Compilation of Feedback to NIST-MPTC Call 2021a

NIST Multi-Party Threshold Cryptography Project¹

Updated: August 25, 2022

On July 02, 2021, the NIST multi-party threshold cryptography project issued a call for feedback on selected topics of criteria for multi-party threshold schemes, as it may be useful to support a future call for proposals of those schemes. For that purpose, the call provided a brief note about each of the following six selected topic: (i) scope of proposals; (ii) idealization of security; (iii) security vs. adversaries; (iv) system model; (v) threshold profiles; (vi) building blocks. This document compiles the original call (4 pages), the optional templates provided for feedback, and a printout of the six received comments (along with some related emails).

Contents

The call for comments	2
Item 1: Call 2021a for feedback (2021-July-02)	2
Item 2: Printout of the .odp template for providing feedback	6
Item 3: Printout of the .tex template for providing feedback	7
The comments received in reply to the call	8
Item 4: Feedback from Arpita Patra and Nigel Smart	8
Item 5: Feedback from Tore Frederiksen	9
Item 6: Feedback from Ran Canetti	14
Item 7: Feedback from Samuel Ranellucci	17
Item 8: Feedback from Dan Boneh and Chelsea Komlo	19
Item 9: Feedback from Jakob Pagter	21

¹Webpage: https://csrc.nist.gov/projects/threshold-cryptography; email address: threshold-MP-call-2021a@nist.gov.

Call 2021a for Feedback on Criteria for Threshold Schemes NIST Multi-party Threshold Cryptography

2021-July-02: https://csrc.nist.gov/projects/threshold-cryptography

Please send comments to threshold-MP-call-2021a@nist.gov by September 13, 2021.

In a **multi-party threshold scheme**, the secret key needed to operate a cryptographic primitive is "secret shared" across n parties. The operation (e.g., signing, decryption) is then distributively executed, while the key remains secret even if f (the threshold number of) parties are corrupted.¹

The NIST multi-party threshold cryptography (MPTC) project has received useful feedback on threshold schemes. This has included various comments about draft NIST internal reports (IR) 8214 and 8214A, and presentations in the NTCW 2019 and MPTS 2020 workshops. Currently, a new IR, 8214B, is being prepared to specify **criteria** to support a future call for proposals of **multi-party threshold schemes**. The subsequent evaluation of those proposals will serve as a basis to support the development of **guidelines and recommendations** (G&R) about threshold schemes. A draft of IR 8214B, to be open for public comments, is planned for late 2021.

In advance to draft IR 8214B, this document is an earlier **call for feedback on selected topics of criteria**. The following paragraphs, with some level of informality in the midst of nuanced notions in multi-party / distributed systems, advance a preparatory positioning about six topics. These are open to improvement based on feedback, which is welcome from expert stakeholders. It is particularly useful to hear about the benefits of being more stringent or loose in any of the topics. It is also useful to hear about reference approaches to thresholdization of concrete primitives. For timely consideration, comments should be compiled in a **p**ortable **d**ocument **f**ormat (PDF) file, with up to six pages, letter size, and sent by email, by September 13, 2021. Voluntary template files for feedback are attached in .odt (open **d**ocument **t**ext) and .tex (La**TeX**) formats.

1. Scope of proposals. The future call for proposals will be intended to gather expert submissions of concrete threshold schemes for primitives that are *interchangeable* (in the sense of IR 8214A, Section 2.4) with² ECDSA, EdDSA, RSA signing/decryption, RSA keygen, AES, and ECC-based key agreement.³ After an evaluation period, and possibly various stages for tweaks,

¹ In this document, f denotes the *corruption* threshold (maximum number of tolerated corruptions) with respect to key hiding. Different properties can have different associated thresholds. In complement, a *participation* threshold denotes the minimum number k (with k > f) of parties needed to generate the intended output, e.g., a "3-out-of-5 threshold signature" can be such that any subset of k = 3 honest parties can generate a signature, whereas k - 1 cannot.

² Legend: ECDSA: Elliptic Curve Digital Signature Algorithm. EdDSA: Edwards Curve Digital Signature Algorithm. RSA: Rivest-Shamir-Adleman. Keygen: key-generation. ECC: Elliptic Curve Cryptography. AES: Advanced Encryption Standard. PreQC: pre-quantum cryptography; PQC: post-quantum cryptography.

³ Proposals of distributed (threshold) keygen for ECC-based schemes and AES can be associated to the proposals of corresponding threshold signing/encryption/decryption. Proposals of RSA keygen will be considered separately from proposals of RSA signing/decryption, although still taking into account the need for interoperability.

