
Xoodyak, an update

Joan Daemen2, Seth Hoffert, Silvia Mella1, Michaël Peeters1,
Gilles Van Assche1 and Ronny Van Keer1

1 STMicroelectronics
2 Radboud University

Date: September 18, 2020

In this document, we highlight some new results on our candidate algorithm Xoodyak
since its submission in March 2019. In particular, we cover the following topics:

• new third-party cryptanalysis;

• improved differential and linear trail bounds;

• new hardware implementations and performance results;

• new protections against side-channel and fault attacks;

• a tweak proposal to speed up the processing of short messages.

This document answers the call of the NIST LWC team on August 18 to provide
updates on the candidate algorithms.

1 New third-party cryptanalysis

Since the submission of Xoodyak in March 2019, the following papers have been pub-
lished.

In [9], Song et al. mount cube attacks on a Xoodoo-based authenticated encryption
scheme following the same mode as Ketje. The authors succeed on the initialization
phase reduced to 6 rounds of Xoodoo (out of the nominal 12). Despite that Xoodyak
does not use the same mode as Ketje, there is nevertheless significant similarity between
their initializations. Furthermore, the authors discuss the effects of switching from 5-bit
to 3-bit χ between Keccak-p and Xoodoo, and argue that the narrower χ contributes
to an increased resistance against cube-attack-like analysis.

In [12], Zhou et al. apply a conditional cube attack to Xoodyak with the permutation
reduced to 6 rounds. In the nonce-misuse setting, their attack could recover the 128-bit
key in about 244 operations with negligible memory costs.

In [7], Liu et al. show that a zero-sum distinguisher can be mounted on Xoodoo[12].
This is not surprising given the current knowledge on such distinguishers on Keccak-p,
see, e.g., [1]. This distinguisher on the permutation does not contradict our claim of
hermetic strategy as it does not extend to Xoodyak (or to a sponge-based function on
top of Xoodoo[12] in general), see [4, Section 4.1].

2 Improved trail bounds

The design of the Xoodoo permutation comes with lower bounds on both differential and
linear trails. They were obtained by exhaustively exploring the space of all trails up to a
given weight, as described in our original publication on Xoodoo [3].

Since the submission of Xoodyak in March 2019, we have extended the trail analysis
and improved the bounds, in particular for 4 and 5 rounds. Table 1 shows the currently
known lower bounds. The details on the techniques used to improve the bounds can be
found in [5, Section 4.3.1].

Table 1: The weight of the best differential and linear trails (or lower bounds) as a function
of the number of rounds.

rounds: 1 2 3 4 5 6 8 10 12
differential: 2 8 36 � 74 � 94 � 104 � 148 � 188 � 222
linear: 2 8 36 � 74 � 94 � 104 � 148 � 188 � 222

3 Hardware implementations and performance results

We implemented Xoodyak in hardware and performed performance analysis for ASIC
and FPGA.

The implementation makes use of the Development Package for Hardware Implemen-
tations Compliant with the Hardware API for Lightweight Cryptography, v1.0.3 [11]. The
supported external data bus width is 32 bits. The number of rounds R performed in a
clock cycle is configurable at design time and can be set to 1, 2, 3, 4, 6, or 12, namely, to
one of the divisors of the total number of rounds of the permutation.

The code is publicly available on GitHub as part of the Xoodyak repository [8] and
was submitted to the FPGA and ASIC benchmarking projects [10, 6].

To compute the throughput of our implementation, note that the processing of a n-bit
block of data takes n/32 + 12/R + 3 clock cycles, where n = 352, 192, 128 for associated
data, plaintext/ciphertext and message to hash, respectively.

3.1 ASIC results

We synthesized the circuit in STMicroelectronics 40nm technology with Synopsys Design
Compiler version Q-2019.12-sp1.

Table 2 reports the area cost in kilogate equivalent (kGE) for different values of R and
different target frequencies. A dash means that the worst critical path does not respect
the given timing constraint and thus area results are not meaningful.

