
AES-hash

Principal Submitter: Bram Cohen
(415)775-6963

bram@gawth.com
1166 Pine Street #11

San Francisco, CA 94109

Auxiliary Submitter: Ben Laurie
ben@algroup.co.uk

May 2, 2001



1 Properties

AES-hash is a secure hash function, meaning it takes an arbitrary bit string as
input and returns a fixed length (in this case, 256 bit) string as output.

Any alteration of the input should completely garble the output. Finding two
files which hash to the same value should require on average approximately 2128

operations. Finding a file which hashes to a specific value should require on
average 2255 operations. It should be impossible to deduce anything about a
file from its hash in a way faster than guessing at the entire original file.

AES-hash parallelizes to the limited extent that its key setups can be done in
parallel with its encryptions, but a file as a whole must be hashed serially. It
does, however, only require a single pass.

Secure hash modes require no keying material, but it would be straightforward
to make keyed variants.

AES-hash requires a small fixed amount of memory to keep its Hi values in but
only needs to keep a single block of the hashed file in memory at once.

AES-hash works on arbitrary bitstrings, to make it applicable in as wide a
variety of applications as possible.

All secure hash functions act as a sort of perverse compression mechanism,
boiling everything down to a small fixed size, in this case 256 bits.

2 Intellectual Property

AES-hash is largely derivative of Davies-Meyer and its padding is derived from
other hashing functions. We know of no intellectual property restrictions on it’s
use, and make no claim of ownership of our own.

3 Description

AES-hash is a secure hash mode for AES, with the same properties and key
length as SHA-256. Its advantage is greater performance.

Rijndael is used in 256-bit key, 256-bit block mode.

First, the file to be hashed is padded to make it’s length be an even multiple
of the block size and include a length encoding. This is done by padding with
zeros to the next size which is an odd multiple of 128 bits and then appending
a 128-bit big-endian encoding of the number of bits in the original file.

The resulting file is a multiple of 256 bits long, and has the property that no two
different files pad to the same final file. It also works on arbitrary bitstrings,
not ones which happen to be an even number of bytes. It is assumed that
byte strings are big-endian, so, for example, a ’one followed by seven zeros’
corresponds to 128.

Once that is done, the file is hashed using a slight variant of Davies-Meyer.

For Davies-Meyer, the file is broken into 256-bit blocks x1, x2 · · ·xn.

1



H0 = 2256 − 1 (1)

Hi = Exi(Hi−1)⊕Hi−1 (2)

Hn is the Davies-Meyer hash. It is appended to the end of the file as xn+1 and
Hn+1 is computed. Hn+1 is the AES-hash of the original file. That is

H = Hn+1 = EHn(Hn)⊕Hn (3)

alternatively, the final value can be computed using the exclusive or of Hn and
xn as the key and Hn as the block to be encrypted. This has the advantage of
keeping the input size at 2512 instead of reducing it to 2256. This dramatically
increases the cost of an attack on the final block.

H = Hn+1 = EHn⊕xn ⊕Hn (4)

Without the last step, an attacker could take a hash without knowing the cor-
responding file, and use it to generate the hash of a file which is the original file
with an appended bitstring of arbitrary content.

Since this algorithm returns the Davies-Meyer hash of a file that is an extension
of the input file, it should be at least as strong as Davies-Meyer.

Davies-Meyer was selected because it is unbroken and, unlike Matyas-Myer-
Oseas, it allows the next key setup to be done in parallel with the previous
encryption.

The length encoding at the end provides some resistance to attacks which find a
cycle in the round function. It is consistent with the same operation in SHA-1.

AES-hash allows for single-pass hashing almost as fast as rijndael in 256-bit key
and block mode, with the same hash size as SHA-256.

4 Characteristics

Security Function hashing
Error Propagation infinite
Synchronization none
Parallelizability interleaved
Keying Material Requirements none
Counter/IV/Nonce Requirements none
Memory Requirements 256 bits of hash + 256 bits of input bitstream at a time

+ AES requirements for two key schedules
Pre-processing Capability N/A
Message Length Requirements padding necessary (to an odd multiple of 128 bits + 128 bits)
Ciphertext Expansion fixed reduction to 256 bits
Other Characteristics none

2



5 Performance

If the AES key schedule setup takes time Tk, a single block encryption takes
time Te, a 256-bit exclusive or takes time Tx and the input file plus padding
consists of n 256 bit blocks, then the total processing time TP is

TP = (n+ 1)(Tk + Te + Tx) (5)

and the total elapsed time TE is

TE = Tk + Te + Tx + nmin(Te + Tx, Tk) (6)

3