Item 1: Call 2021a for feedback (2021-July-02)

new proposals, and filtration of suitable approaches, the NIST MPTC project may produce differentiated G&R on threshold schemes for each primitive, and possibly also focused on useful building blocks. To better serve the evaluation process and the elaboration of G&R documentation, the future call is expected to request that submitted proposals include a reference open-source implementation, and a disclosure of known applicable patent claims. Additional notes:

- Interchangeability: In the scope of ECC-based signatures, it is particularly relevant to analyze the applicability of, and tradeoffs between, probabilistic and deterministic threshold schemes with interchangeable signature verification, possibly leading to differentiated G&R.
- **PreQC:** The utility of threshold schemes for preQC primitives may be affected in the future by advances in quantum computation, possible deprecation of existing standards, and developments of new PQC standards.
- **PQC**: While the present scope does not include the thresholdization of primitives in evaluation by the NIST-PQC project, the experience to be gained with the current scope should be useful for future considerations about threshold PQC. Also, post-quantum security can be considered in gadgets and in the thresholdization of AES.

2. Idealization of security. A proposal of threshold scheme must be supported on a simulationbased and/or a game-based security formulation. This entails defining an ideal functionality (as in the ideal-real simulation paradigm, e.g., in the universal composability framework) and/or an idealized adversarial game (or set of games). The proposal must discuss whether/which known useful properties are not captured by the idealized security formulation.⁴ The proposal must include a proof ("security proof") that, in a suitable adversarial context (see item 3), the proposed threshold scheme satisfies the proposed security formulation, e.g., by showing "emulation" of the ideal functionality, or by showing that a non-negligible adversarial advantage in the game implies breaking an assumption. The analysis must identify the required cryptographic assumptions and any possibly-idealized trusted components in the setup or operations. It must also consider the (in)security consequences of foreseen real instantiations of the setup and ideal components.

3. Security vs. adversaries.

Security with respect to how an adversary corrupts up to f parties:

- (a) Active. Proposed threshold schemes must aim for active security (i.e., against active corruptions, which enable corrupted parties to "maliciously" deviate from the protocol), as opposed to *passive* only.
- (b) Adaptive. There is a strong preference for considering threshold schemes that achieve adaptive security (i.e., against adaptively chosen corruptions), as compared to *static* only,

⁴ For example, even though availability is a generically desirable property, a security formulation may on purpose specify that an adversary is allowed to abort protocol executions, so that the formulated security notion is achievable. As another example (now of an unsuitable formulation), a sole requirement of hiding and binding for a commitment scheme would not suffice for a use (e.g., committing bids in an auction) that would also require a non-malleability property.

with respect to critical safety properties (e.g., unforgeability). There is also a need for **practi-cal feasibility**. Feedback is welcome on: (i) security formulations and reference approaches that simultaneously enable both qualities; and/or (ii) possible acceptable tradeoffs.

(c) Proactive. Threshold schemes should be compatible with mechanisms of proactive (and reactive) recovery, which attempt to recover possibly corrupted parties back to an uncorrupted state. This is especially important to better handle a persistent mobile adversary than continuously attempts to corrupt more parties. With respect to refreshing secret shares, the solutions can be based on a modularized phase of secret-resharing (see item 6), though also specifying the needed conditions (e.g., requirement of some initial/final agreement by a qualified quorum) for its integration.

To achieve security against the mentioned types of corruption, proposals of threshold schemes can consider security formulations with reduced liveness/availability, such as "security with abort".⁵ This compromise is known to be necessary in some settings, depending on f/n and on the assumptions about the communication network (e.g., about the synchrony and reliability of channels). Still, when possible, there is value in attaining liveness/availability features, such as enabled by identifiable abort, robustness, fairness or even guaranteed output delivery. The pertinence of some of these termination options can also depend on the system model, including on how concurrent operations are handled, on who are the beneficiaries of the output (e.g., compare the parties in a threshold keygen vs. the client in a threshold signing).

4. System model. A proposal of threshold scheme must strive for a clear description that facilitates understanding various options across possible deployment scenarios.

(a) **Participants.** There is a **threshold entity** composed on n "parties". On the onset, all parties "know who" are the n parties, namely agreeing on n identifiers (possibly public keys to support authenticated channels).⁶ For some operations, such as threshold keygen, the *beneficiaries* of the computation are the parties themselves, who end with a new (secret sharing) state that may require agreement (possibly in a sense of "security with unanimous abort"), and/or an administrator (e.g., who needs to accept a new public key). For other operations, such as threshold signing, the beneficiaries can be an external client, who initiates the computation with a request, and intends to determine an output. The client may or may not be aware of (and be able to interact distinctively based on) the *n*-party threshold composition (see "shared-I/O" interfaces⁷ in Section 2.3 of IR 8214A). The possibility of **concurrent** execution requests must be considered. A baseline description can assume that there is a

Page 3 of 4

⁵ With "security with unanimous abort" the honest parties agree on whether or not there was an abort. This can be useful, for example, for a threshold keygen or secret resharing where the honest parties should collectively agree on having achieved a new secret-shared state. With "selective abort" (non-unanimous) some parties might be unaware that others have aborted. The suitability of the latter version needs to be carefully considered.

