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Abstract. Romulus is a family of lightweight authenticated encryption with associated data (AEAD) algorithms 
based on the extensively-studied ultra-lightweight tweakable block cipher (TBC) Skinny. It was designed to be 
small and efficient for constrained implementations while achieving 128-bit provable security based on standard 
security assumptions. In this note, we summarize new contents, analysis, benchmarks relative to Romulus. 

In particular, we recall that Romulus is an all-round candidate, which presents excellent hardware performances 
and excellent software performances where lightweight cryptography makes the most sense (4-bit, 8-bit proces-
sors). In addition, Romulus has one primitive call of overhead for small messages (crucial for many lightweight 
applications), which is optimal. This performance profile does not prevent Romulus to be a very conservative can-
didate with absolutely no compromise on security regarding its mode (beyond-birthday-bound (BBB) security in 
contrary to most block cipher-based candidates, security proof in the standard model in contrary to most candi-
dates, nonce-misuse resistance with graceful security degradation which is very important for constrained devices) 
or its internal primitive (very large security margin for Skinny, no attack nor distinguisher of any kind on its 
internal primitive unlike most sponge-based candidates, well understood and easy to analyse SPN construction). 
Moreover, Skinny is probably the most analysed internal primitive of the competition thus far (except current 
NIST standards AES or KECCAK). It has been incorporated in the French COVID-19 tracing application under 
French governmental security agency advice and is currently being considered for standardization at ISO/IEC. 

Since the 2nd round selection, we provided several new contents for Romulus that we would like to incorporate 
in the submission if selected at 3rd round of the competition: 

– we decided to simplify our submission by keeping only the versions based on Skinny-128/384 as we believe they 
are the most interesting (the nonce-respecting mode is now named Romulus-N, the nonce-misuse resistant 
mode is now named Romulus-M). Moreover, as publicly announced by the Skinny team, due to the huge 
security margin offered by Skinny-128/384, the number of rounds has been decreased from 56 to 40 (now 
named Skinny-128/384+), which still maintains more than 30% security margin even for near-brute force 
complexity distinguishers. This will directly offer a 40% boost on all hardware/software performance figures 
currently displayed for Romulus. 

– we have added a simple and efficient rate-1 TBC-based hash function/XOF capability Romulus-H, by directly 
using Naito’s provably-secure MDPH construction: the combination of the well-known Hirose DBL scheme 
and the Merkle-Damg̊ard with Permutation (MDP) domain extender. We also designed leakage-resilient 
AEAD modes (Romulus-LR and Romulus-LR-TEDT for two levels of leakage resilience), both coming with 
a security proof in the leakage model. We emphasize that both these modes are using the same internal 
primitive Skinny-128/384+ and are themselves very similar (for example Romulus-LR simply re-injects the 
message in the tweak inputs compared to Romulus-N). 

– we have added a proof for the INT-RUP security notion as well as the plaintext-awareness PA1 security 
notion for Romulus-M. 

– we have provided threshold implementations of Romulus, which are very competitive according to publicly 
reported threshold implementations of other candidates. As shown by Naito et al. at Eurocrypt 2020, TBCs 
have a great small-size advantage over other designs for such implementations. 

– we studied various performance trade-offs in hardware implementations, which show that the Romulus design 
offers excellent security-performance-area trade-offs. 

In addition, we note that there is currently no TBC standard, while TBCs are very flexible primitives that can 
be used very easily to build various BBB secure modes. 

Due to the 5-page limitation, the proofs, implementation details, etc. can be found in the companion papers 
submitted to the NIST LWC Workshop 2020 [12, 16]. 

1 Simpler and Faster Variants 

The Skinny TBC [5] went through a lot of third-party analysis efforts over the past 4 years, with more than 30 
cryptanalysis papers (and three cryptanalysis competitions conducted), which makes it the most analysed primitive 
of the competition, except AES or KECCAK. The number of attacked rounds stayed quite stable since the Skinny 
original publication. This confidence led to the incorporation of Skinny in the French COVID-19 tracing application 
under French governmental security agency advice. Moreover, Skinny is currently being considered for standardization 
at ISO/IEC (going on Committee Draft 18033-7). 



At time of writing, the best known attacks against Skinny-128/384 cover 28 rounds [26] (out of 56 rounds), which 
means that the security margin is of 50% and actually much more if one considers only single-key attacks and/or 
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attacks with a complexity lower than 2 . Indeed, all these attacks have very high complexity, much more than 2 

384
in computational complexity and sometimes up to almost 2 , and only work in the related-tweakey model where 
differences need to also be inserted in the tweak and/or key input. In the single-key model, the best known attacks 
against Skinny-128/384 covers only 22 rounds [9, 22, 24], again all these attacks having a very high computational 
complexity. 

