From: Danilo Gligoroski <danilog@ntnu.no>

Sent: Thursday, December 28, 2017 1:00 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: LAKE

Dear LAKE designers,

Can you give a short explanation why the ciphertext in LAKE KAT files appears so regularly non-random and

in most cases it has as a sub-string "0000....0000" (a string with 18 zeros for LAKE-I, a string with 24

zeros for LAKE-1l and a string with 28 zeros for LAKE-111)? The number of zeroes (18 or 24 or 28) is in

connection with the parameter m in your design, but why those strings appear so frequently in the ciphertexts?
| have tried to find some note in your documentation, but | could not find any.

For example for LAKE-I let us look at examples count = 7 and count = 13:

count=7

seed =
AEFB28FDD34EO0AB403A703B535296E3A545CA479C1D8148E2D501B3C8DD8B1034BD986F13F1A7B4671BE769359FD2AAB
pk =
1A4D09D9EA87345B008099585032D68EF9006C9A694A051B738600EFBACODD42AD43290212F5C3D10BE8129401575B11
B470B3EF720515731B40A35CC5FEQO7EE525237CFBOD468078B5F07A63B2D9C8F0488653C52331624E0043A66DEF377C6
14C303CD759FBF16C8AEA50551FDC6F1E58B837B059A0CA7E1F40AC50EO05E67F9BODDCEDOE9O07CEO23ECEEDB95D8FO0
AD5A3F6F03158901027BO0OEA65E3ACCD3A009FA639BE49B41C5D078F28ED83A7BD2587055D9724AED5BF05980584574F
BD1C50A584073A2E0D004B39087F07884B97E35791CA1C03D8215BF50BF6CE7506FCBESC04B73955BD000E27C2904FF4
82C605D295B5BA5B6CCEAO0003FCOFA175B339E50500FCOEAA1F7C69E506CCE432CC1654ABF500DD7B76855B2BEAAGOS
9D99C85E516BCD9606D37ED19C68676535007ABIFA7EBE3D5773005A5B7188CB1334AD065D25A41ECOA989D601109785
C86D6466D506956CEAC109A7A37E054FB7B28467534F33063995F0D282D3CABD0703CAE4EA27C0739707FC7EC8D22F03
9DA60137CCE90028BD361906D201BE1A6A26BBOBO0A04CE16B3117CE8D0O4CA9600ED3DFFC8FEO3

sk = D86634ECF96CC2603761E284C0E36734CEDEC64E7FF486469E38539C71141C5A0472C3D61E4CAE91

ct=
97938F14C48EBC2505D903B47FAAE20F9C03A20909F01D4A825401121D4F636F94673501BD6B48CFDA0443C501121D4F
636F9467350138E588B8711E98D5054E903B6B6E6CB3B90643EF3537C6B6151D07D903B47FAAE20F9CO3CB1EFB1CC576
68A902D47CBA230238A93802C661F5406DACCEOD0388F1CE2B03C07DB405E1E63CC7DBFC974906F3FB73A4B468F07C07
AF7607ACB59024F000F3FB73A4B468F07C077BOABD8FB7A88DC80297938F14C48EBC2505D47CBA230238A938022AF8C7
DB1ESAFFEO04F3FB73A4B468F07C07F3FB73A4B468F07C07CB1EFB1CC57668A90297938F14C48EBC2505121D4F636F94
673501D903B47FAAE20F9C037675B3D31F722B6C03B014469372DEE561001F62413FC74EC1910038E588B8711E98D505
88F1CE2B03C07DB405C661F5406DACCEODO338E588B8711E98D5057BOABD8FB7A88DC802359A86E4D9C43E710443EF35
37C6B6151D07C661F5406DACCEOD032787C987B650594405FE847DF81CB256D80651F27A54A92272280688F1CE2B03CO
7DB405EC99329B732631ED076468FCB070E64C59020D7FOE5CA8DAAB6A40143EF3537C6B6151D07

ss =
C6CD973D27C8701EBE23FEE9620DC9E7F7799A800F3102974E2ACF71449A6A18C2EFDB393074EFE10FE7FD45CA456463D5B23
D922793F64FE619A7A9C4609672

If we see the ciphertext output for count = 7 it seems fairly randomly distributed.
This is what | would expect for all other KATs.

