
NIST Special Publication 800-107

Recommendation for Applications
Using Approved Hash Algorithms

Quynh Dang

Computer Security Division
Information Technology Laboratory

C O M P U T E R S E C U R I T Y

February 2009

U.S. Department of Commerce
Otto J. Wolff, Acting Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Deputy Director

NIST SP 800-107

Abstract

Cryptographic hash functions that compute a fixed- length message digest from arbitrary
length messages are widely used for many purposes in information security. This
document provides security guidelines for achieving the required or desired security
strengths when using cryptographic applications that employ the approved cryptographic
hash functions specified in Federal Information Processing Standard (FIPS) 180-3. These
include functions such as digital signature applications, Keyed-hash Message
Authentication Codes (HMACs) and Hash-based Key Derivation Functions (HKDFs).

KEY WORDS: digital signatures, hash algorithms, cryptographic hash function, hash
function, hash-based key derivation algorithms, hash value, HMAC, message digest,
randomized hashing, random number generation, SHA, truncated hash values.

 ii

NIST SP 800-107

 iii

Acknowledgements

The author, Quynh Dang of the National Institute of Standards and Technology (NIST)
gratefully appreciates the contributions and comments from Elaine Barker, William E.
Burr, Shu-jen Chang, Lily Chen, Donna F. Dodson, Morris Dworkin, John Kelsey, Ray
Perlner, W. Timothy Polk and Andrew Regenscheid. The author also appreciates
comments from Daniel Brown, Hugo Krawczyk, Praveen Gauravaram and many other
people at various Federal Agencies during the development of this Recommendation.

NIST SP 800-107

Table of Contents
1 Introduction.. 2
2 Authority .. 2
3 Glossary of Terms, Acronyms and Mathematical Symbols 3

3.1 Terms and Definitions.. 3

3.2 Acronyms... 6

3.3 Symbols.. 6

4 Approved Hash Algorithms ... 6
4.1 Hash Function Properties... 6

4.2 Strengths of the Approved Hash Algorithms... 8

5 Cryptographic Hash Function Usage... 9
5.1 Truncated Message Digest.. 9

5.2 Digital Signatures.. 10

5.2.1 Full-length Message digests.. 11

5.2.2 Truncated Message digests ... 11

5.2.3 Randomized Hashing for Digital Signatures 11

5.3 Keyed-Hash Message Authentication Codes (HMAC) 12

5.3.1 Description.. 12

5.3.2 The HMAC Key.. 12

5.3.3 Truncation ... 13

5.3.4 Security of the HMAC Algorithm .. 13

5.3.5 Security of HMAC Values.. 13

5.4 Hash-based Key Derivation Functions (HKDFs) 14

5.5 Random Number (Bit) Generation... 15

6 References.. 15
Appendix A... 17
Appendix B ... 17

 1

NIST SP 800-107

Recommendation for Applications Using Approved Hash

Algorithms

1 Introduction

A hash algorithm is used to map a message of arbitrary length to a fixed-length message
digest. Federal Information Processing Standard (FIPS) 180-3, the Secure Hash Standard
(SHS) [FIPS 180-3], specifies five approved hash algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, and SHA-512. Secure hash algorithms are typically used with other
cryptographic algorithms.

This Recommendation provides security guidelines for achieving the required or desired
security strengths of several cryptographic applications that employ the approved
cryptographic hash functions specified in Federal Information Processing Standard
(FIPS) 180-3 [FIPS 180-3], such as digital signature applications [FIPS 186-3], Keyed-
hash Message Authentication Codes (HMACs) [FIPS 198-1] and Hash-based Key
Derivation Functions (HKDFs) [SP 800-56A] & [SP 800-56B].

2 Authority

This Recommendation has been developed by the National Institute of Standards and
Technology (NIST) in furtherance of its statutory responsibilities under the Federal
Information Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems.
This recommendation is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information
Systems, as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in A-130, Appendix III.

This Recommendation has been prepared for use by Federal agencies. It may be used by
non-governmental organizations on a voluntary basis and is not subject to copyright
(attribution would be appreciated by NIST).

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on Federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB,
or any other federal official.

Conformance testing for implementations of this Recommendation will be conducted
within the framework of the Cryptographic Module Validation Program (CMVP), a joint

 2

NIST SP 800-107

effort of NIST and the Communications Security Establishment of the Government of
Canada.

