
KNOT: Algorithm Specifications
and Supporting Document

KNOT is a family of bit-slice lightweight authenticated encryption algorithms and hash
functions, which is well-suited for both hardware and software environments. Chinese knot
is an ancient art of weaving. In Chinese, “ knot” has the meaning of connection, reunion
and harmony, which is the origin of our submission name “ KNOT”.

1 Notation

The following table summarizes the notation used throughout this document.

Notation Meaning

y ∥ x Concatenation of two bitstrings x and y

0l All-zero bitstring of length l

|x| Length in bits of the bitstring x

x⊕ y XOR of bitstrings x and y

xm−1 ∥ · · · ∥ x1 ∥ x0 x0 is the least significant bit (or block), xm−1 is the

most significant bit(or block).

⌊x⌋l Truncation of bitstring x to its first (least significant)

l bits

⌈x⌉l Truncation of bitstring x to its last (most significant)

l bits

{0, 1}k The set of bit strings of length k

{0, 1}∗ The set of bit strings of all lengths

S A b-bit state of the Sponge/Duplex construction

Sr, Sc The r-bit rate and c-bit capacity part of a state S

nr (or nr0, nrf , nrh) The number of rounds for an underlying permutation

pb A round transformation with a width of b bits

pb[nr] A permutation consisting of nr-round pb

KNOT-AEAD(k, b, r) A KNOT AE member with k-bit key, b-bit state and

r-bit rate

KNOT-Hash(n, b, r, r′) A KNOT hash member with n-bit hash output, b-bit

state, r-bit absorbing rate and r′-bit squeezing rate

2 The KNOT Permutations

The underlying permutations of each KNOT member iteratively apply an SP-network
round transformation. KNOT uses 3 different round transformations, which are defined



by the width b (b=256, 384 or 512). Each of the rounds consists of the following 3 steps:
AddRoundConstantb, SubColumnb, ShiftRowb. Let pb denote a round transformation, the
following is a pseudo C code for pb :

{ AddRoundConstantb(STATE,RC)
SubColumnb(STATE)
ShiftRowb(STATE)

}
where RC denotes a round constant.

We use nr (or nr0, nrf , nrh) to denote the number of rounds for an underlying permuta-
tion. The concrete values of nr (or nr0, nrh) for each KNOT member are given afterwards.

2.1 The State

A b-bit state is pictured as a 4× b
4 rectangular array of bits. Let W = wb−1 ∥ · · · ∥ w1 ∥ w0

denote a state, the first b
4 bits w b

4−1 ∥ · · · ∥ w1 ∥ w0 are arranged in row 0, the next b
4 bits

w b
2−1 ∥ · · · ∥ w b

4+1 ∥ w b
4
are arranged in row 1, and so on, as illustrated in Fig. 1. In the

following, for convenience of description, a cipher state is described in a two-dimensional
way, as illustrated in Fig. 2.
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Fig. 1. A b-bit State Fig. 2. Two-dimensional Way

2.2 The AddRoundConstantb Transformation

A simple bitwise XOR of a d-bit round constant to the first d bits of the intermediate state,
with d = 6, 7 or 8.

KNOT uses 3 different binary linear feedback shift registers (LFSR) to generate 3 dif-
ferent sets of constants. For each LFSR, the initial value is defined as RC[0] := 0x1. Each
set of round constants {RC[ i ], 0 ≤ i ≤ 2d − 1}) are generated by a d-bit maximal-length
LFSR:

1. d = 6. At each round, the 6 bits (rc5, rc4, rc3, rc2, rc1, rc0) are left shifted over 1 bit,
with the new value to rc0 being computed as rc5 ⊕ rc4.

2. d = 7. At each round, the 7 bits (rc6, rc5, rc4, rc3, rc2, rc1, rc0) are left shifted over 1
bit, with the new value to rc0 being computed as rc6 ⊕ rc5.

3. d = 8. At each round, the 8 bits (rc7, rc6, rc5, rc4, rc3, rc2, rc1, rc0) are left shifted over
1 bit, with the new value to rc0 being computed as rc7 ⊕ rc5 ⊕ rc4 ⊕ rc3.

For convenience, we use CONSTd to denote the set of constants generated by the d-bit
LFSR. For a KNOT member, the choice of d depends on the total number of rounds.

2.3 The SubColumnb Transformation

Parallel application of S-boxes to the 4 bits in the same column. The operation of SubColumnb

is illustrated in Fig. 3. The input of an S-box is Col(j) = a3,j ∥ a2,j ∥ a1,j ∥ a0,j for
0 ≤ j ≤ b

4 − 1, and the output is S(Col(j)) = b3,j ∥ b2,j ∥ b1,j ∥ b0,j .