 $^{^{6}}$ The suitability of keys needs to be confirmed, locally or interactively, possibly using zero-knowledge proofs.

⁷ These define whether or not a client can separately send/receive input/output shares to/from each party.

(possibly malicious) **proxy** that can: intermediate the communication between clients and the threshold entity, and authorize requested operations (e.g., the signing of a message).

(b) **Distributed systems and communication.** The description can decouple (i) classical distributed-systems' building blocks (e.g., consensus, reliable broadcast) from the (ii) essential cryptographic operations of the secure multiparty computation over (or of) a secret-shared key, as long as the interface and rules for composition are clearly specified. The specification of instantiations of the former (i), making use of weaker resources (e.g., enabling broadcast based on point-to-point channels), can be provided by reference to existing specifications & open-source implementations, while evaluating the impact of those replacements. A baseline description can make strong assumptions about the communication network, including synchrony and reliability of transmission. However, the proposal must discuss the pitfalls of deployment in environments with weaker guarantees (e.g., with asynchronous and unreliable channels), and possible mitigations. Different threshold schemes may be better suited to different communication environments, namely across the possible guarantees (and lack thereof) in terms of **synchrony, broadcast**, and **reliability**. It is important to understand how security guarantees break across these environments. The protocol can be described with various phases (e.g., offline, online, secret resharing), possibly with differentiated requirements.

5. Threshold profiles. For each primitive (see item 1) for thresholdization, it may be useful to consider differentiated solutions across various threshold parametrizations. For f/n: (i) S2PC ((f, n) = (1, 2)); (ii) honest majority (f < n/2); (iii) two-thirds honest majority (f < n/3); (iv) dishonest majority $(f \ge n/2)$. For standalone n: "two" (n = 2); "small" $(3 \le n \le 8)$; "medium" $(9 \le n \le 64)$; and "large" (n > 64). The notion of "threshold profile" may be used to identify parametrization ranges. A threshold scheme proposal can focus on a single threshold profile or on several. The proposal must discuss the diversity of thresholds associated with various security properties. Future G&R may consider a suite of threshold schemes to cover various profiles. There is value in identifying motivating applications for adoption of threshold schemes in each profile.

6. Building blocks. Some building blocks (sometimes called gadgets) can be useful across various threshold schemes. A notable building block is Shamir secret sharing (and Lagrange interpolation), either in the clear or homomorphically (e.g., "in the exponent"). Other secret sharing variants may also be useful. Other examples of gadgets are garbled circuits, oblivious transfer, commitments, secret resharing (possibly for new values f and n), multiplicative-to-additive share conversion, additively homomorphic encryption, some zero-knowledge proofs, consensus and broadcast. To the extent possible, proposals of threshold schemes should modularize the description of gadgets. This means that a high-level description of the threshold scheme uses references to the interface and security properties of the gadgets, but not necessarily to low-level details. Then, a lower level description can be made for one (or more) possible instantiation of each needed gadget. While some future G&R documents may focus on gadgets, the decision to do so within the MPTC project will be subordinate to their utility for concrete threshold schemes. The upcoming call for proposals might also call for separate proposals of properly motivated gadgets.

	for Feedback on Criteria for Threshold Schemes
	FirstA LastA ¹ \cdot FirstB LastB ² \cdot FirstC LastC ³
	Month day, 2021
[[REMOVE pages, expo "MPTC Cal	THIS PORTION: This is a suggested but not mandatory template. Once filled, up to six ort to PDF and send by email to <u>threshold-MP-call-2021a@nist.gov</u> with the subject l 2021a: Public Comments on Criteria".]]
1. Scope of <comments< td=""><td>f proposals s go here></td></comments<>	f proposals s go here>
2. Idealizat <comments< td=""><td>ion of security s go here></td></comments<>	ion of security s go here>
3. Security <comments< td=""><td>vs. adversaries s go here></td></comments<>	vs. adversaries s go here>
4. System r <comments< td=""><td>nodel 5 go here></td></comments<>	nodel 5 go here>
5. Thresho l <comments< td=""><td>d profiles s go here></td></comments<>	d profiles s go here>
6. Building	blocks 5 go here>
Other com <comments< td=""><td>ments 5 go here></td></comments<>	ments 5 go here>

³ Fill in with affiliations and possible disclaimers.