3 Glossary of Terms, Acronyms and Mathematical Symbols

3.1 Terms and Definitions

Adversary An entity that is not authorized to access or modify information,
or who works to defeat any protections afforded the
information.

Algorithm A clearly specified mathematical process for computation; a set
of rules that, if followed, will give a prescribed result.

Approved FIPS-approved and/or NIST-recommended. An algorithm or
technique that is either 1) specified in a FIPS or NIST
Recommendation, 2) adopted in a FIPS or NIST
Recommendation or 3) specified in a list of NIST-approved
security functions.

Approved hash
algorithms

Hash algorithms specified in [FIPS 180-3].

Bit string An ordered sequence of 0 and 1 bits. The leftmost bit is the
most significant bit of the string. The rightmost bit is the least
significant bit of the string.

Bits of security See security strength.

Block cipher An invertible symmetric key cryptographic algorithm that
operates on fixed-length blocks of input using a secret key and
an unvarying transformation algorithm. The resulting output
block is the same length as the input block.

Collision An event in which two different messages have the same
message digest.

Collision resistance An expected property of a cryptographic hash function whereby
it is computationally infeasible to find a collision, See
“Collision”.

 3

NIST SP 800-107

Cryptographic hash
function

A function that maps a bit string of arbitrary length to a fixed
length bit string and is expected to have the following three
properties:

1. Collision resistance (see Collision resistance),

2. Preimage resistance (see Preimage resistance) and

3. Second preimage resistance (see Second preimage
resistance).

 Approved cryptographic hash functions are specified in
[FIPS 180-3].

Digital signature The result of applying two cryptographic functions (a
cryptographic hash function, followed by a digital signature
function, see [FIPS 186-3] for details) to data that, when the
functions are properly implemented, provides origin
authentication, data integrity and signatory non-repudiation.

Hash algorithm See cryptographic hash function. Hash algorithm and
cryptographic hash function are used interchangeably in this
Recommendation.

Hash output See “message digest”.

Hash value See “message digest”.

Key A parameter used with a cryptographic algorithm that
determines its operation in such a way that an entity with
knowledge of the key can reproduce or reverse the operation,
while an entity without knowledge of the key cannot. Examples
applicable to this Recommendation include:

1. The computation of a keyed-hash message authentication
code.

2. The verification of a keyed-hash message authentication
code.

3. The generation of a digital signature of a message.

4. The verification of a digital signature.

Message
authentication code
(MAC)

A fixed length bit string, computed by a MAC algorithm, that is
used to establish the authenticity and, hence, the integrity of a
message.

MAC algorithm An algorithm that computes a MAC from a message and a key.

Message digest The result of applying a cryptographic hash function to a
message. Also known as a “hash value” or “hash output”.

 4

NIST SP 800-107

Preimage A message X that produces a given message digest when it is
processed by a hash function.

Preimage resistance An expected property of a cryptographic hash function such
that, given a randomly chosen message digest, message_digest,
it is computationally infeasible to find a preimage of the
message_digest, See “Preimage”.

Random bit A binary bit for which an attacker has exactly a 50% probability
of success of guessing the value of the bit as either a zero or
one.

Random bit generator A device or algorithm that can produce a sequence of random
bits that appears to be statistically independent and unbiased.

Randomized hashing A process by which the input to a cryptographic hash function is
randomized before being processed by the cryptographic hash
function.

Random number A value in a set that has an equal probability of being selected
from the total population of possibilities and, hence, is
unpredictable. A random number is an instance of an unbiased
random variable, that is, the output produced by a uniformly
distributed random process.

Second preimage A message X’, that is different from a given message X , such
that its message digest is the same as the known message digest
of X.

Second preimage
resistance

An expected property of a cryptographic hash function whereby
it is computationally infeasible to find a second preimage of a
known message digest, See “Second preimage”.

Secret keying material The binary data that is used to form secret keys, such as AES
encryption or HMAC keys.

Security strength of a
cryptographic
algorithm or system

A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system. Security strength is measured in bits. If 2N
execution operations of the algorithm (or system) are required to
break the cryptographic algorithm, then the security strength is
N bits.

Security Strength of a
secret key (or value)
(in binary bits)

The required amount of work to find the key that is associated
with some specific algorithm.

Shall Used to indicate a requirement of this Recommendation.

