only
key transport or key agreement be used.

• Read the file content into a data buffer; encrypt the buffer under the session or one-time key
using the specified encryption algorithm.

• DER-encode the recipient-specific information and cipher text in the envelopedData type of
RFC2630. Depending on the choice specified in output_to_file, the encrypted output should
be written to a buffer, enveloped_data, or to a file named by encrypted_file. Note that the
application will send the same encrypted file or buffer to all the recipients. It is the
responsibility of each recipient’s PKI to read the file or buffer, decode the envelopedData,
and parse the recipient-specific information in order to derive the encryption key that is to
decrypt the cipher text.

encryptFile() arguments
file_to_encrypt: the name of the file to be encrypted.
encryption_algorithm: the encryption algorithm to be used.
authent_required: Relevant only if key agreement is used during the encryption process, this flag

specifies whether the user needs to be reauthenticated to the PKI before the private key
can be used to perform key agreement. If key agreement is not used, this flag should be
set to FALSE.

output_to_file: Specifies whether the encrypted output should be sent to a file or a buffer. If the
output is sent to a buffer, enveloped_data_length and enveloped_data shall be used; and
decryptBuffer rather than decryptFile should be called to decrypt the encrypted buffer. If
the output is sent to the encrypted_file file, then decryptFile should be called to decrypt
the encrypted file.

encrypted_file: names the file to receive the encrypted output.
enveloped_data_length: A pointer to the size of the enveloped_data buffer. As input to the API, it

points to the memory size allocated for enveloped_data. As output, it points to the actual
length of enveloped_data. This parameter and enveloped_data shall be used only when
output_to_file is set to FALSE.

enveloped_data: the buffer to hold the encrypted octet string. This parameter and
enveloped_data_length shall be used only when output_to_file is set to FALSE.

error_data: the buffer to hold pertinent information about the error condition.

encryptFile() return values: See assumption 11.

int decryptBuffer(

IN uint32 enveloped_data_length,
IN EnvelopedData* enveloped_data,
IN Boolean authent_required,
IN/OUT uint32* plain_text_length,
IN/OUT char* plain_text,
OUT ushort* encryption_algorithm,
OUT char* error_data

);

This function is used to decrypt an encrypted enveloped_data buffer. Upon successful decryption,
the plain text and the encryption algorithm used are returned.

decryptBuffer() arguments
enveloped_data_length: the length of the enveloped_data buffer.
enveloped_data: the buffer that holds the encrypted octet string.

 DRAFT

 10

authent_required: Relevant only if key transport or key agreement is used during the
encryption process, this flag specifies whether the user needs to be reauthenticated to the
PKI before his private key can be used to perform key transport or key agreement. If key
transport or key agreement is not used, this flag should be set to FALSE.

plain_text_length: a pointer to the size of the plain_text buffer. As input to the API, it points to
the memory size allocated for plain_text. As output, it points to the actual length of
plain_text.

plain_text: the buffer to receive the decrypted text.
encryption_algorithm: a pointer to the encryption algorithm used.
error_data: the buffer to hold pertinent information about the error condition.

decryptBuffer() return values: See assumption 11.

int decryptFile(

IN char* encrypted_file,
IN Boolean authent_required,
IN char* plain_text_file,
OUT ushort* encryption_algorithm,
OUT char* error_data

);

This function is used to decrypt an encrypted file. Upon successful decryption, the plain text and
the encryption algorithm used are returned.

decryptFile() arguments
encrypted_file: the name of the file that contains the encrypted octet string.
authent_required: Relevant only if key transport or key agreement is used during the encryption

process, this flag specifies whether the user needs to be reauthenticated to the PKI before
his private key can be used to perform key transport or key agreement. If key transport or
key agreement is not used, this flag should be set to FALSE.

plain_text_file: the name of the file that is to receive the decrypted text.
encryption _algorithm: a pointer to the encryption algorithm used.
error_data: the buffer to hold pertinent information about the error condition.

decryptFile() return values: See assumption 11.

int CMSBufferParser (

IN uint32 signed_data_length,
IN SignedData* signed_data,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
IN/OUT uint32* content_length,
IN/OUT char* content_signed,
OUT char* error_data

);

* Note this is a non-cryptographic function call. It allows an application that is unaware of the
complex CMS structure to be able to obtain information about the signer without having to verify
the signature. The idea came from the S/MIME (Secure/Multipurpose Internet Mail Extensions)
client implementation where one may receive a signed message but does not feel the need to
verify the signature, and yet wants to know what was signed and who signed it. Note that if the

 DRAFT

 11

content that was signed had not been included in the EncapsulatedContentInfo of SignedData,
then the output content_length should return zero and content_signed shall be an empty string.