The throughput of the most interesting R-frequency pairs is reported in Table 3. It
appears that small values of R are usually better in terms of speed per area, unless a small
frequency is required.

Note that we also developed an alternative version that supports only authenticated
encryption and decryption (i.e., without hashing), and we noticed that the performance
gain in terms of area is negligible (between 0.24 and 0.58 kGE).

3.2 FPGA results

We performed the synthesis using Vivado v2019.2 and a board of the Xilinx Artix-7 family
(xc7a12tcsg325-3), which has 8,000 lookup tables (LUTs) and 16,000 flip-flops (FFs). The
board is one of those suggested by the Athena FPGA benchmarking project.

2

Table 2: Area cost (in kGE) of the ASIC implementation of Xoodyak (including hashing).
Freq. (MHz) R=1 R=2 R=3 R=4 R=6 R=12

100 8.20 10.66 13.12 15.58 20.25 49.85
200 8.20 10.69 13.12 15.59 30.65 -
300 8.26 10.72 13.39 25.03 - -
400 8.43 10.90 22.74 - - -
500 8.78 14.57 - - - -
600 9.09 - - - - -

Table 3: Throughput (Gbit/second) for associated data (AD), encryption and hashing
area, for some area/speed trade-offs of the ASIC implementation.

Area (kGE) Freq. (MHz) R AD Enc. Hash
8.20 100 1 1.35 0.91 0.67
8.20 200 1 2.71 1.83 1.35
8.26 300 1 4.06 2.74 2.02
8.43 400 1 5.42 3.66 2.69
8.78 500 1 6.77 4.57 3.37
9.09 600 1 8.12 5.49 4.04

10.66 100 2 1.76 1.28 0.98
10.69 200 2 3.52 2.56 1.97
10.72 300 2 5.28 3.84 2.95
10.90 400 2 7.04 5.12 3.94
13.12 100 3 1.96 1.48 1.16
13.12 200 3 3.91 2.95 2.33
13.39 300 3 5.87 4.43 3.49
14.57 500 2 8.80 6.40 4.92

3

https://8.7814.57

Table 4 reports resource utilization in terms of LUTs for different values of R and
target frequencies. The number of FFs required is 480 in all cases. Also in this case,
the cost of the variant supporting only authenticated encryption and decryption does not
differ significantly from the reported values.

The throughput of the most interesting R-frequency pairs is reported in Table 5. Like
for the ASIC, it appears that small values of R are usually better in terms of speed per
area, unless a small frequency is required.

Table 4: LUTs utilization of the FPGA implementation of Xoodyak (including hashing).
The number of FFs used is 480 in all cases.

Freq. (MHz) R=1 R=2 R=3 R=4 R=6 R=12
50 1417 1970 2672 3271 4313 10982*
100 1414 1970 2671 - - -
200 1399 - - - - -

*the number of LUTs required is beyond the available resources.

Table 5: Throughput (Gbit/second) for associated data (AD), encryption and hashing
area, for some area/speed trade-offs of the FPGA implementation.

Area (LUTs) Freq. (MHz) R AD Enc. Hash
1417 50 1 0.68 0.46 0.34
1414 100 1 1.35 0.91 0.67
1399 200 1 2.71 1.83 1.35
1970 50 2 0.88 0.64 0.49
1970 100 2 1.76 1.28 0.98
2672 50 3 0.98 0.74 0.58
2671 100 3 1.96 1.48 1.16

4 Protections against side-channel and fault attacks

Xoodyak was designed with protections against side channel attacks in mind. The sub-
mission document mentions various techniques to help prevent them, and masking the
evaluation of the Xoodoo permutation is one of them. However, masking and faults can
interact and result in statistically ineffective fault attacks (SIFA). Fortunately, there exist
techniques to implement Xoodoo’s χ operation in a way that prevents SIFA [2].

5 A tweak to speed up short messages

In this section, we present a tweak we will apply, should Xoodyak advance to the next
round. The tweak will not be on Xoodyak itself, but on the subset that is submitted to
the competition, with the purpose of speeding up the processing of very short messages.