But if we see count = 13 (or the majority of other KATSs)

count=13

seed =
BD26COB9A33E3B9B4C5D7EA32D5BD1FC371015BE163C86F584E49BFD5362C8D8341161CD1308115B2A03B7E5EADDDA418
pk =
835BE8F37E6304D4004BC950C04D83F7B2020A95E125D0639572012570B18080805B8102A38C8FE0141ABE45007E111A
757304E87F070EBOAAE9B60682C4056A74E3A4D75D76F602E1EC815C73C2F3FBO02BF65AFCD837C540A04EC81B033E60A
14E1038A0D18253CA1AFA805ACEFCE92C64D4B9207C909A5C528362FF60283474CE30E6C4F2004B81F1B1EED220B9002
927DDDDFBF149A6D0608C875D24248B8B8016B359BD95758B05404F13A26BB59E1F17E025F5D143526BF17A902CE1576
164A04CA7FO00C4FD86C8A0D2326506CCBOA59C0OB0OC86010786926AD7A3A13DC3025519CE20BA11270700D91EBICFCFBE
DE64079ECF8E9B6476E7740562E767131F847A5F0595B54CDA47197AC6065BBC094F77AF7D83049BA84B7B97693BCB02
ED1644D33691DCC100BDAA67955A21B10906B4F3853E8EBE7AC9050CF66BDCBBD43F01044D4646D3C8DE444D01201C88
403D9C83020110C0826CB551824E05DBAOESA7CI9C5BFD301BDESFFOAD73DDBD903606479C7FO0FOAC807A8F39D12CFFF
733C0349DEE3C4951FFF9801F6E3205AD3FE247A048602FF7491E97FF8047015680D8089B52906

sk =4C04310BEA66305C6CA8BAGB8F61CA96257A67663AFC11761F13FB5C7B324B6B0A8155459118346A

ct=
ECF783D9F341453203ECF783D9F3414532030DA8BA313815AD650387B756B047FCD7E50787B756B047FCD7E5070DA8BA
313815AD6503F1BF31B5C375413B06000000000000000000B75243BD8EC346A0040DA8BA313815AD65033D4DAF3CF12A
3C20006B40D569B4BD92D7044B45C83975A3AAFEO0166E86F588CA83FB2078A1FEC817FE97A80041D48B26C3034040905
AA1AF1D1BEF742A901560D7A554597AEF7041D48B26C30340409055BA5C0647D8203920797575EED4AFDD7E89013D4DAF
3CF12A3C2000C15A24B80A4AD07E050000000000000000000000000000000000008A1FEC817FE97A8004760867058489
96DE017BAODD34BC9C3BBB0210E0085D0821A96C0620051D50C11E38290587B756B047FCD7E50746ED72084DB6079B02
2DADA761F90B954C066B40D569B4BD92D70430E5150DC93F91450366E86F588CA83FB2077BA0DD34BC9C3BBB02AA1AF1
D1BEF742A901B75243BD8EC346A00497575EEDAFDD7E89012DADA761F90B954C0676086705848996DE0166E86F588CA8
3FB2073D4DAF3CF12A3C2000B75243BD8EC346A0041D48B26C30340409055BA5C0647D82039207

Ss =

71C69CF5E16D402BA43DCC12F562166402B7335BA8FBF6240157C026FE6B27BDC83D6C9778586294E6317563A8F478F95100E5

9346956025C673465DB142DOEO

we can notice a frequent appearance of the sequence of 18 zeros.
A similar situation is with LAKE-Il and LAKE-III.

Best regards,
Danilo!