Shared secret A secret value that has been computed using a key agreement
algorithm and is used as input to a key derivation function.

 5

NIST SP 800-107

3.2 Acronyms
FIPS Federal Information Processing Standard

SHA Secure Hash algorithm

KDF Key Derivation Function

HKDF Hash-based Key Derivation Function

MAC Message Authentication Code

HMAC Keyed-hash Message Authentication Code

RBG Random Bit Generator

3.3 Symbols
K HMAC key.

L Length in bits of the full message digests from a hash function.

MacTag Transmitted full or truncated HMAC output.

min(x, y) The minimum of x and y. For example, if x < y, then min(x, y) = x.

λ Length in bits of a MacTag or truncated message digest.

| x | The length (in bits) of the bit string x. For example, |01100100| = 8.

4 Approved Hash Algorithms

Currently, there are five approved hash algorithms, SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512, which are specified in [FIPS 180-3]. These hash algorithms produce
outputs of 160, 224, 256, 384 and 512 bits, respectively. The output of a hash algorithm
is commonly known as a message digest, a hash value or a hash output.

4.1 Hash Function Properties
A cryptographic hash function1 is expected to have the following three properties:

1. Collision resistance: It is computationally infeasible to find two different inputs to
the cryptographic hash function that have the same hash value. That is, if hash is a
cryptographic hash function, it is computationally infeasible to find two different
inputs x and x’ for which hash(x) = hash (x’). Collision resistance is measured by
the amount of work that would be needed to find a collision for a cryptographic
hash function with high probability. If the amount of work is 2N, then the collision
resistance is N bits. The estimated strength for collision resistance provided by a
hash-function is half the length of the hash value, L, produced by a given
cryptographic hash function. For example, SHA-256 produces a (full-length) hash
value of 256 bits; SHA-256 provides an estimated collision resistance of 128 bits.

1 Cryptographic hash function and hash algorithm are used interchangeably, depending on the context of
the discussions throughout this Recommendation.

 6

NIST SP 800-107

2. Preimage resistance2: Given a randomly chosen hash value, hash_value, it is
computationally infeasible to find an x so that hash(x) = hash_value. This
property is also called the one-way property. Preimage resistance is measured by
the amount of work that would be needed to find a preimage for a cryptographic
hash function with high probability. If the amount of work is 2N, then the
preimage resistance is N bits. The estimated strength for preimage resistance
provided by a hash-function is the length of the hash value, L, produced by a
given cryptographic hash function. For example, SHA-256 produces a (full-
length) hash value of 256 bits; SHA-256 provides an estimated preimage
resistance of 256 bits.

3. Second preimage resistance: It is computationally infeasible to find a second input
that has the same hash value as any other specified input. That is, given an input
x, it is computationally infeasible to find a second input x’ that is different from x,
such that hash(x) = hash (x’). Second preimage resistance is measured by the
amount of work that would be needed to find a second preimage for a
cryptographic hash function with high probability; more detail can be found in the
Appendix A. If the amount of work is 2N, then the second preimage resistance is
N bits. The estimated strength for second preimage resistance provided by a hash-
function is the length of the hash value, L, produced by a given cryptographic
hash function. For example, SHA-256 produces a (full-length) hash value of 256
bits; SHA-256 provides an estimated second preimage resistance of 256 bits.

The security strength of a cryptographic hash function is determined by either: its
collision resistance strength, preimage resistance strength or second preimage resistance
strength, depending on the property(ies) that the cryptographic application needs from the
cryptographic hash function. If an application requires more than one property from the
cryptographic hash function, then the weakest property is the security strength of the
cryptographic hash function for the application. For instance, the security strength of a
cryptographic hash function for digital signatures is defined as its collision resistance
strength, because digital signatures require collision resistance and second preimage
resistance from the cryptographic hash function, and the collision resistance strength of
the cryptographic hash function (L/2) is less than its second preimage resistance strength
(i.e., L).

A cryptographic hash function that is not suitable for one application might be suitable
for other cryptographic applications that do not require the same security properties. For
example, SHA-1 is not suitable for digital signature applications (as specified in [FIPS
186-3]) that require 112 bits of security unless randomized hashing is used as discussed
in Section 5.2.3. However, SHA-1 can be used to provide 112 bits of security for HMAC
applications (as specified in [FIPS 198-1]). In the case of digital signatures, SHA-1 does
not provide 112 bits of collision resistance needed to achieve the security strength. On the
other hand, SHA-1 does provide 112 bits of preimage resistance that is needed to achieve

2 There are slightly different definitions of preimage resistance of cryptographic hash functions in the
literature.

 7

NIST SP 800-107

the security strength for HMAC. The security strengths of the approved cryptographic
hash functions for different applications can be found in [SP 800-57].