Xoodyak is quite flexible and proposes a wider interface than what NIST required
for the Lightweight Cryptography Standardization Process. In [4, Section 6], we map
the functionality that NIST requires to sequences of calls to the Xoodyak interface. In
particular, for authenticated encryption, we propose a sequence that absorbs the nonce in
a dedicated call to Absorb(nonce). This is in fact one of three ways to handle the nonce,
see [4, Section 3.2.2].

To speed up short messages, we will integrate the nonce with the key ID upon ini-
tialization. Assuming an empty key ID, the sequence to encrypt would then simplify
to:

4

Cyclist(K, nonce, ϵ)
Absorb(A)
C Encrypt(P)
T Squeeze(t)
return (C, T)

The advantage is that the key and the nonce are processed in a single call to the
Xoodoo[12] permutation, instead of 2 calls in the current case. The processing of short
messages therefore benefits from 12 rounds less to compute.

References

[1] C. Boura, A. Canteaut, and C. De Cannière, Higher-order differential properties of
Keccak and Luffa, Fast Software Encryption, FSE 2011, Revised Selected Papers
(Antoine Joux, ed.), Lecture Notes in Computer Science, vol. 6733, Springer, 2011,
pp. 252–269.

[2] J. Daemen, C. Dobraunig, M. Eichlseder, H. Groß, F. Mendel, and R. Primas, Protect-
ing against statistical ineffective fault attacks, IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020 (2020), no. 3, 508–543.

[3] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, The design of Xoodoo and
Xoofff, IACR Trans. Symmetric Cryptol. 2018 (2018), no. 4, 1–38.

[4] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van
Keer, Xoodyak, a lightweight cryptographic scheme, Submission to NIST
Lightweight Cryptography Standardization Process (round 2), March 2019,
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf.

[5] , Xoodyak, a lightweight cryptographic scheme, IACR Trans. Symmetric Cryp-
tol. 2020 (2020), no. S1, 60–87.

[6] M. Khairallah, T. Peyrin, and A. Chattopadhyay, Lightweight cryptography asic
benchmarking, March 2020, https://github.com/mustafam001/lwc-aead-rtl.

[7] F. Liu, T. Isobe, W. Meier, and Z. Yang, Algebraic attacks on round-reduced Kec-
cak/Xoodoo, IACR Cryptol. ePrint Arch. 2020 (2020), 346.

[8] S. Mella, Xoodyak hardware code, August 2020, https://github.com/KeccakTeam/
Xoodoo.

[9] L. Song and J. Guo, Cube-attack-like cryptanalysis of round-reduced Keccak using
MILP, IACR Trans. Symmetric Cryptol. 2018 (2018), no. 3, 182–214.

[10] M. Tempelmeier, F. Farahmand, E. Homsirikamol, W. Diehl, J-P Kaps, and Kris
Gaj, A comprehensive framework for fair and efficient benchmarking of hardware im-
plementations of lightweight cryptography, June 2020, https://cryptography.gmu.
edu/athena/index.php?id=LWC.

[11] , Development package for hardware implementations compliant with the hard-
ware api for lightweight cryptography, v1.0.3, June 2020, https://github.com/
GMUCERG/LWC.

[12] H. Zhou, Z. Li, X. Dong, K. Jia, and W. Meier, Practical key-recovery attacks on
round-reduced Ketje Jr, Xoodoo-AE and Xoodyak, Comput. J. 63 (2020), no. 8, 1231–
1246.

5

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf
https://github.com/mustafam001/lwc-aead-rtl
https://github.com/KeccakTeam/Xoodoo
https://github.com/KeccakTeam/Xoodoo
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://github.com/GMUCERG/LWC
https://github.com/GMUCERG/LWC

	New third-party cryptanalysis
	Improved trail bounds
	Hardware implementations and performance results
	ASIC results
	FPGA results

	Protections against side-channel and fault attacks
	A tweak to speed up short messages