From: Danilo Gligoroski <danilog@ntnu.no>

Sent: Thursday, December 28, 2017 6:28 AM

To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: LAKE

More about the non-randomness in LAKE ciphertexts:

I must correct myself that the count = 7 KAT looks fairly randomly distributed. It is also pretty non-random.
If we represent ct in count = 7 in chunks of 18 nibbles we have the following formatting:

ct={

"97938F14C48EBC2505", "D903B47FAAE20F9CO03", "A20909F01D4A825401", \
"121D4F636F94673501", "BD6B48CFDA0443C501", "121D4F636F94673501", \
"38E588B8711E98D505", "4E903B6B6E6CB3B906", "43EF3537C6B6151D07", \
"D903B47FAAE20F9C03", "CB1EFB1CC57668A902", "D47CBA230238A93802", \
"C661F5406DACCEODO3", "88F1CE2B03C07DB405", "E1E63CC7DBFC974906", \
"F3FB73A4B468F07C07", "AF7607ACB59024F000", "F3FB73A4B468F07C07", \
"7BOABD8FB7A88DC802", "97938F14C48EBC2505", "D47CBA230238A93802", \
"2AF8C7DB1ESAFFE004", "F3FB73A4B468F07C07", "F3FB73A4B468F07C07", \
"CB1EFB1CC57668A902", "97938F14C48EBC2505", "121D4F636F94673501", \
"D903B47FAAE20F9C03", "7675B3D31F722B6C03", "B014469372DEE56100", \
"1F62413FC74EC19100", "38E588B8711E98D505", "88F1CE2B03C07DB405", \
"C661F5406DACCEODO3", "38E588B8711E98D505", "7BOABD8FB7A88DC802", \
"359A86E4D9C43E7104", "43EF3537C6B6151D07", "C661F5406DACCEODO3", \
"2787C987B650594405", "FE847DF81CB256D806", "51F27A54A922722806", \
"88F1CE2B03C07DB405", "EC99329B732631EDO7", "6468FCBO70E64C5902", \
"OD7FOE5CA8DAAGA401", "43EF3537C6B6151D07"

}

and we can see that in the list of 47 sub-strings in ct, there are

"only" 27 different sub-strings

{

"OD7FOE5CASDAAGA401", "121D4F636F94673501", "1F62413FC74EC19100", \
"2787C987B650594405", "2AF8C7DB1ESAFFE004", "359A86E4D9C43E7104", \
"38E588B8711E98D505", "43EF3537C6B6151D07", "4E903B6B6E6CB3BI06", \
"51F27A54A922722806", "6468FCB070E64C5902", "7675B3D31F722B6C03", \
"7BOABD8FB7A88DC802", "88F1CE2B03C07DB405", "97938F14C48EBC2505", \
"A20909F01D4A825401", "AF7607ACB59024F000", "B014469372DEE56100", \
"BD6B48CFDA0443C501", "C661F5406DACCEODO3", "CB1EFB1CC57668A902", \
"D47CBA230238A93802", "D903B47FAAE20F9C03", "E1IE63CC7DBFC974906", \
"EC99329B732631ED07", "F3FB73A4B468F07C07", "FE847DF81CB256D806"

}

Will this non-randomness affect the security claims of LAKE?

Regards,

Danilo!

On 28/12/2017 06:59, Danilo Gligoroski wrote:
Dear LAKE designers,

Can you give a short explanation why the ciphertext in LAKE KAT files appears so regularly non-random
and

in most cases it has as a sub-string "0000....0000" (a string with 18 zeros for LAKE-I, a string with 24
zeros for LAKE-1l and a string with 28 zeros for LAKE-111)? The number of zeroes (18 or 24 or 28) is in
connection with the parameter m in your design, but why those strings appear so frequently in the
ciphertexts?

| have tried to find some note in your documentation, but | could not find any.

For example for LAKE-I let us look at examples count = 7 and count = 13:

count=7

seed =
AEFB28FDD34E0AB403A703B535296E3A545CA479C1D8148E2D501B3C8DD8B1034BD986F13F1A7B467
1BE769359FD2AAB

pk =
1A4D09D9EA87345B008099585032D68EF9006C9A694A051B738600EFBACODD42AD43290212F5C3D10
BE8129401575B11
B470B3EF720515731B40A35CC5FEQO7EES525237CFBOD468078B5F07A63B2D9C8F0488653C52331624E00
43A66DEF377C6
14C303CD759FBF16C8AEA50551FDC6F1E58B837B059A0CA7E1F40AC50EO5E67F9BODDCEDOESO07CED2
3ECEEDB95D8F00
AD5A3F6F03158901027BO0EA65E3ACCD3A009FA639BE49B41C5D078F28ED83A7BD2587055D9724AED
5BF05980584574F
BD1C50A584073A2E0D004B39087F07884B97E35791CA1C03D8215BF50BF6CE7506FCBES5C04B73955BD
O00E27C2904FF4
82C605D295B5BA5B6CCEAO0003FCOFA175B339E50500FCOEAALF7C69E506CCE432CC1654ABF500DD7B
76855B2BEAA605
9D99C85E516BCD9606D37ED19C68676535007ABIFA7EBE3D5773005A5B7188CB1334AD065D25A41EC
0A989D601109785
C86D6466D506956CEAC109A7A37E054FB7B28467534F33063995F0D282D3CABD0703CAE4EA27C0739
707FC7EC8D22F03
9DA60137CCE9S0028BD361906D201BE1A6A26BB9BO0A04CE16B3117CE8DO4CA9600ED3DFFC8FEO3
sk =
D86634ECF96CC2603761E284C0E36734CEDEC64E7FF486469E38539C71141C5A0472C3D61E4CAE9L
ct=
97938F14C48EBC2505D903B47FAAE20F9C03A20909F01D4A825401121D4F636F94673501BD6B48CFDA
0443C501121D4F
636F9467350138E588B8711E98D5054E903B6B6E6CB3B90643EF3537C6B6151D07D903B47FAAE20F9C
03CB1EFB1CC576
68A902D47CBA230238A93802C661F5406DACCEODO388F1CE2B03C07DB405E1E63CC7DBFC974906F3FB
73A4B468F07C07
AF7607ACB59024F000F3FB73A4B468F07C077BOABD8FB7A88DC80297938F14C48EBC2505D47CBA2302

2

From: Nicolas Aragon <nicolas.aragon@etu.unilim.fr>

Sent: Thursday, December 28, 2017 6:42 AM

To: Danilo Gligoroski; pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: RE: [pgc-forum] OFFICIAL COMMENT: LAKE
Dear Danilo,

Thanks for pointing out this issue.

This problem comes from an error in the implementation of LAKE, we are currently working on a fix.
Ciphertexts are indeed supposed to be randomly distributed

We will provide updated KATs when we have fixed the implementation

Regards,
Nicolas Aragon

De : Danilo Gligoroski <danilog@ntnu.no>

Envoyé : jeudi 28 décembre 2017 12:27:53

A : pgc-comments@nist.gov

Cc : pgc-forum@list.nist.gov

Objet : Re: [pgc-forum] OFFICIAL COMMENT: LAKE

More about the non-randomness in LAKE ciphertexts:
I must correct myself that the count = 7 KAT looks fairly randomly distributed. It is also pretty non-random.
If we represent ct in count = 7 in chunks of 18 nibbles we have the following formatting:

ct={

"97938F14C48EBC2505", "D903B47FAAE20F9C03", "A20909F01D4A825401", \
"121D4F636F94673501", "BD6B48CFDA0443C501", "121D4F636F94673501", \
"38E588B8711E98D505", "4E903B6B6E6CB3B906", "43EF3537C6B6151D07", \
"D903B47FAAE20F9CO03", "CB1EFB1CC57668A902", "D47CBA230238A93802", \
"C661F5406DACCEODO3", "88F1CE2B03C07DB405", "E1E63CC7DBFC974906", \
"F3FB73A4B468F07C07", "AF7607ACB59024F000", "F3FB73A4B468F07C07", \
"7BOABD8FB7A88DC802", "97938F14C48EBC2505", "D47CBA230238A93802", \
"2AF8C7DB1ESAFFE004", "F3FB73A4B468F07C07", "F3FB73A4B468F07C07", \
"CB1EFB1CC57668A902", "97938F14CA48EBC2505", "121D4F636F94673501", \
"D903B47FAAE20F9CO03", "7675B3D31F722B6C03", "B014469372DEE56100", \
"1F62413FC74EC19100", "38E588B8711E98D505", "88F1CE2B03C07DB405", \
"C661F5406DACCEODO3", "38E588B8711E98D505", "7BOABDSFB7A88DC802", \
"359A86E4D9C43E7104", "43EF3537C6B6151D07", "C661F5406DACCEODO3", \
""2787C987B650594405", "FE847DF81CB256D806", "51F27A54A922722806", \
"88F1CE2B03C07DB405", "EC99329B732631ED07", "6468FCB070E64C5902", \
"OD7FOE5CA8DAAGA401", "43EF3537C6B6151D07"