Page 1 of 1

Item 3: Printout of the .tex template for providing feedback

```
%% TEMPLATE FOR COMMENTS IN REPLY TO THE NIST MPTC Call 2021a for feedback
           %% 2021-06-25 (LB): THIS IS A SUGGESTED BUT NOT MANDATORY TEMPLATE
           %% Once filled with comments under the various paragraph headers, compile to a PDF file, with up
           to six pages, and send to threshold-MP-feedback-2021a@nist.gov via en email with the subject
            "Public Feedback on MP Threshold Criteria"
  5
  6
           \documentclass[12pt,letterpaper] {article}
 8
           \usepackage[margin=.86in] {geometry}
\usepackage{iftex}
  9
           \ifPDFTeX\usepackage[utf8]{inputenc}
           \else\usepackage{fontspec}\fi
            \usepackage {adjustbox}
           \setlength{\parindent}{0in}\setlength{\parskip}{1em}
           \usepackage[bottom, hang, flushmargin] {footmisc}
14
15
           \usepackage{fancyhdr,lastpage}
            \renewcommand{\headrulewidth}{0pt}
           \pagestyle{fancy}\setlength{\headheight}{14.5pt}
\cfoot{\scalebox{.82}{Page \thepage\ of \pageref{LastPage}}}
18
           \usepackage(color)
\usepackage[colorlinks,allcolors=blue]{hyperref}
19
20
            \usepackage{bookmark}
21
           \newcommand{\bkmpar}[1]{\vskip.5em\noindent\pdfbookmark[1]{#1}\textbf{#1}\vskip0pt}
22
23
           \def\authorA{FirstA LastA} % Fill in with name of author (A)
24
           \def\affilA{Fill in the affiliations and other possible disclaimers.}
25
           \def\authorB{FirstB LastB} % Fill in with name of author (B)
26
           \ensuremath{\ensuremath{\mathsf{def}}\xspace{\ensuremath{\mathsf{affilB}}\xspace{\ensuremath{\mathsf{Fill}}\xspace{\ensuremath{\mathsf{int}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ensuremath{\mathsfrot}}\xspace{\ensuremath{\mathsf{rot}}\xspace{\ens
27
           \def\authorC{FirstC LastC} % Fill in with name of author (C)
           \def\affilC[Fill in the affiliations and other possible disclaimers.}
%% Add more definitions as suitable: \authorD, \affilD, ...
\def\ourdate{Month day, 2021} %% fill in with the appropriate month and day
2.8
29
31
34
           \begin{document}
35
36
           \begin{center}
37
            {\bfseries\large Comments in Reply to the NIST MPTC Call 2021a\\[1ex]
38
           for Feedback on Criteria for Threshold Schemes}
39
40
           \authorA\footnote{\affilA} $\cdot$
          \authorB\footnote{\affilB} $\cdot$
\authorC\footnote{\affilC} %%% add more if suitable
41
42
43
44
           \ourdate
45
           \end{center}
46
           \bkmpar{1. Scope and process}
47
48
          % Comments go here
49
          \bkmpar{2. Idealization of security}
51
           % Comments go here
53
           \bkmpar{3. Security vs. adversaries}
54
           % Comments go here
55
56
           \bkmpar{4. System model}
57
           % Comments go here
58
59
           \bkmpar{5. Threshold profiles}
60
           % Comments go here
61
62
           \bkmpar{6. Building blocks}
63
           % Comments go here
64
65
           \bkmpar{Other comments}
66
           % Comments go here
67
68
           \end{document}
69
```

Item 4: Feedback from Arpita Patra and Nigel Smart

From: Nigel Smart Cc: Arpita Patra On the Call 2021a for Feedback on Criteria for Threshold Schemes... Point 1) Item 5: You focus on "threshold" adversaries, but you could think about more general access structures and not be tied into threshold only. e.g. t<n/2 could be generalized to Q2 structures t<n/3 could be generalized to Q3 structures This might be quite relevant for gov applications which require a more complex authorization structure then just a threshold. Point 2) You also do not mention the $t \le n/3$ (resp $t \le n/4$) bounds for ASYNCHRONOUS protocols. For Async protocols for robust computation the usual t < n/2 becomes t < n/3 and the usual t < n/3 becomes t<n/4. The references for these are..... t < n/3: Michael Ben-Or, Boaz Kelmer, Tal Rabin: Asynchronous Secure Computations with Optimal Resilience (Extended Abstract). PODC 1994: 183-192 https://dl.acm.org/doi/10.1145/197917.198088 t < n/4: Michael Ben-Or, Ran Canetti, Oded Goldreich: Asynchronous secure computation. STOC 1993: 52-61 Point 3) You might want to distinguish between malicious+robust computation [as above] vs active-with-abort style computation. For information theoretic constructs you need $t \le n/3$ for active-with-abort security, vs t<n/2 for normal synchronous information theoretic protocols. Yours Arpita an Nigel Prof. Nigel Smart imec-COSIC - KU Leuven https://homes.esat.kuleuven.be/~nsmart

Comments in Reply to the NIST MPTC Call 2021a for Feedback on Criteria for Threshold Schemes

Tore Frederiksen¹ \cdot

July 8, 2021

1. Scope and process

No comments.

2. Idealization of security

No comments.

