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In this document, we highlight some new results on our candidate algorithm Xoodyak 
since its submission in March 2019. In particular, we cover the following topics: 

• new third-party cryptanalysis; 

• improved differential and linear trail bounds; 

• new hardware implementations and performance results; 

• new protections against side-channel and fault attacks; 

• a tweak proposal to speed up the processing of short messages. 

This document answers the call of the NIST LWC team on August 18 to provide 
updates on the candidate algorithms. 

1 New third-party cryptanalysis 

Since the submission of Xoodyak in March 2019, the following papers have been pub-
lished. 

In [9], Song et al. mount cube attacks on a Xoodoo-based authenticated encryption 
scheme following the same mode as Ketje. The authors succeed on the initialization 
phase reduced to 6 rounds of Xoodoo (out of the nominal 12). Despite that Xoodyak 
does not use the same mode as Ketje, there is nevertheless significant similarity between 
their initializations. Furthermore, the authors discuss the effects of switching from 5-bit 
to 3-bit χ between Keccak-p and Xoodoo, and argue that the narrower χ contributes 
to an increased resistance against cube-attack-like analysis. 

In [12], Zhou et al. apply a conditional cube attack to Xoodyak with the permutation 
reduced to 6 rounds. In the nonce-misuse setting, their attack could recover the 128-bit 
key in about 244 operations with negligible memory costs. 

In [7], Liu et al. show that a zero-sum distinguisher can be mounted on Xoodoo[12]. 
This is not surprising given the current knowledge on such distinguishers on Keccak-p, 
see, e.g., [1]. This distinguisher on the permutation does not contradict our claim of 
hermetic strategy as it does not extend to Xoodyak (or to a sponge-based function on 
top of Xoodoo[12] in general), see [4, Section 4.1]. 



2 Improved trail bounds 

The design of the Xoodoo permutation comes with lower bounds on both differential and 
linear trails. They were obtained by exhaustively exploring the space of all trails up to a 
given weight, as described in our original publication on Xoodoo [3]. 

Since the submission of Xoodyak in March 2019, we have extended the trail analysis 
and improved the bounds, in particular for 4 and 5 rounds. Table 1 shows the currently 
known lower bounds. The details on the techniques used to improve the bounds can be 
found in [5, Section 4.3.1]. 

Table 1: The weight of the best differential and linear trails (or lower bounds) as a function 
of the number of rounds. 

# rounds: 1 2 3 4 5 6 8 10 12 
differential: 2 8 36 � 74 � 94 � 104 � 148 � 188 � 222 
linear: 2 8 36 � 74 � 94 � 104 � 148 � 188 � 222 

3 Hardware implementations and performance results 

We implemented Xoodyak in hardware and performed performance analysis for ASIC 
and FPGA. 

The implementation makes use of the Development Package for Hardware Implemen-
tations Compliant with the Hardware API for Lightweight Cryptography, v1.0.3 [11]. The 
supported external data bus width is 32 bits. The number of rounds R performed in a 
clock cycle is configurable at design time and can be set to 1, 2, 3, 4, 6, or 12, namely, to 
one of the divisors of the total number of rounds of the permutation. 

The code is publicly available on GitHub as part of the Xoodyak repository [8] and 
was submitted to the FPGA and ASIC benchmarking projects [10, 6]. 

To compute the throughput of our implementation, note that the processing of a n-bit 
block of data takes n/32 + 12/R + 3 clock cycles, where n = 352, 192, 128 for associated 
data, plaintext/ciphertext and message to hash, respectively. 

3.1 ASIC results 

We synthesized the circuit in STMicroelectronics 40nm technology with Synopsys Design 
Compiler version Q-2019.12-sp1. 

Table 2 reports the area cost in kilogate equivalent (kGE) for different values of R and 
different target frequencies. A dash means that the worst critical path does not respect 
the given timing constraint and thus area results are not meaningful. 

The throughput of the most interesting R-frequency pairs is reported in Table 3. It 
appears that small values of R are usually better in terms of speed per area, unless a small 
frequency is required. 

Note that we also developed an alternative version that supports only authenticated 
encryption and decryption (i.e., without hashing), and we noticed that the performance 
gain in terms of area is negligible (between 0.24 and 0.58 kGE). 