}

and we can see that in the list of 47 sub-strings in ct, there are

1

mailto:pqc-forum@list.nist.gov
mailto:pqc-comments@nist.gov
mailto:danilog@ntnu.no

From: Gaborit <gaborit@unilim.fr>

Sent: Saturday, December 30, 2017 9:20 PM

To: Danilo Gligoroski

Cc: pgc-forum@list.nist.gov

Subject: Fwd: RE: [pqgc-forum] OFFICIAL COMMENT: LAKE
Dear Danilo,

thank you for your remarks, this is the same minor implementation problem

than for LAKE, which does not modify the inherent theoretical security of the proposals

nor the protocols in themselves, nor the parameters and performances,

the fixed reference implementation and KAT can be found at:

LAKE : http://filex.unilim.fr/get?k=PoPX0bJhkzfQfiWw97HA
LOCKER : http://filex.unilim.fr/get?k=2hYbKuleKDrc2m6D1HI

best,

the LAKE and LOCKER team.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov
http://filex.unilim.fr/get?k=2hYbKuJeKDrc2m6D1HI
http://filex.unilim.fr/get?k=PoPX0bJhkzfQfiW97HA

From: Danilo Gligoroski <danilog@ntnu.no>

Sent: Sunday, January 07, 2018 6:30 PM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: LAKE

Dear LAKE and LOCKER designers,

| found the following 2 properties of your schemes that are not discussed in your documentation. For the sake of short
presentation | will describe the procedures for LAKE, but the same properties hold for LOCKER too.

1. For a given pair (pk, sk) it is easy for everyone to produce millions of new equivalent public keys pk1, pk2, ... such that
K = Decap(sk, Encap(pk)) = Decap(sk, Encap(pk1)) = Decap(sk, Encap(pk2)) = ... 2. For a given ciphertextc=el +e2.h it
is easy for everyone who captures c, to produce millions of equivalent ciphertexts c1, c2, ..., such that K = Decap(sk, c) =
Decap(sk, c1) = Decap(sk, c2) = ...

The procedure for producing these equivalent public keys and ciphertexts is quite simple:

1. Let BAn be the n-dimensional vector space <0, 1>"n (which is a subspace of FAn_{2"m}) 2. Generate a random vector
scrambler mod P \in BAn, such that scrambler is invertible mod P 3. Produce an equivalent pkl = scrambler . pk or
equivalent c1 = scrambler . c

The equivalent pkl and c1 have the properties 1 and 2.

The correctness of the above procedure comes from a trivial property of BAn: For any vector space E, E.B*n=B”n.E =
E.

In my opinion, the first property can be seen as an advantage of the scheme, since it gives some possibilities to
anonymise the public key, but it is in conjunction with the second property. And the second property is quite unusual for
a public key scheme, since it gives opportunity to the adversaries to scramble the ciphertext, but the decrypting party
will not notice that. Maybe that is not a serious problem for an IND-CPA scheme, but still it is quite unusual for a public
key scheme.

Best regards,
Danilo!

P.S. My guess is that similar properties hold for the patented scheme RQC, but once | read that it is patented | stop my
analysis for it.

From: Olivier Blazy <gloupin@gmail.com>

Sent: Monday, January 08, 2018 5:13 AM
To: pgc-forum

Cc: pgc-comments; danilog@ntnu.no
Subject: Re: OFFICIAL COMMENT: LAKE

Thank you Danilo for your remark. It is indeed an interesting property and indubitably a strength of our proposals.

As for your comments concerning the decryption, we'd like to point out that you do not seem to have taken into account
the various steps of the

HHK transform that prevents this kind of attack.