Compared to other block ciphers, where the security margin is usually at very best around 33%, this security 
margin is maybe too large. Even more so if we compare with permutations used in sponge functions proposals, where 
non-random behaviour can be usually exhibited for the full-round internal primitive for a complexity lower than the 
targeted security parameter of the whole scheme (actually often with practical complexity). For this reason, the Skinny 
team decided to propose a new variant of Skinny-128/384 (named Skinny-128/384+) by reducing its number of rounds 
from 56 to 40, to give a security margin of around 30% (in the worst-case related-tweakey scenario, without even 
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excluding attacks with complexity much higher than 2 ), which still provides a very large security margin [23]. 

In order to simplify our NIST submission, we decided to only keep our first Romulus versions based on Skinny-
128/384 (and thus now Skinny-128/384+), which were our original primary versions. Indeed, we believe these versions 
are the most interesting ones (for the same performance, they offer more flexibility) and in addition our submission 
gains in consistency as now all our modes are based on Skinny-128/384+ only. To summarize, Romulus will now consists 
in a nonce-respecting AEAD mode Romulus-N, a nonce-misuse resistant AEAD mode Romulus-M, two leakage resilient 
AEAD modes Romulus-LR, Romulus-LR-TEDT, and one hash function/XOF Romulus-H. 

We emphasize that Romulus-N and Romulus-M are exactly the same as previous round Romulus-N1 and Romulus-
M1, with simply Skinny-128/384+ used instead of Skinny-128/384. The security claims remain of course the same, while 
they will provide a 40% direct performance throughput/latency improvement over currently reported benchmarks (for 
the same area/memory). In Table 1, we summarize the specification of these new members and compare them with 
old variants. 

Table 1: New and old variants of Romulus. 
New members Mode Primitive Comment 

Romulus-N Romulus-N1 [17, 18] BBB nonce-respecting AEAD 

Romulus-M Romulus-M1 [17, 18] BBB nonce-misuse resistant AEAD 

Romulus-H MDPH [20] Skinny-128/384+ Hash function / XOF 

Romulus-LR AET-LR [12] leakage resilient AEAD (CIML2 + CCAml1) 

Romulus-LR-TEDT TEDT [8] leakage resilient AEAD (CIML2 + CCAmL2) 

Previous members Mode Primitive Comment 

Romulus-N1 Skinny-128/384 BBB nonce-respecting AEAD 

Romulus-N2 Romulus-N1 [17, 18] Skinny-128/384 BBB nonce-respecting AEAD 

Romulus-N3 Skinny-128/256 BBB nonce-respecting AEAD 

Romulus-M1 Skinny-128/384 BBB nonce-misuse resistant AEAD 

Romulus-M2 Romulus-M1 [17, 18] Skinny-128/384 BBB nonce-misuse resistant 

Romulus-M3 Skinny-128/256 BBB nonce-misuse resistant AEAD 

2 Romulus-H: Hashing with Romulus 

Since hashing capability was not originally added in the Romulus submission and since this can be achieved quite 
naturally, we have formalised Romulus-H: a hash function based on Skinny-128/384+. It is simply Skinny-128/384+ 
placed into Naito’s MDPH construction [20], which consists of Hirose’s Double-Block-Length (DBL) compression 
function [13] plugged into the Merkle-Damg̊ard with Permutation (MDP) domain extender [14]. The full Romulus-H 
is depicted in Figure 1, while the formal specification can be found in the companion paper [16]. 

This construction is proven secure [20]: when the output is 2n bits, MDPH is indifferentiable [19] from a (variable-
input-length) random oracle up to about �n � log n� queries [20] assuming the ideal (tweakable) block cipher. We set 
n � 128 and immediately have 121-bit indifferentiability. The standard reduction [4] tells that Romulus-H is proved 
to have 121-bit atk-security for any of atk " rcollision, preimage, 2nd-preimagex. Note that indifferentiability is 
a very useful and versatile security notion for hash functions that some classical collision-resistant constructions fail 
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Fig. 1: Block diagram of Romulus-H hash function. 

to meet [10]. Romulus-H can be easily turned into an eXtendable Output Function (XOF) that has an arbitrarily long 
output. This is because MDPH is indifferentiable from a (monolithic) random oracle, thus any black-box transforma-
tion that turns a RO into a XOF will also work for MDPH. One simple example is to use H�M½�0˘�, H�M½�1˘�, . . . , 
where H is the base hash function and �i˘ denotes an encoding of integer i. In fact this is just a variant of standard 
MGF1 (Mask generation function). Additional computation cost of this transformation is small (one compression 
function call per block) thanks to the iterative nature of MDPH. 