4.2 Strengths of the Approved Hash Algorithms
Table 1 provides a summary of strengths of the security properties (discussed in the
previous section) of the approved hash functions.

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Collision
Resistance
Strength in

bits

< 803 112 128 192 256

Preimage
Resistance
Strength in

bits

160 224 256 384 512

Second
Preimage
Resistance
Strength in

bits

105-160 201-224 201-256 384 394-512

Table 1: Strengths of the Security Properties of the Approved Hash Algorithms

As mentioned in Section 4.1, the estimated collision resistance strength of any approved
cryptographic hash function is half the length of its hash value. Currently, SHA-224,
SHA-256, SHA-384 and SHA-512 are believed to have collision resistance strengths of
112, 128, 192 and 256 bits (half of the lengths of their hash values), respectively.
However, the latest cryptanalytic results for SHA-1 [SHA1 Attack] indicate that it may
have a collision resistance strength that is considerably less then its expected strength of
80 bits.

The estimated preimage resistance strengths of SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512 are 160, 224, 256, 384 and 512 bits (the lengths of the hash values),

3 Current estimated value is around 60.

 8

NIST SP 800-107

respectively. At the time that this Recommendation was written, there had been no
known short cuts to find the preimages of the hash values generated from the approved
hash algorithms.

Except for SHA-384, the second preimage resistance strengths of the approved
cryptographic hash functions depend not only on the functions themselves, but also on
the sizes of the messages that the cryptographic hash functions process [Second Preimage
Attack]. In Table 1, the low end of each range applies to the situation where the message
input length to the cryptographic hash function is the maximum length allowed by the
hash function, while the high end of the range applies to the situation when the message
input length is relatively small. Information on determining the actual second preimage
resistance strengths of the approved cryptographic hash functions for different message
lengths is provided in the Appendix A. In the case of SHA-384, the second preimage
resistance strength does not depend on the message length; details can be found in the
Appendix A.

Note that the preimage resistance and the second preimage resistance of any approved
hash algorithm specified in [FIPS 180-3] are stronger than its collision resistance.

5 Cryptographic Hash Function Usage

5.1 Truncated Message Digest
Some applications may require a message digest that is shorter than the (full-length)
message digest provided by an approved cryptographic hash function specified in [FIPS
180-3]. In such cases, it may be appropriate to use a subset of the bits produced by the
cryptographic hash function as the (shortened) message digest.

For application interoperability, a standard method for truncating cryptographic hash
function outputs (i.e., message digests) is provided strictly as a convenience for
implementers and application developers. The proper use of a truncated message digest is
an application-level issue.

Let the shortened message digest be called a truncated message digest, and let λ be its
desired length in bits. A truncated message digest may be used if the following
requirements are met:

1. If collision resistance is required, λ shall be at least twice the required collision
resistance strength s (in bits) for the truncated message digest (i.e., λ ≥ 2s).

2. The length of the output block of the approved cryptographic hash function to be
used shall be greater than λ (i.e., L > λ).

3. The λ left-most bits of the full-length message digest shall be selected as the
truncated message digest.

For example, if a truncated message digest of 96 bits is desired, the SHA-256
cryptographic hash function could be used (e.g., because it is available to the
application, and provides an output larger than 96 bits). The leftmost 96 bits of the
256-bit message digest generated by the SHA-256 cryptographic hash function

 9

NIST SP 800-107

are selected as the truncated message digest, and the rightmost 160 bits of the
message digest are discarded.

Truncating the message digest can impact the security of an application. By truncating a
message digest, the estimated collision resistance strength is reduced from L/2 to λ/2 (in
bits). For the example in item 3 above, even though SHA-256 provides 128 bits of
collision resistance, the collision resistance provided by the 96-bit truncated message
digest is half the length of the truncated message digest, which is 48 bits, in this case.

The truncated message digest of λ bits provides an estimated preimage resistance of λ
bits, not L bits, regardless of the cryptographic hash function used.