CMSBufferParser() arguments:
signed_data_length: the length of the signed_data buffer.
signed_data: the buffer that holds the signature octet string.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time.
content_length: a pointer to the size of content_signed. As input to the API, it points to the

memory size allocated for content_signed. As output, it points to the actual length of
content_signed.

content_signed: the buffer to receive the original signed content. If that content was not included
in EncapsulatedContentInfo, then content_signed should be an empty string.

error_data: the buffer to hold pertinent information about the error condition.

CMSBufferParser() return values: See assumption 11.

int CMSFileParser (

IN char* signature_file,
IN/OUT char* file_signed,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
OUT char* error_data

);

• Note this is a non-cryptographic function call. It allows an application that is unaware of

the complex CMS structure to be able to obtain information about the signer without having
to verify the signature. The idea came from the S/MIME client implementation where one
may receive a signed message but does not feel the need to verify the signature, and yet wants
to know what was signed and who signed it. In the case of a signed file, the file content by
default will not be included in the EncapsulatedContentInfo, therefore, the signed content will
not be written to file_signed. However, if the signed content was included in
EncapsulatedContentInfo, the signed content will be written to the file_signed file.

CMSFileParser() arguments:
signature_file: the name of the signature file.
file_signed: the name of the file to receive the original signed content.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time.
error_data: the buffer to hold pertinent information about the error condition.

CMSFileParser() return values: See assumption 11.

 DRAFT

 12

APPENDIX – ERROR CODES

Error Code Meaning If present, data is
ERR_INVALID_PARAMETER Parameter does not contain required information Parameter in error
ERR_INSUFFICIENT_BUFFER_SIZE Allocated memory is not sufficient Parameter in error
ERR_ALLOC_ERROR Could not allocate memory Parameter in error
ERR_FILE_OPERATION Error occurred in a file operation Filename
ERR_KEY_NOT_FOUND The required key could not be found DN of key owner
ERR_UNSUPPORTED_ALGORITHM The algorithm in this protected object is unsupported Algorithm ID
ERR_ASN1_PARSE_FAILURE Could not parse an ASN.1 object
ERR_CERT_INVALID The certificate is not valid DN of certificate
ERR_CERT_PATH_ERROR No valid path can be found to validate a certificate DN of certificate
ERR_CERT_EXPIRED The certificate is expired DN of certificate
ERR_CERT_ASSURANCE_LEVEL_NOT_MET Certificate policy does not meet the required assurance level DN of certificate
ERR_CERT_EXT_UNKNOWN_CRITICAL The certificate contains an unknown extension marked critical DN of certificate
ERR_RR_UNSPECIFIED The certificate was revoked with an unspecified reason DN of revoked certificate
ERR_RR_KEY_COMPROMISE The certificate was revoked with the reason of key compromise DN of revoked certificate
ERR_RR_AFFILIATION_CHANGED The certificate was revoked with the reason of affiliation changed DN of revoked certificate
ERR_RR_SUPERSEDED The certificate was revoked with the reason of superseded DN of revoked certificate
ERR_RR_CESSATION_OF_OPERATION The certificate was revoked with the reason of cessation of operation DN of revoked certificate
ERR_RR_OTHER The certificate was revoked DN of revoked certificate
ERR_CRL_NOT_FOUND Could not find the required CRL DN of CRL issuer
ERR_CRL_SIGNATURE_FAILED The signature on a CRL could not be verified DN of CRL issuer
ERR_CRL_EXT_UNKNOWN_CRITICAL The CRL contains an unknown extension marked critical DN of CRL issuer
ERR_WRONG_CRYPTO_SEQUENCE Wrong sequence of cryptographic function is called
ERR_SIG_VERIFY_FAILED Failed to verify a signature
ERR_ENCRYPT_FAILED Failed to encrypt data
ERR_DECRYPT_FAILED Failed to decrypt data

ERR_UNKNOWN Failed service or resource unavailable

Error description received
from underneath PKI
service calls

 DRAFT

 13

References

[1] Housley, R. Cryptographic Message Syntax. RFC 2630. June 1999.

[2] ITU-T X.680 : OSI networking and system aspects – Abstract Syntax Notation One (ASN.1). December 1997.