In terms of performances, Hirose’s scheme requires two TBC calls, but since we are using Skinny-128/384+, 256-bit 
message blocks can be handled at each iteration, which makes Romulus-H an efficient rate-1 construction overall. We 
note that this is three times more efficient than the Skinny-Hash construction [6] (where Skinny-128/384 is used inside 
a standard sponge-based mode), for the same area cost. Moreover, the fact that each pair of TBC calls have the same 
tweakey input, combined with the lightweight tweakey schedule of Skinny, is helpful to achieve efficient implementations 
of this construction as the tweakey can be recovered and stored only once if only one Skinny-128/384+ hardware core 
is available. If two cores are available, they can share the same round keys. Moreover, we note that the hash can be 
naturally adapted to extremely constrained area environments by reducing the message input at every iteration (this 
is possible because Romulus-H places the message input in the tweak input of the TBC, and because Skinny-128/384+ 
tweakey schedule can be totally replaced by constants if some words are set to 0). 

3 Romulus-LR and Romulus-LR-TEDT: Leakage-Resilient Modes for Romulus 

Even though we provide efficient threshold implementations of Romulus, we studied how leakage resilience capability 
could be added to our candidate. It turns out that this can be achieved with a very simple modification of the 
Romulus mode. More precisely, we will propose two modes for leakage resilience: Romulus-LR and Romulus-LR-TEDT. 
More details on these modes and the corresponding security proofs can be found in a separate article [8, 12]. 

Romulus-LR is the first mode, which simply consists in (a) adding a key-derivation function (KDF) at the beginning 
of Romulus-N, to generate a temporary key K ¬ that will be used in the subsequent TBC calls (b) re-injecting the message 
blocks inside the tweak input of each TBC call. It is then expected that the KDF and tag generating function (TGF), 
both using the master key K, should be properly protected with side-channels attacks countermeasures (such as 
masking). However, the long chain that depends on the message or associated data blocks can be left unprotected (or 
with much cheaper protection), which leads to a very efficient design (close to the original Romulus-N or Romulus-M). 
This mode, almost identical to Romulus-N, achieves the strong ciphertext integrity with misuse and leakage in the 
chosen-ciphertext model (CIML2) up to the birthday bound. It furthermore achieves integrity nonce-misuse resistance 
(MR-CINT) and integrity with the release of unverified plaintexts (INT-RUP) up to the birthday bound. Besides, it 
guarantees the nonce-misuse resilience of messages encrypted with fresh nonces, as long as the challenge queries are 
leak-free (CCAml1). In order to address even stronger adversaries, we offer Romulus-LR-TEDT. 

Romulus-LR-TEDT is our second and most advanced leakage resilient mode, directly based on the provably secure 
TBC-based TEDT construction [8]. This Romulus-LR-TEDT mode basically consists in fine-tuning the details of TEDT 
to fit the advantages of Skinny-128/384+ and allow 128-bit nonce and long message/associated data inputs. TEDT 
provides full leakage resilience, that is, it limits the exploitability of physical leakages via side-channel attacks, even 
if these leakages happen during every message encryption and decryption operation. TEDT offers what is currently 
considered as the highest possible security notions in the presence of leakage, namely beyond birthday bound CIML2 
and security against Chosen Ciphertext Attacks with nonce-misuse-resilience and Leakage (CCAmL2). While the 
initial TEDT proposal requires 4 TBC calls to process one n-bit message block, we optimize this to only 3 calls taking 
advantage of the properties of Skinny and our proposed hash function Romulus-H. This makes the performance more 
lightweight and closer to typical two-pass SIV-based schemes, which require 2 calls (except Romulus-M which requires 
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only 1.5 calls). Combined with its beyond birthday bound black-box and leakage-resilient security guarantees, it offers 
a great trade-off for sensitive applications. 

Given Romulus-N, Romulus-M, Romulus-LR, Romulus-LR-TEDT, we believe our candidate offers variants that cover 
the whole spectrum of security levels and use-cases. 

4 RUP Security of Romulus-M 

Release of unverified plaintext (RUP) is a security notion introduced by Andreeva et al. [2]. It captures the scenario 
where the verification can leak the result of decryption (i.e., possibly an unauthentic plaintext) before the verification 
result is obtained. This is relevant in particular when the verifier’s device has a limited amount of memory. 

INT-RUP. Among several notions of RUP, authenticity/integrity under RUP, referred to as INT-RUP, is a popular 
notion for its importance and the possibility to achieve it without heavy constructions, such as the encode-then-
encipher approach [7] with a wide-block primitive. 