3. Security vs. adversaries

Section 3 describes the desired security models in relation to the adversary and their power. Concretely a strong preference is expressed towards adaptive security. Adaptive security is clearly more desirable than static security. This is in particular true in a real-world setting, where "real" adversaries should generally be considered adaptive. However, achieving efficient adaptive security, in conjunction with other strong security requirements, might be really hard, if not impossible. An indication of this is given by the comparative lack of recent research in the area of adaptively secure protocols, in contrast to statically secure ones. This both holds in relation to full protocols, but even in the setting of building blocks such as garbled circuits and oblivious transfers. Furthermore, there seem to have been, both an academic and commercial, acceptance that "static security is good enough in practice, even though the real world is technically adaptive". This can for example be seen from a recent real-world-aimed academic paper by Chen *et al.* [2].

4. System model

No comments.

5. Threshold profiles

Section 5 discusses the different threshold profile concrete protocols could take. it is suggested that it is useful to have solutions for both the 2-party setting, honest majority, two-thirds honest majority and dishonest majority. We note, that in general, most recent threshold cryptography research has focused on the dishonest majority case (including the two-party case) [7, 2, 1, 5, 6, 8]. Furthermore, the recent works focusing on the dishonest majority case generally do so, not for reasons of robustness, but rather as a means of increasing efficiency [4, 3]. That is, cases with two-thirds honest majority to improve robustness has generally not been considered in contemporary research of threshold public key schemes. With this in mind, it might be worthwhile considering

¹Security Lab, Alexandra Institute, AARHUS, DENMARK, tore.frederiksen@alexandra.dk

Page 1 of 3

REFERENCES

REFERENCES

to limit the recommended scope of submissions. Section 5 also considers the amount of parties to be involved with the computation, concretely mentioning settings for "two", "small", "medium" and "large" amount of parties. We note that most research has either focused on the "two" [7, 5], "small" [3, 8, 4, 3] or "large" [6, 2] cases, leaving the "medium" case out. Furthermore one can argue that the "two" and "small" cases are suitable for execution by somewhat trusted and highly reliable servers. This is in contrast to the "large" case which allows for execution by untrusted clients (e.g. in the blockchain setting), while still being able to achieve reasonable security. Thus the space where the "medium" case would fall seems hard to find.

Furthermore since it is suggested that it may be useful for solutions to achieve flexibility in regards to the threshold profile, it might even be impossible to construct candidates fulfilling all the requirements while achieving general flexibility.

6. Building blocks

While the idea of compossible building blocks is really nice, it seems hard to achieve without any formal description/standard, formalizing the interface of these building blocks. Perhaps defining specific interfaces (e.g. in the UC model) of each of the most commonly used primitives might yield an easier comparison of solutions and allowing for easier description and deployment in the future.

Other comments

In general there are a lot of different vectors of security and renationalization when it comes to threshold cryptography. The call for feedback has a lot of flexibility on almost all possible parameters. While this will allow for more schemes being suitable for submission, this could also imply that each future submission will reflect one specific setting, making it hard to compare.

Please note that the comments in this document are primarily in the setting of key generation for threshold public keys systems. However, they also hold for the symmetric case, assuming it is based on standard MPC techniques, as both key generation for threshold public keys systems and symmetric threshold cryptography (based on already existing standards) use many of the same underlying techniques and tools.

References

- Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield, and Abhi Shelat. Multiparty generation of an RSA modulus. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages 64– 93. Springer, 2020.
- [2] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, Abhi Shelat, Muthuramakrishnan Venkitasubramaniam, and Ruihan Wang. Diogenes:

REFERENCES

REFERENCES

Lightweight scalable RSA modulus generation with a dishonest majority. *IACR Cryptol.* ePrint Arch., 2020:374, 2020.

- [3] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman. Securing DNSSEC keys via threshold ECDSA from generic MPC. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, Computer Security - ESORICS 2020 - 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceedings, Part II, volume 12309 of Lecture Notes in Computer Science, pages 654–673. Springer, 2020.
- [4] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and Michael Bæksvang Østergård. Fast threshold ECDSA with honest majority. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages 382–400. Springer, 2020.
- [5] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, pages 980–997. IEEE Computer Society, 2018.
- [6] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1051–1066. IEEE, 2019.
- [7] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed RSA key generation for semi-honest and malicious adversaries. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages 331–361. Springer, 2018.
- [8] Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with identifiable abort. IACR Cryptol. ePrint Arch., 2020:540, 2020.