The estimated second preimage resistance strength of a message digest truncated to λ bits
is determined as specified in the Appendix A. For example, a 130-bit truncated message
digest generated using SHA-256 has an estimated second preimage strength of 130 bits,
rather than a value in the range specified in Table 1 above for SHA-256.

Truncating the message digest can have other impacts, as well. For example, applications
that use a truncated message digest risk attacks based on confusion between different
parties about the specific amount of truncation used, as well as the specific cryptographic
hash function that was used to produce the truncated message digest. Any application
using a truncated message digest is responsible for ensuring that the truncation amount
and the cryptographic hash function used are known to all parties, with no chance of
ambiguity. It is also important to note that there is no guarantee that truncation will not
make any truncated message digest weaker than its expected security strength.

5.2 Digital Signatures
A cryptographic hash function is used to map a message of arbitrary length to a fixed-
length message digest. For digital signature generation, this message digest is then signed
by a digital signature algorithm. The resulting digital signature is used to verify who
signed the message and whether it is the same message that was signed (e.g., whether
there has been any accidental or deliberate alteration of the received message).

When two different messages have the same message digest (i.e., a collision is found),
then a digital signature of one message may be used as a digital signature for the other
message. If this happens, then a verified digital signature does not guarantee the
authenticity of the signed message, because either one of the two messages could be
considered as valid. Therefore, a cryptographic hash function used for digital signatures
requires collision resistance. NIST-approved cryptographic hash functions are believed to
provide the collision resistant strengths as specified in the Table 1 of Section 4.1.

For digital signature applications, the security strength of a hash function is normally its
collision resistance strength. When appropriate processing is applied to the data before it
is hashed, the security strength may be more than the collision resistance strength (see
Section 5.2.3).

Without any preprocessing of the message input to the cryptographic hash function, the
security strength of any digital signature that is generated using an algorithm specified in
[FIPS 186-3] is the minimum of the collision resistance strength of the hash algorithm

 10

NIST SP 800-107

and the security strength provided by the signing algorithm and key size. More
information can be found in [SP 800-57]. For instance, if a digital signature that is
generated by one of the approved digital signature algorithms with SHA-1 as the
cryptographic hash function and key sizes specified in [FIPS 186-3], then the security
strength of this digital signature is less then 80 bits (see Table 1 in Section 4.1).
Therefore, SHA-1 should not be used in any new digital signature applications that
require at least 80 bits of security. Furthermore, SHA-1 shall not be used in any digital
signature applications after the end of 2010. More information on the security strengths
of digital signature applications using the approved hash algorithms and the
recommended lifetimes of cryptographic algorithm usage can be found in [SP 800-57].

There are several ways to use cryptographic hash functions with digital signature
algorithms as described below.

5.2.1 Full-length Message digests
The cryptographic hash functions specified in [FIPS 180-3] (i.e., SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-512) generate (full-length) message digests of 160, 224,
256, 384 and 512 bits, respectively. Full-length message digests as specified in [FIPS
180-3] can be used with approved digital signature algorithms as specified in [FIPS 186-
3]. The estimated strength of collision resistance provided by a hash-function is half the
length of the full-length message digest.

5.2.2 Truncated Message digests
Truncated message digests may be used in generating digital signatures. However, the
security of the cryptographic hash functions now depends on the lengths of the truncated
message digests, as well as the cryptographic hash function that is used.

The length of truncated message digests used shall be at least twice the desired security
strength required for the digital signature. For example, if a security strength of 112 bits
is required, a truncated message digest of at least 224 bits must be produced. SHA-224,
SHA-256, SHA-384 and SHA-512 could be used to generate a 224-bit message digest,
although, in the case of SHA-224, the hash-value would not be truncated.

5.2.3 Randomized Hashing for Digital Signatures
As described in Section 5.2, the security strength of a digital signature application [FIPS
186-3] is limited to the collision resistance strength of the cryptographic hash function.
However, when using the randomized hashing technique specified in [SP 800-106], the
security strength of the randomized cryptographic hash function is the minimum of its
second preimage resistance strength and the total strength of its collision resistance
strength plus the strength of the random value (i.e., security strength = min(second
preimage resistance strength, (collision resistance strength + random value strength)).

 When randomized hashing is used, the random value shall be generated with at least 80
bits of security strength.