It is known that the generic SIV construction achieves INT-RUP security [3, Proposition 11]. However, in general, 
this does not extend to dedicated constructions based on SIV. We prove that Romulus-M is INT-RUP secure even 
though Romulus-M is not entirely based on SIV mainly due to the involvement of nonce in the encryption. The proof 
is fairly straightforward: due to the explicit domain separation we can let the TBC calls for encryption/decryption 
(and not authentication) freely accessible by the adversary and the problem reduces to the plain nonce-based MAC 
unforgeability. It shows strong authenticity of Romulus-M under RUP, both against nonce-respecting and nonce-
misusing adversaries. The bounds are essentially the same as the regular authenticity bounds of Romulus-M, i.e., [18, 
Theorem 2] for nonce-respecting and [18, Theorem 3] for nonce-misusing adversaries. 

Plaintext Awareness. The privacy notion in the RUP setting is called plaintext awareness [2]. Intuitively, it requires 
the existence of an extractor that can simulate the (unverified) decryption oracle without knowing the secret key. It 
has two versions, called PA1 and PA2, and the stronger notion of PA2 can be achieved only with a wide-block CCA-
secure (tweakable) block cipher used in the encode-then-encipher approach (e.g., AEZ [15] or various TESs (Tweakable 
Enciphering Schemes)). It can be shown that Romulus-M is PA1 secure by following the proof of [3, Proposition 6], 
which proves that the scheme is PA1 secure if the MAC part is a PRF and the encryption part is PA1 secure. The 
MAC part of Romulus-M is a secure PRF, and the encryption part can be proved to be PA1 secure by following the 
proof of PA1 security of CBC mode and CTR mode [3, Proposition 12], with minor modifications to handle nonces. 

5 New Hardware/Software and Threshold Implementations of Romulus, Comparisons 

In order to show the design range of our candidate, we have recently provided new hardware implementations of 
Romulus, from round-based architectures to serial ones. Moreover, we also prepared threshold implementations. More 
details on these ASIC implementations and all measurements are given in the companion paper. 

Round-Based Architecture. Round-based implementations are arguably the most interesting ones as they pro-
vide a high throughput with a reasonably low area, usually leading to the best trade-off for throughput/area ratio. 
The goal of the Romulus design is to have a very small area overhead on top of the underlying TBC, specially for 
these round-based implementations. In addition, Skinny was specifically designed to perform well with round-based 
implementations. In order to achieve that goal, we made sure that no costly Flip-Flops is required on top of the TBC 
and also that the number of possible inputs to each Flip-Flop and outputs of the circuits are minimized. Our results 
indicate that the best throughput/area trade-off is achieved by the R2 architecture (which processes two rounds of 
the TBC per cycle), while the minimum energy is achieved by 4-round unrolling (the R4 architecture). Romulus-N 
achieves 15 Gbps throughput with only about 8 KGE, which makes it an excellent candidate for high throughput and 
energy efficient architectures. This compares favourably to Ascon [11] and ACORN [25] (the winners of the CAESAR 
competition for “Lightweight applications” portfolio). 

Serial Implementations. In case area minimisation is an absolute criterion, one can try to reduce the imple-
mentation data-path in a hope to obtain the lowest area possible. We have prepared byte-serial implementations of 
Romulus-N, that can reach area figures as low as 3.3 KGE (for a throughput close to 300 Mbps), which is an extremely 
low area for an AEAD mode with full n-bit security and standard model security proofs. Romulus-N is therefore an 
excellent candidate for low area and low power applications as well. 

Threshold Implementations. We studied the 3-share threshold implementation of both the byte serial architec-
ture and the single round architecture. The implementations are based on the threshold implementations provided by 
the Skinny team [5]. For only about 8 KGE and a throughput of �8.5 Gbps, we can have a very efficient threshold 
implementation protected against side-channel attacks. This throughput/area ratio is competitive with even unpro-
tected implementations of Ascon and ACORN. It can also be seen that the low area protected implementations of 
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Romulus-N1 and Romulus-N are very close in area to Ascon’s unprotected low-area implementation and an order of 
magnitude faster. This comes from the fact (as explained in [21]) that while sponge-based constructions use a large 
permutation with a lot of non-linear operations, TBC-based schemes use a smaller permutation with cheaper and usu-
ally fully-linear key scheduling algorithms. This means that protecting the key scheduling algorithm is both cheaper 
and less demanding. 

Software. Regarding software implementations, we applied the new fixslicing strategy [1] to Skinny which led to 
good performance results. Referring to the benchmarks from https://lwc.las3.de/table.php, we observe that 
for 32-bit platforms Romulus-N1 is generally placed in the middle of the rankings regarding throughput (Romulus-N 
being ranked in the first half). We remark that on these platforms, AES is already performing quite well. However, 
more interestingly, for very constrained platforms such as 8-bit architectures, Romulus-N1 ranks in the top tier, while 
Romulus-N would be among the top candidates (applying the 1.4 improvement ratio due to the reduction of the number 
of rounds). We believe these very constrained platforms (4-bit or 8-bit architectures) are probably the use-cases where 
lightweight cryptography makes the most sense in software. 
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