From: Brandao, Luis (IntlAssoc) Sent: July 14, 2021 To: Tore Kasper Frederiksen Subject: Re: Feedback on criteria for threshold schemes Hi Tore, Glad to hear from you. Thank you for your early comments about the MP-threshold Call2021. Two notes: - Adaptive security. Your comment about static/adaptive touches indeed one important point we've been considering (and on which we hope to get ample feedback). My understanding is that many solutions proven secure in a static setting are proposed with an implicit understanding that no obvious "criticalsafety" issue exists if the adversary is adaptive. For example, maybe a lack of adaptive security (technically, the environment being able to distinguish between the ideal and the real world) is simply because the protocol does not emulate some "less important" property (e.g., deniability of execution) of the defined ideal functionality. However, if, for example, a statically secure threshold signature scheme becomes forgeable under an adaptive attack, then that is a substantially different case of concern. - Threshold profiles. Thanks for pointing out different perspectives across threshold ranges. It is acceptable to consider solutions that are specific to just one profile. For the "two" and "small" threshold profiles, by "somewhat trusted and highly reliable servers" did you intend to convey "passive / semihonest" (as opposed to active/malicious)? For these cases we would also like to consider the malicious setting. Thank you again for your valuable feedback, Luís Luís Brandão Foreign Guest Researcher at NIST (Contractor via Strativia) _____ From: Tore Kasper Frederiksen Sent: July 14, 2021 To: Brandao, Luis (IntlAssoc) Subject: Re: Feedback on criteria for threshold schemes Hi Luis, You are every welcome. We are happy to supply feedback to the valuable standardization work done by NIST. About your two comments:

1. I completely agree with your observation that it only makes sense to go for static security if it is reasonable to assume that there is no concrete break of security if used adaptively.

2. By somewhat trusted I did not mean passive/semi honest. I meant it more as an external/real world approach to security. If you pay a company to host part of an MPC computation you generally trust that they behave, contrary to someone who is taking part by running some python script on their laptop.

I hope this makes sense.

Best, Tore

From: Brandao, Luis (IntlAssoc) Sent: July 21, 2021 To: Tore Kasper Frederiksen Subject: Re: Feedback on criteria for threshold schemes

Hi Tore,

Thank you for the clarification!

1. Indeed. It's a point about which it will be useful and interesting to consider diverse feedback.

2. I agree there are important use-cases where a company providing MPC-as-a-service has to gain in providing a good secure service based on reliable servers and communication network. Ideally, some threshold schemes can be tailored to work very efficiently and effectively in that setting, while providing proper fallback guarantees for when the deployment setting turns out to be worst (e.g., malicious and asynchronous).

Regards, Luís

Item 6: Feedback from Ran Canetti

From: Ran Canetti Sent: September 7, 2021 To: Brandao, Luis (IntlAssoc) Subject: Re: Call 2021a for Feedback on Criteria for Threshold Schemes

Dear Luis:

Thanks again for drawing my attention to the call for feedback and for adding me to the mailing list. I do think that the draft IR to be released later this year should be unequivocal about requiring analysis that considers adaptive corruptions.

Regarding use of the random oracle model:

The simple answer to you question is that indeed the protocols that I had in mind when mentioning the ROM in my previous note use the programmable ROM - but I dont think that this fact, in and of itself, should "disqualify" them. (Specifically, two examples I had in mind were Nielsen's non-committing encryption from Crypto 02 and the recent threshold ECDSA paper that I coauthor (CGGMP20) - but these two protocols use the ROM in very different ways: in Nielsen's work the use of the ROM is essential, whereas in the ECDSA work the ROM is used for components that have nothing to do with adaptive security. Also see below.)

In any case, regardless of what I had in mind, it will probably be a good idea to be a bit more explicit in the upcoming IR re how security analysis in the ROM will be treated. This of course applies to any aspect of the security analysis, not just to the handling of adaptive corruptions.

My personal take is that, while it is of course better to have security analysis that does not use the ROM (or other over-idealized models of cryptographic primitives), security analysis in the ROM does have significant value, since it compartmentalizes the "piece that is left un-analyzed" and provides some guarantee as to the soundness of overall structure of the protocol. In particular, experience shows that oftentimes it is possible to later "make ends meet" by either finding a concrete notion of security for the hash function that suffices for the application, or reformulating the security requirement, or both. Still, it would be good to ask that:

(a) the use of the ROM is minimal - components that do not need the use of the ROM are modeled and analyzed in the standard model

(b) the act of replacing the abstract ROM with an actual hash function does not introduce new vulnerabilities --- especially in cases where multiple primitives are analyzed separately in the ROM. (Indeed - schemes that use the programmable ROM often tend to be more susceptible to having issues with this aspect. But, as was demonstrated in a number or works - eg, the wonderful-worlds paper of Camenisch etal from Eurocrypt 18 - this is not necessarily the case.)

BTW, an unrelated comment: It may also be good to ask that the security analysis explicitly specify not only the "adversary model" and the "system model", but also the "protocol environment" namely any assumptions or expectations regarding the "calling protocols" - namely the components that provide the inputs to (and read the outputs of) the analyzed protocol. Are there any assumptions/ expectations as to the structure/distribution of the inputs? Are there assumptions/expectations on what information about the input/outputs are leaked by the calling protocol to adversarial entities? etc. (Of course, security that's guaranteed for "any environment" is always best, but there may well be situations where proviging security only wrt restricted classes of environments might be both meaningful and allow for more efficient solutions.) Item 6: Feedback from Ran Canetti