The basic PKE scheme that we propose is indeed proven IND-CPA and not IND-CCA2, it is however just the inner block to
be used in

the HHK transform. (Which allows to generically transform IND-CPA schemes into IND-CCA one).

In some ways, what you say is equivalent to saying that EIGamal is malleable on the keys, however it does not mean that
Cramer Shoup is.

Same thing goes for HQC. Now yes HQC is patented but as NIST proposes there will be a free general license on the
protocol, as it is written in the document.

Best,

The LAKE, LOCKER and HQC teams.

From: Perlner, Ray (Fed)

Sent: Wednesday, March 28, 2018 1:23 PM
To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: LAKE

Dear all.

| would like to report that the submission document for LAKE and LOCKER *underestimates* the complexity of a key
recovery attack used to set the parameters. This attack is called the structural attack in the parameter tables and is
discussed in section 5.2 of both documents. In particular the document says “[The dual code] contains g*n
codewords of the same support, so the complexity of the algorithm is divided by g”n.” This does not follow,
since the attack being evaluated involves guessing a space containing the support, not guessing the codeword. A guess
will therefore find all the codewords or none of them. This structure can be exploited to speed up the attack but the
speed up is actually closer to g*(m/4) for LAKE and LOCKER parameters. | have confirmed this observation with the
submitters, and they point out that the correct analysis was given by Gaborit, Ruatta, Schrek, and Zemor, “New Results
for Rank-Based Cryptography” Africacrypt 2014. It seems that those looking to improve on the best known key recovery
attack for LAKE and LOCKER can now target n-m/4 bits of security more than is claimed by their round 1 submission
documents.

We also discussed minors modeling type attacks, concluding that, while previous published analysis of the difficulty of
applying minors modeling to the rank syndrome decoding problem was overly pessimistic, such attacks still do not affect
the claimed security of the published parameters of LAKE, LOCKER, Ouroboros-R, or RQC. It should be noted here that
the analysis is slightly tricky. When conceived of as a MinRank problem over GF2, we have m(n+1) matrices of dimension
m x 2n and are looking for a linear combination of rank r. Applying minors modeling results in a system of degree r+1
equations over mn variables. However, Unlike the minors modeling instances typically seen in systems like HFE and
Rainbow, the number of linearly independent minors is less than the number of degree r+1 monomials. The system
therefore needs to be solved at a higher degree. This complication, which | hadn’t initially noticed, transforms an attack
that might have dropped LAKE3 from security strength 5 to security strength 4 (given optimistic assumptions regarding
the linear algebra constant and the effective difficulty of high memory attacks) into one which leaves LAKE3 fairly
comfortably at security strength 5, barring any additional attacks | don’t know about.

Thanks to the submitters for their responsiveness.

Ray Perlner

From: David Jao <djao@math.uwaterloo.ca>

Sent: Wednesday, March 28, 2018 2:04 PM

To: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: LAKE
Hi Ray,

As | understand, this underestimate applies only to the "structural attack" of Section 5.2 and not the "generic attack" of
Section 5.1. In cases where the generic attack is faster than the structural attack (or where the generic attack becomes
faster than the structural attack after correcting for the aforementioned underestimate), the speed of the generic attack
becomes the new security target. Please confirm.

-David

On 2018-03-28 01:23 PM, Perlner, Ray (Fed) wrote:

Dear all.

| would like to report that the submission document for LAKE and LOCKER *underestimates* the
complexity of a key recovery attack used to set the parameters. This attack is called the structural attack
in the parameter tables and is discussed in section 5.2 of both documents. In particular the document
says “[The dual code] contains g*n codewords of the same support, so the complexity of the
algorithm is divided by g”n.” This does not follow, since the attack being evaluated involves guessing
a space containing the support, not guessing the codeword. A guess will therefore find all the
codewords or none of them. This structure can be exploited to speed up the attack but the speed up is
actually closer to g*(m/4) for LAKE and LOCKER parameters. | have confirmed this observation with the
submitters, and they point out that the correct analysis was given by Gaborit, Ruatta, Schrek, and
Zemor, “New Results for Rank-Based Cryptography” Africacrypt 2014. It seems that those looking to
improve on the best known key recovery attack for LAKE and LOCKER can now target n-m/4 bits of
security more than is claimed by their round 1 submission documents.