3.2 FPGA results 

We performed the synthesis using Vivado v2019.2 and a board of the Xilinx Artix-7 family 
(xc7a12tcsg325-3), which has 8,000 lookup tables (LUTs) and 16,000 flip-flops (FFs). The 
board is one of those suggested by the Athena FPGA benchmarking project. 
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Table 2: Area cost (in kGE) of the ASIC implementation of Xoodyak (including hashing). 
Freq. (MHz) R=1 R=2 R=3 R=4 R=6 R=12 

100 8.20 10.66 13.12 15.58 20.25 49.85 
200 8.20 10.69 13.12 15.59 30.65 -
300 8.26 10.72 13.39 25.03 - -
400 8.43 10.90 22.74 - - -
500 8.78 14.57 - - - -
600 9.09 - - - - -

Table 3: Throughput (Gbit/second) for associated data (AD), encryption and hashing 
area, for some area/speed trade-offs of the ASIC implementation. 

Area (kGE) Freq. (MHz) R AD Enc. Hash 
8.20 100 1 1.35 0.91 0.67 
8.20 200 1 2.71 1.83 1.35 
8.26 300 1 4.06 2.74 2.02 
8.43 400 1 5.42 3.66 2.69 
8.78 500 1 6.77 4.57 3.37 
9.09 600 1 8.12 5.49 4.04 

10.66 100 2 1.76 1.28 0.98 
10.69 200 2 3.52 2.56 1.97 
10.72 300 2 5.28 3.84 2.95 
10.90 400 2 7.04 5.12 3.94 
13.12 100 3 1.96 1.48 1.16 
13.12 200 3 3.91 2.95 2.33 
13.39 300 3 5.87 4.43 3.49 
14.57 500 2 8.80 6.40 4.92 
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Table 4 reports resource utilization in terms of LUTs for different values of R and 
target frequencies. The number of FFs required is 480 in all cases. Also in this case, 
the cost of the variant supporting only authenticated encryption and decryption does not 
differ significantly from the reported values. 

The throughput of the most interesting R-frequency pairs is reported in Table 5. Like 
for the ASIC, it appears that small values of R are usually better in terms of speed per 
area, unless a small frequency is required. 

Table 4: LUTs utilization of the FPGA implementation of Xoodyak (including hashing). 
The number of FFs used is 480 in all cases. 

Freq. (MHz) R=1 R=2 R=3 R=4 R=6 R=12 
50 1417 1970 2672 3271 4313 10982* 
100 1414 1970 2671 - - -
200 1399 - - - - -

*the number of LUTs required is beyond the available resources. 

Table 5: Throughput (Gbit/second) for associated data (AD), encryption and hashing 
area, for some area/speed trade-offs of the FPGA implementation. 

Area (LUTs) Freq. (MHz) R AD Enc. Hash 
1417 50 1 0.68 0.46 0.34 
1414 100 1 1.35 0.91 0.67 
1399 200 1 2.71 1.83 1.35 
1970 50 2 0.88 0.64 0.49 
1970 100 2 1.76 1.28 0.98 
2672 50 3 0.98 0.74 0.58 
2671 100 3 1.96 1.48 1.16 

4 Protections against side-channel and fault attacks 

Xoodyak was designed with protections against side channel attacks in mind. The sub-
mission document mentions various techniques to help prevent them, and masking the 
evaluation of the Xoodoo permutation is one of them. However, masking and faults can 
interact and result in statistically ineffective fault attacks (SIFA). Fortunately, there exist 
techniques to implement Xoodoo’s χ operation in a way that prevents SIFA [2]. 

5 A tweak to speed up short messages 

In this section, we present a tweak we will apply, should Xoodyak advance to the next 
round. The tweak will not be on Xoodyak itself, but on the subset that is submitted to 
the competition, with the purpose of speeding up the processing of very short messages. 

Xoodyak is quite flexible and proposes a wider interface than what NIST required 
for the Lightweight Cryptography Standardization Process. In [4, Section 6], we map 
the functionality that NIST requires to sequences of calls to the Xoodyak interface. In 
particular, for authenticated encryption, we propose a sequence that absorbs the nonce in 
a dedicated call to Absorb(nonce). This is in fact one of three ways to handle the nonce, 
see [4, Section 3.2.2]. 

To speed up short messages, we will integrate the nonce with the key ID upon ini-
tialization. Assuming an empty key ID, the sequence to encrypt would then simplify 
to: 
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Cyclist(K, nonce, ϵ) 
Absorb(A) 
C Encrypt(P ) 
T Squeeze(t) 
return (C, T ) 

The advantage is that the key and the nonce are processed in a single call to the 
Xoodoo[12] permutation, instead of 2 calls in the current case. The processing of short 
messages therefore benefits from 12 rounds less to compute. 
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