Hope this helps, Ran From: Brandao, Luis (IntlAssoc) Sent: September 7, 2021 To: Ran Canetti Subject: Re: Call 2021a for Feedback on Criteria for Threshold Schemes Dear Ran, Thank you for your comments and examples about the importance of security against adaptive corruptions. Your feedback is much appreciated! [...] A curiosity: when you mention efficient-adaptively-secure solutions in the RO model, do you think these require programmable random oracles, or would non-programmable RO's suffice? One concrete intention with the suggested questions in the email (in complement to the actual call 2021a) is to motivate that (ask whether it is reasonable that) protocols that have so far only been analyzed under static corruptions get a possible new look (i.e., new security analysis) to check whether they (or slight adjustments thereof) may be suitable for deployment in a setting of adaptive corruptions. Thanks again. Regards, Luís From: Ran Canetti Sent: September 4, 2021 To: Brandao, Luis (IntlAssoc) Subject: Re: Fw: Call 2021a for Feedback on Criteria for Threshold Schemes Dear Luis, [...] Regarding security against adaptive corruptions: I dont think that the suggested questions below are sufficient. In fact, *I would strongly advise against considering any protocol that does not provide a guarantee of security against adaptive corruptions.* Here is why: (a) We do have very reasonable and efficient protocols for threshold schemes that provide security against adaptive corruptions. Certainly, in the RO model it is possible to obtain adaptive security with very little overhead - for protocols that are designed right. So there is really no excuse for not providing provable adaptive security.

(b) Adaptive attacks are a real concern. Furthermore - adaptive security is a prerequisite for

Item 6: Feedback from Ran Canetti

meaningful proactive security: Proactive refreshes are meaningless unless they consider adaptive corruptions.

Let me highlight this issue via the following example: If a protocol is not required to provide security against adaptive corruptions, then there is nothing that requires the protocol to ever instruct a party to erase local data. That is, take any protocol, and remove from it all the instructions to locally erase data. If your notion of security does not consider adaptive corruptions then the new protocol will be just as secure as the original one. This, of course, is highly counterintuitive since we know that judicious erasures of local data are oftentimes crucial for providing real-life security against attacks.

Hope this helps,

Ran

commitments and garbled circuits without specifying a concrete instance. This would allow the designer the choice to instantiate Oblivious Transfer with either the IKNP-based protocols or newer low-communication variants based on LPN.

Building blocks: Oblivious Transfer, commitments and garbled circuits are critical building blocks of threshold cryptography. A large portion of the threshold schemes mentioned in the document use these primitives as a critical building block. As a result, we believe that these building blocks should be the first target of standardization.

Systematic evaluation: Ultimately, when NIST will work towards standardizing MPC protocols it should provide methods to evaluate protocols in a fair and systematic way. First, before making concrete proposals, NIST should write a detailed explanation on how it will evaluate different candidates. Second, to ensure that all reference implementations can be easily compared, we recommend that NIST provide basic networking code that will need to be used by all candidates to demonstrate the efficiency of the protocols. Similarly, NIST may also want to code for basic primitives such as OT and commitments to fairly evaluate different protocols.

Standardizing MPC is a challenging task. The document "Call 2021a for Feedback on Criteria for Threshold Schemes" is an excellent step towards that goal. We thank NIST for this initiative and look forward to the next iteration of this project.

Item 8: Feedback from Dan Boneh and Chelsea Komlo

Feedback on NIST Criteria for Threshold Schemes

Dan Boneh, Chelsea Komlo

September 2021

NIST recently put out a call for feedback on criteria for threshold schemes. This document outlines three points that, if added, would strengthen the applicability of the resulting standards.

1 Comment One: Privacy versus Accountability

The standard notion of a threshold signature scheme in the literature is meant to be *private* — a signature reveals nothing about which t signers out of the set of all possible n signers participated to produce the signature. Even the threshold t is not revealed by the signature. While this is desirable in some settings, it means that signers are not *accountable* for messages they sign.

Accountability is a required in many settings where threshold signatures are used. Most notably, in financial applications, if a transaction is incorrectly authorized, an organization should be able to inspect the signature and learn which signers participated in the rogue authorization process. In such settings, a private threshold signature often cannot be used.

Suggestion: the criteria for threshold signature schemes could call out for two flavors of threshold signatures: *private threshold signatures* (PTS), where the signature hides the threshold t and hides the signing set, and *accountable threshold signatures* (ATS) [3, 4, 1, 2, 7], where a signature can be securely traced to the set of signers.

Note that an ATS scheme can be trivially constructed by concatenating t non-threshold signatures from the signing parties, and embedding t within the public key along with a set of n public keys, one for each authorized signer. However, there are ATS schemes that are much better than this trivial scheme in that signatures are shorter and verification is faster [4, 1, 2, 7].

2 Comment Two: Support for Threshold PRFs Beyond AES

Simplicity in cryptographic constructions is critical to minimize the risk of security-critical bugs in implementations, as well as to lower the barrier to understanding and implementing the scheme for practitioners. Towards this end, we recommend widening the scope of proposals for the building blocks necessary to instantiate threshold PRFs.