We also discussed minors modeling type attacks, concluding that, while previous published analysis of
the difficulty of applying minors modeling to the rank syndrome decoding problem was overly
pessimistic, such attacks still do not affect the claimed security of the published parameters of LAKE,
LOCKER, Ouroboros-R, or RQC. It should be noted here that the analysis is slightly tricky. When
conceived of as a MinRank problem over GF2, we have m(n+1) matrices of dimension m x 2n and are
looking for a linear combination of rank r. Applying minors modeling results in a system of degree r+1
equations over mn variables. However, Unlike the minors modeling instances typically seen in systems
like HFE and Rainbow, the number of linearly independent minors is less than the number of degree r+1
monomials. The system therefore needs to be solved at a higher degree. This complication, which |
hadn’t initially noticed, transforms an attack that might have dropped LAKE3 from security strength 5 to
security strength 4 (given optimistic assumptions regarding the linear algebra constant and the effective
difficulty of high memory attacks) into one which leaves LAKE3 fairly comfortably at security strength 5,
barring any additional attacks | don’t know about.

Thanks to the submitters for their responsiveness.

Ray Perlner

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

1

From: Perlner, Ray (Fed) <ray.perlner@nist.gov>

Sent: Thursday, March 29, 2018 9:43 AM
To: David Jao; pgc-forum@list.nist.gov
Subject: RE: [pgc-forum] OFFICIAL COMMENT: LAKE

Yes. That is correct. The underestimate affects the “structural attack” which is a key recovery attack. It does not affect
the “generic attack” which is a message recovery attack. If you’re just looking for the best overall attack, the “generic”
attack may indeed be or become the limiting attack.

That said, a message recovery attack can’t in general be converted into a key recovery attack, so key recovery attacks
that improve on the “structural attack,” even if they are more expensive than the “generic attack” may still be of some
interest. Of course, it’s worth looking into any attack that demonstrates a new or different technique, even if it doesn’t
turn out to be the best for any particular goal.

From: David Jao [mailto:djao@math.uwaterloo.ca]
Sent: Wednesday, March 28, 2018 2:04 PM

To: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: LAKE

Hi Ray,

As | understand, this underestimate applies only to the "structural attack" of Section 5.2 and not the "generic attack" of
Section 5.1. In cases where the generic attack is faster than the structural attack (or where the generic attack becomes
faster than the structural attack after correcting for the aforementioned underestimate), the speed of the generic attack
becomes the new security target. Please confirm.

-David

On 2018-03-28 01:23 PM, Perlner, Ray (Fed) wrote:

Dear all.

| would like to report that the submission document for LAKE and LOCKER *underestimates* the
complexity of a key recovery attack used to set the parameters. This attack is called the structural attack
in the parameter tables and is discussed in section 5.2 of both documents. In particular the document
says “[The dual code] contains g*n codewords of the same support, so the complexity of the
algorithm is divided by g”n.” This does not follow, since the attack being evaluated involves guessing
a space containing the support, not guessing the codeword. A guess will therefore find all the
codewords or none of them. This structure can be exploited to speed up the attack but the speed up is
actually closer to g*(m/4) for LAKE and LOCKER parameters. | have confirmed this observation with the
submitters, and they point out that the correct analysis was given by Gaborit, Ruatta, Schrek, and
Zemor, “New Results for Rank-Based Cryptography” Africacrypt 2014. It seems that those looking to
improve on the best known key recovery attack for LAKE and LOCKER can now target n-m/4 bits of
security more than is claimed by their round 1 submission documents.

We also discussed minors modeling type attacks, concluding that, while previous published analysis of
the difficulty of applying minors modeling to the rank syndrome decoding problem was overly
pessimistic, such attacks still do not affect the claimed security of the published parameters of LAKE,
LOCKER, Ouroboros-R, or RQC. It should be noted here that the analysis is slightly tricky. When

1