As stated in Section 4.1, SHA-1 has an estimated collision resistance strength that is less
than 80 bits. Therefore, SHA-1 may not be suitable for digital signature applications that

 11

NIST SP 800-107

require 80 bits of security unless the randomized hashing technique is used. When SHA-1
is used with the randomized hashing technique specified in SP 800-106, the security
strength provided is estimated at 160 bits; note that in this case, the collision resistance
strength of SHA-1 can be considered to be 80 bits in the above formula, since the
randomizing disallows the cryptanalytic attacks on SHA-1 that reduce its collision
resistance strength. Therefore, SHA-1 will be suitable for applications requiring 80 bits of
security when the randomized hashing technique specified in [SP 800-106] is used.

5.3 Keyed-Hash Message Authentication Codes (HMAC)

5.3.1 Description
Message authentication codes (MACs) provide data authentication and integrity
protection. Two types of algorithms for computing a MAC have been approved: 1) MAC
algorithms that are based on approved block cipher algorithms (more information can be
found in [SP 800-38B]) and 2) MAC algorithms that are based on cryptographic hash
functions, called HMAC algorithms that are specified in [FIPS 198-1]. This section
discusses the use of HMAC.

An output from an HMAC algorithm is called an HMAC output. The HMAC output is
either used in its entirety, or is truncated (see Section 5.3.3) when it is transmitted for
subsequent verification. The transmitted value is called a MacTag. The HMAC
algorithm requires the use of a secret key that is shared between the entity that generates
the HMAC output (e.g., a message sender), and the entity (or entities) (message
receiver(s)) that need to verify the transmitted MacTag.

The HMAC output is generated from the secret key and the string of “text” to be MACed
(e.g., a message to be sent) using the HMAC algorithm. The MacTag is provided to the
MacTag verifier, along with the “text” that was MACed (e.g., the sender transmits both
the MacTag and the “text” that was MACed to the intended receiver).

The verifier computes an HMAC output on the received “text” using the same key and
HMAC algorithm that was used by the HMAC generator, generates a MacTag (either a
full or truncated HMAC output), and then compares the generated MacTag with the
received MacTag. If the two values match, the “text” has been correctly received, and the
verifier is assured that the entity that generated the MacTag is a member of the
community of users that share the key.

The security strength provided by the HMAC algorithm is determined by the security
strength of the HMAC key and the length of the HMAC output.

5.3.2 The HMAC Key
The security strength of the HMAC algorithm depends on the security strength of the
HMAC key, K. An HMAC key shall be generated such that its security strength meets or
exceeds the security strength required to protect the data over which the HMAC is
computed.

The HMAC key shall be kept secret. When the secrecy of the HMAC key, K, is not
preserved, an adversary that knows K, may impersonate any of the users that share that

 12

NIST SP 800-107

key in order to generate “authentic” MacTags (i.e., MacTags that can be verified and are
subsequently presumed to be authentic).

 HMAC keys shall be one of the following:

1) A random bit string generated using an approved random bit generator as
specified in SP 800-90 [SP 800-90],

2) A key established using an approved key establishment method as specified [SP
800-56A] or [SP 800-56B],

3) A pre-shared key (e.g., a key that has been manually distributed), or

4) A key produced using an approved key derivation function and a secret key
derivation key. See Section 5.4 for more details on approved key derivation
functions.

5.3.3 Truncation
When applications truncate the HMAC outputs to generate MacTags to a desired length,
λ, the λ left-most bits of the HMAC outputs shall be used as the MacTags. However, the
output length, λ, shall be no less than 8 bits. For example, a low bandwidth channel or a
desired high efficiency computation application such as audio or video casting
application might use 8-bit MacTags.

5.3.4 Security of the HMAC Algorithm
The security strength of the HMAC algorithm4 is the minimum of the security strength of
K and the value of 2L (i.e., security strength = min(security strength of K, 2L)). For
example, if the security strength of K is 128 bits, and SHA-1 is used, then the security
strength of the HMAC algorithm is 128 bits.

The HMAC key K shall be generated with a security strength that meets or exceeds the
desired security strength of the HMAC application, and the approved hash algorithm in
the HMAC application shall have a message digest length of at least half of the desired
security strength (in bits) of the HMAC application. For example, if the desired security
strength of the HMAC application is 256 bits, the HMAC key K shall be generated with a
security strength of at least 256 bits, and an approved hash function with the message
digest length of at least 256/2 (128) bits shall be used.