Threshold PRFs have a range of practical use cases. For example, threshold (O)PRFs can be used as a building block for distributed one-time password systems and anonymous token issuance. In this setting, partitioning a secret key among a threshold number of parties is desirable for distribution of trust and redundancy purposes, without requiring the reconstruction of the secret key at a single location.

The current scope of proposals for threshold primitives includes AES, which can be made into a threshold PRF via multiparty computation. However, there are many simpler ways to construct a threshold PRF. One example is a threshold PRF built from the XOR of several non-threshold PRF such as AES [5]. The resulting threshold PRF is far more efficient than the one obtained from MPC applied to AES.

Item 8: Feedback from Dan Boneh and Chelsea Komlo

Another simplified approach to threshold PRF can be realized by an algebraic PRF [6]. Let F be the PRF function, k be the input, and x be the secret key. An algebraic PRF (via hashed Diffie-Hellman) is then $F(k, x) := H(x)^k$, where $H : \mathcal{X} \to \mathbb{G}$ is a random oracle. Here \mathbb{G} is a group where DDH is hard, and \mathcal{X} is the domain of the PRF. A threshold variant of this PRF simply applies Shamir secret sharing to the secret key k.

Suggestion: the criteria for threshold PRF schemes could allow for PRFs that are not AES. This could result in simpler and more efficient threshold PRF constructions compared to AES-MPC.

3 Comment Three: More General Access Structures

The proposed threshold profiles currently focus on threshold access structures, but it may be desirable to support more general access structures. For example, instead of requiring a threshold number of signers from one set, it may be desirable to require t_1 users from one set and t_2 users from another set.

Suggestion: the proposed threshold profiles could optionally require support for monotone access structures beyond a simple t-out-of-n design.

References

- M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the 13th ACM conference on Computer and communications security, pages 390–399, 2006.
- D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In ASIACRYPT '18, volume 11273, pages 435–464. Springer, 2018.
- [3] K. Itakura, K; Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC research and development, 1983.
- [4] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In Proceedings of the 8th ACM Conference on Computer and Communications Security, CCS '01, page 245–254, New York, NY, USA, 2001. Association for Computing Machinery.
- [5] S. Micali and R. Sidney. A simple method for generating and sharing pseudo-random functions, with applications to clipper-like escrow systems. In *CRYPTO '95*, volume 963 of *LNCS*, pages 185–196. Springer, 1995.
- [6] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and kdcs. In EUROCRYPT '99, volume 1592 of LNCS, pages 327–346. Springer, 1999.
- [7] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple Two-Round Schnorr Multi-Signatures. Cryptology ePrint Archive, Report 2020/1261, 2020.

Item 9: Feedback from Jakob Pagter

From: Jakob Pagter Sent: September 13, 2021 To: threshold-MP-call-2021a Subject: Feedback on Criteria for Threshold Schemes

Regarding: https://csrc.nist.gov/CSRC/media/Projects/threshold-cryptography/documents/MPTC-call2021a-feedback.pdf

Overall we believe that this scope of requirements is reasonable.

Regarding adaptive security we think this is a relevant perspective, but it has not yet received a lot of attention from the research community, so any strong requirements for active security will likely slow down the usage of standardised MPC. Also, practical models should be taken into account; for example it seems unrealistic that an actual adversary can choose whether to compromise a backend MPC node or a mobile node. Finally, for 2-party MPC, adaptive security probably should be ignored, as the adversary can be prevented from having any meaningful information on which party to corrupt.

A perspective which is not well covered in the document is that of thresholds for noninteractive protocols. For instance, for EdDSA and ECDSA, it must not be possible for a dishonest party to re-use the same offline data twice with different subsets of players as this would allow exfiltration of the private key by effectively signing the same message twice with the same nonce.

Best,	
Jakob	

--Jakob Pagter, CTO Sepior

From: Brandao, Luis (IntlAssoc) Sent: September 13, 2021 To: Jakob Pagter Subject: Re: Feedback on Criteria for Threshold Schemes

Dear Jakob,

Thank you for your feedback, namely your comments about security types, practical models, and thresholds in non-interactive setting.

Item 9: Feedback from Jakob Pagter

These comments are useful for the ongoing process of consideration of threshold schemes by the MPTC project.

We'll followup sometime later with a public compilation of the received feedback and some reply comments.

One clarification question: your first sentence mentioned "adaptive" and "active" security in separate parts. When saying "any strong requirements for active security will likely ..." did you mean adaptive+active together, our simply active (regardless of being "adaptive" or "static")?

Regards, Luís

--Luís Brandão Foreign Guest Researcher at NIST (Contractor via Strativia)

From: Jakob Pagter Sent: September 15, 2021 To: Brandao, Luis (IntlAssoc) Subject: Re: Feedback on Criteria for Threshold Schemes

Hi Luis,

It should say: "any strong requirements for adaptive". Hope that makes it clearer :)

Sorry for the confusion.

/Jakob