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1.Truncation and Short Tags 

In this note we would like to address an issue brought into discussion in [F05]. In 
their response [MV05] the authors successfully defended their design against 
Ferguson's concerns. However, there is one issue which still remains: for longer 
messages the forgery probability of Galois MACs is far from being ideal. In the GCM 
specification [MV04] this problem is taken care of by setting an upper bound to the 
message length and discouraging the use of tags less than 64 bits long. While this 
removes the problem in practice, the range of application of GCM mode will be 
limited and the theoretical problem remains unsolved. 

An example of a practical system where the tag length is set to 32 bits is the 3GPP 
UMTS system for the third generation mobile networks. This year 3GPP initiated a 
project [E05] to design a new set of encryption and integrity algorithms for UMTS. 
For many reasons, Galois MAC construction was considered an attractive solution for 
the new message integrity function. The only problem was that the forgery probability 
grows as the messages get longer. The message length in the UMTS system is 
currently upper-bounded by 20 000 bits, but longer messages may need to be allowed 
in the future. Using the upper bound of 216 for the message length, computing in 
GF(264) and truncating to 32-bit MAC, the forgery probability becomes 2-22. This 
means an unacceptable degradation in security compared to other more traditional 
computationally secure MAC constructions. Note that the forgery probability is only 
doubled, if the MAC is computed in the Galois field GF(232). With the current 
construction, the higher security offered by the larger field is lost in truncation. 

This drawback can be avoided using a two-stage MAC construction. The idea is to 
concatenate two universal hash families as proposed by Stinson [S92], Bierbrauer et 
al [BJKS93] and Nevelsteen and Preneel [NP99]. Their technique was recently 
referred to as "secure truncation" by D. Bernstein in [B05]. 

2. A Two-Stage MAC 

Let us recall the definitions of ε-AXU and ε-AU hash families. 

Definition: [NP99] Let H = {hk : A → B, k∈K} be a family of hash functions mapping 
elements of set A to set B. The family H is ε-Almost-Xor-Universal (εεεε-AXU) if, 

∀ x, x' ∈ A, x ≠ x' ⇒ ∀δ ∈ B, Pr k {hk(x) ⊕ hk(x') = δ} ≤ ε. 
If the condition holds only for δ = 0, that is, 

∀ x, x' ∈ A, x ≠ x' ⇒ Pr k {hk(x) ⊕ hk(x') =  0} ≤ ε, 
the family H is called ε-Almost-Universal (εεεε-AU). 



 
  

 

 

 
 
 

     
 

 
 
 

   
 

 
 

 

  
  

     
   
      

 
 

   
  

  
 

  
  

  

 
  

 
 

  
 

 
  

 
    

  

To compute a 32-bit MAC we adopt a two-stage construction. In the first phase we 
work over GF(264) and we use an ε1-AU hash function family with longer hash codes. 
In stage two we use an ε2-AXU hash function family, with shorter hash codes.  

There is a composition theorem due to Stinson [BJKS93, S92], which allows different 
universal hash function families to be combined. The most useful result for us is the 
following: 

If there exists an ε1-AU family H1 of hash functions from A to B and an ε2-AXU 
family H2 of hash functions from B to C, then there exists an ε-AXU family H of 
hash functions from A to C where H = H1 × H2, and ε = ε1 + ε2 - ε1ε2 ≤ ε1 + ε2. 

For the MAC construction, we use an L⋅2-64-AU hash function family in the first stage, 
where L is the length of the message in 64-bit blocks (after padding and length 
appending). In the second stage we have a 2-32-AXU hash function family and so our 
two-stage construction provides an (L⋅2-64 + 2-32)-AXU hash function family, that is, 
an 2-31-AXU hash function family. 

3. Practical Instantiation 

The authentication function of GMAC is a practical instantiation of the Wegman-
Carter MAC. Let H = {hk : A → B,  k∈K} be a family of hash functions mapping 
elements of set A to set B. Then the Wegman-Carter MAC associated with H is 
defined as follows: 

- Key inputs:  Index k∈K and a one-time value k' ∈ B. 

- Data input:  Message x from A. 

- Output: MAC tag τ ∈ B where τ = hk(x) ⊕ k'. 


Then by [S96, NP99] for example, it is known that if the family of hash functions H = 
{hk : A → B,  k∈K} is ε-AXU, then the worst case forgery probability for the 
Wegman-Carter MAC associated with H, for an adversary provided with one known 
or chosen message m and the associated MAC tag τ, is upper bounded by ε. 

Many practical instantiations of a two-stage MAC can now be constructed based on 
the various constructions of ε-AXU and ε-AU hash families known from literature. 
Below we will describe a polynomial MAC, which could be easily adapted to the 
GMAC authentication function to make its forgery probabilities closer to ideal. The 
description is given for 32-bit tag with computations in GF(264), but is easily 
generalised to any field sizes GF(2n) and tag lengths t < n, to achieve forgery 
probability close to 2- t for messages up to about 2n - t blocks. 

Suppose that the message to be authenticated (after appropriate formatting) consists of 
L 64-bit blocks ML-1, …, M1, M0. Given a 64-bit quantity k, a 64-bit intermediate tag 
Tin is computed using a L⋅2-64-AU hash family as  

Tin = ML-1k L-1 + … + M1 k + M0  over GF(264). 

Given a second 64-bit quantity λ  the 32-bit message authentication tag is computed 
by computing first the product λ ⋅Tin over GF(264), and truncating the result to the 



 
 

  
   

 
 

 
  

   

 
  

  
  

 
  

 
  

 

 
  

 
  

  
   

 

 
   

 
     

 

 
  

  
 

  
  

 
  

 
  

least significant 32 bits. This is an instantiation of an 2-32-AXU hash family (secure 
truncation), see Lemma 10 of [BJKS93]. The authentication tag is obtained by xor-ing 
this result with a 32-bit one time pad. For this construction the worst case forgery 
probability is bounded by L⋅2-64+2-32 ≈ 2-32 for messages with length up to 238 bits.   

4. Some Alternatives 

The inner tag can also be computed using any L⋅2-64–AXU family such as ML-1k L + … 
+ M1  k 2 + M0 k used for the GMAC authentication function. But with the selection 
above in Sec.3 we can save one multiplication over GF(264) for further use in the 
secure truncation stage.  

The secure truncation can be replaced by some other ε-AXU hash family. Perhaps the 
most useful alternatives are the following. 

1. View Tin as two 32-bit quantities N2 and N1 and select a 32-bit quantity λ. The 
32-bit hash code is computed as N2λ2 + N1λ  over GF(232). For this 
construction the key is only 32 bits, and the worst case forgery probability is 
upper-bounded by L⋅2-64+2-31 ≈ 2-31 . 

2. View Tin as two 32-bit values N2 and N1 and select two 32-bit quantities λ1 and 
λ2. Compute N2λ2 + N1λ1 over GF(232). This gives a 2-32-AXU hash family, 
and the same forgery probability as with the construction given in Sec.3. 

5. Multiple forgeries 

Finally, we would like to comment on multiple forgeries. They can be efficiently 
prevented by deriving a new key for each message. The GMAC specifies how a one 
time pad is derived for each tag from the key and the IV using the AES counter mode 
keystream generator. Almost at the same effort more keystream could be generated to 
be used as one time key in the computation of the hash code. For example, in the 
practical instantiation described above this would mean that fresh keys k and λ are 
selected for each new message.  
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