5.3.5 Security of HMAC Values
The successful verification of a MacTag does not completely guarantee that the
accompanying text is authentic; there is a slight chance that an adversary with no
knowledge of the HMAC key, K, can present a (MacTag, text) pair that will pass the
verification procedure. From the perspective of an adversary that does not know the
HMAC key K (i.e., the adversary is not among the community of users that share the

4 As described in [BCK1], success of a collision attack on any approved HMAC algorithm [FIPS 198-1]
would require the collection of at least 280 pairs of chosen plaintexts and their corresponding HMAC
values. This is an impractical task. So, the collision attack is not considered in this document.

 13

NIST SP 800-107

key), the security strength provided by a MacTag depends on its length. The length of a
MacTag shall be sufficiently long to prevent false acceptance of forged data. For most
applications, a length of 64 to 96 bits is sufficient.

Shorter MacTags may also be acceptable if the rate of false acceptances does not create a
significant impact for the application. For example, in video/audio stream applications,
accepting one bad data package in 28 data packages may not create a huge impact for the
application.

5.4 Hash-based Key Derivation Functions (HKDFs)
Cryptographic hash functions can be used as building blocks in key derivation functions
(KDFs) (e.g., as specified in [SP 800-56A], [SP 800-56B] and [SP 800-108]). KDFs
using cryptographic hash functions as their building blocks are called Hash-based Key
Derivation Functions (HKDFs). The main purpose of an HKDF is to generate (i.e.,
derive) secret keys from a secret value (e.g., a shared key, or a shared secret in a key
agreement scheme) that is shared between communicating parties. The security strengths
of the derived secret keys are limited to the security strength of the secret value. The
security strength of the secret value shall meet or exceed the desired security strengths of
the derived secret keys.

Each of the two approved HKDFs in [SP 800-56A] and [SP 800-56B] uses a secret value
(i.e., a shared secret) that is shared between two communicating parties, an approved
cryptographic hash function and other input attributes to derive secret keying material,
such as HMAC keys.

There are two approved uses for these HKDFs:

1) The HKDF is used to generate secret keys from a shared secret that is generated
from one of the approved key agreement methods specified in [SP 800-56A] and
[SP 800-56B]. In this case, the key agreement method shall support a security
strength equal to or greater than the desired security strength of the secret keys to
be derived using the HKDF.

2) The HKDF is used to generate secret keys from an existing shared key. In this
case, the security strength of the existing shared key shall meet or exceed the
desired security strength of the secret keys to be derived. An existing shared key
may be one of the derived secret keys described in (1) above.

In addition to the two HKDFs in [SP 800-56A] and [SP 800-56B], there are other
approved KDFs specified in NIST Special Publication 800-108, Recommendation for Key
Derivation Using Pseudorandom Functions [SP 800-108]. In [SP 800-108], one of the
approved KDFs uses an HMAC algorithm as a Pseudorandom Function (PRF). The Key
Derivation Key specified in [SP 800-108] is used as the HMAC key to the HMAC
function. The Key Derivation Key may be one of the generated secret keys as described
in (1) and (2) above, or an existing shared key. The Key Derivation Key shall meet or
exceed the desired security strength of the secret keys to be derived.

Additional allowed KDFs are listed in [IMPGUIDE].

 14

NIST SP 800-107

The security strengths provided by approved hash functions when used for KDFs are
specified in [SP 800-57]. The security strength of an approved hash function used by the
HKDF shall be equal to or greater than the highest required security strength for the
generated keying material.

5.5 Random Number (Bit) Generation
A random bit generator (RBG) is used to produce random bits. These bits may be used
directly or may be converted to a random number (integer). Approved RBGs that use
deterministic algorithms5, along with methods for converting a bit string to an integer can
be found in [SP 800-90].

RBGs may be constructed using cryptographic hash functions. The hash function used by
the RBG shall be selected so that the RBG can provide a security strength that meets or
exceeds the maximum security strength required for the random bits that it generates. See
[SP 800-57] for the security strength that can be provided for each approved hash
function for random number generation.

6 References

[SP 800-38B] NIST Special Publication (SP) 800-38B,
Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication, May 2005.

[SP 800-56A] NIST Special Publication (SP) 800-56A,
Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography, March
2007.

[SP 800-56B] NIST Special Publication (SP) 800-56B,
Recommendation for Pair-Wise Key Establishment Using
Integer Factorization Cryptography, (Draft) December
2008.

[SP 800-57] NIST Special Publication (SP) 800-57, Part 1,
Recommendation for Key Management: General, August
2005.

[SP 800-90] NIST Special Publication (SP) 800-90, Recommendation
for Random Number Generation Using Deterministic
Random Bit Generators, June 06.

[SP 800-106] NIST Special Publication (SP) 800-106, Randomized
Hashing for Digital Signatures, February 2009.

[SP 800-108] NIST Special Publication (SP) 800-108, Recommendation
for Key Derivation Using Pseudorandom Functions,
November 2008.

5 Commonly known as deterministic random bit generators or pseudorandom number generators.

 15

NIST SP 800-107

[FIPS 180-3] Federal Information Processing Standard 180-3, Secure
Hash Standard (SHS), October 2008.

[FIPS 186-3] Federal Information Processing Standard 186-3, Digital
Signature Standard (DSS), (Draft) November 2008.

[FIPS 198-1] Federal Information Processing Standard 198-1, The
Keyed-Hash Message Authentication Code (HMAC), July
2008.

[SHA1 Attack] Wang X., Yin Y., and Yu H., Finding Collisions in the
Full SHA-1, The 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August
2005.

[IMPGUIDE] Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program, available at
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140
-2/FIPS1402IG.pdf

[Second Preimage Attack] Kelsey J. and Schneier B., Second Preimages on n-bit
hash functions for Much Less than 2n Work, Lecture
Notes in Computer Science, Vol. 3494, Springer, 2005,
ISBN-10 3-540-25910-4.

[BCK1] M. Bellare, R. Canetti, and H. Krawczyk, Keyed Hash

Functions for Message Authentication, Proceedings of
Crypto'96, LNCS 1109, pp. 1-15.
(http://www.research.ibm.com/security/keyed-md5.html)

 16

http://www.research.ibm.com/security/keyed-md5.html

NIST SP 800-107

 17

Appendix A

Actual Second Preimage Resistance Strengths of Approved
Cryptographic Hash Functions

In an application, if the size of the messages is small, then the second preimage resistance
strengths of the cryptographic hash functions are practically the same as their preimage
resistance strengths described above.

The actual second preimage resistance strength of any of the approved hash functions,
except SHA-384, is (L – M), where L is the output block size of the cryptographic hash
function, and M is a function of the input block size, as follows:

)(
bits_in_size_block_input

bits_in_length_messagemax_logM 2=

when max_message_length_in_bits ≥ input_block_size_in_bits.

Max_message_length_in_bits is the permitted maximum length of input messages in bits,
and input_block_size_in_bits is the input block size of the cryptographic hash function.

For example, if a message that is 233 bits in length (i.e., a gigabyte long) is hashed by
SHA-256 (whose input block size is 29 bits), the second preimage resistance is (L – M) =
(256 – 24) = 232 bits (where L = 256, and M = log2(233/29) = (33 – 9) = 24).

The actual second preimage resistance strength of any approved cryptographic hash
function, except SHA-384, varies, depending on the maximum size of the messages in the
application using the cryptographic hash function.

The second preimage resistance of SHA-384 does not depend on the message length
because the attack in [Second Preimage Attack] requires the work of more than 2384, and
to break the second preimage resistance of SHA-384, the required work is only 2384.

Note: SHA-256 and SHA-224 are the same cryptographic hash function. Each produces
an output of 256 bits, but from different initial values. In the case of SHA-224, the output
is truncated to 224 bits. Therefore, L is 256 bits for these two cryptographic hash
functions when determining their actual second preimage resistance strengths.

For any truncated message digest of λ bits, the actual second preimage resistance strength
of SHA-1, SHA-224, SHA-256, and SHA-512 is the minimum of (L – M) and λ. The
actual preimage resistance strength of SHA-384 is λ (λ ≤ 384).

Appendix B

The changes in this document from its previous version are: the 4th footnote was added
in Section 5.3.4 (Security of the HMAC Algorithm) and the reference information of
[BCK1] in the footnote was added at the end of References section.

	1 Introduction
	2 Authority
	3 Glossary of Terms, Acronyms and Mathematical Symbols
	4 Approved Hash Algorithms
	4.1 Hash Function Properties

	5 Cryptographic Hash Function Usage
	6 References
	Appendix A
	Appendix B