The S-box used in KNOT is a 4-bit to 4-bit S-box S : F 4
2 → F 4

2 . The action of this S-box
in hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 0 A 7 B E 1 D 9 F 6 8 5 2 C 3
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Fig. 3. SubColumnb Operates on the Columns of the State

2.4 The ShiftRowb Transformation

A left rotation to each row over different offsets. Row 0 is not rotated, row 1 is left rotated
over c1 bit, row 2 is left rotated over c2 bits, row 3 is left rotated over c3 bits. The parameters
(c1, c2, c3) only depend on b, Table 1 gives the concrete values of (c1, c2, c3) for the 3 different
state width b.

Let ≪ x denote left rotation over x bits, the operation ShiftRowb is illustrated in Fig.4.(
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Fig. 4. ShiftRowb Operates on the Rows of the State

3 A Bit-slice Description of the KNOT Permutations

In the following, we present an equivalent description of SubColumnb and ShiftRowb trans-
formations. Based on them, one can easily write a code for a software implementation of
KNOT-AEAD and KNOT-Hash, i.e., a bit-slice implementation. Our software implementa-
tion of each KNOT member is just based on these results.

Table 1. ShitRow offsets for the 3 state width

b c1 c2 c3

256 1 8 25

384 1 8 55

512 1 16 25



3.1 The SubColumnb Transformation

As shown in Fig. 2, a b-bit state is described as a 4× b
4 array. Let Ab,i = ai, b4−1|| · · · ||ai,1||ai,0

denote the i-th row, i = 0, 1, 2, 3. Ab,i can be regarded as a b
4 -bit word.

Let Ab,0, Ab,1, Ab,2, Ab,3 be 4 inputs of SubColumnb, Bb,0, Bb,1, Bb,2, Bb,3 be the 4 out-
puts, where Ab,i and Bb,i denote the i-th row of the state. Let Tb,i denote

b
4 -bit temporary

variables, i = 1, 2, 3, 5, 6, 8, 9, 11. The SubColumnb transformation can be computed in the
following 12 steps:

1. Tb,1 =∼ Ab,0; 2. Tb,2 = Ab,1 &Tb,1; 3. Tb,3 = Ab,2 ⊕ Tb,2;
4. Bb,3 = Ab,3 ⊕ Tb,3; 5. Tb,5 = Ab,1|Ab,2; 6. Tb,6 = Ab,3 ⊕ Tb,1;
7. Bb,2 = Tb,5 ⊕ Tb,6; 8. Tb,8 = Ab,1 ⊕Ab,3; 9. Tb,9 = Tb,3 &Tb,6;
10. Bb,0 = Tb,8 ⊕ Tb,9; 11. Tb,11 = Bb,2 &Tb,8; 12. Bb,1 = Tb,3 ⊕ Tb,11;
where “∼” denotes NOT, “&” bitwise AND, “ | ” bitwise OR, “⊕” bitwise XOR.

3.2 The ShiftRowb Transformation

Let Bb,0, Bb,1, Bb,2, Bb,3 be 4 inputs of ShiftRowb transformation, Db,0, Db,1, Db,2, Db,3 be
the 4 outputs. Then:

Db,0 = Bb,0; Db,1 = Bb,1 ≪ c1; Db,2 = Bb,2 ≪ c2; Db,3 = Bb,3 ≪ c3.
where “B ≪ x” denotes a left rotation over x bits within a b

4 -bit word B; ci (i=1,2,3) are
the rotation offsets, which are specified in Table 1.

4 KNOT AEAD

An authenticated encryption with associated data (AEAD) algorithm is a function with
four inputs and one output. The four inputs are a variable-length plaintext, variable-length
associated data, a fixed-length nonce, and a fixed-length key. The output is a variable-length
ciphertext.

From a security point of view, an AEAD algorithm should ensure both the confiden-
tiality of the plaintexts (under adaptive chosen-plaintext attacks) and the integrity of the
ciphertexts (under adaptive forgery attempts).

4.1 Parameter Sets of KNOT AEAD

The mode of operation of KNOT is based on Duplex mode MonkeyDuplex, which is proposed
in [19] and utilized in Ascon [24] and Ketje [13]. Let S denote the b-bit state, Sr and Sc

denote the rate and capacity parts of S. For the initialization, the number of rounds is nr0;

Table 2. Parameters for the 4 members of KNOT-AEAD(k, b, r) Family

Name
Bit Size

Constants
Rounds

k b r c nr0 nr nrf

KNOT-AEAD(128, 256, 64) 128 256 64 192 CONST6 52 28 32

KNOT-AEAD(128, 384, 192) 128 384 192 192 CONST7 76 28 32

KNOT-AEAD(192, 384, 96) 192 384 96 288 CONST7 76 40 44

KNOT-AEAD(256, 512, 128) 256 512 128 384 CONST7 100 52 56

where KNOT-AEAD(128, 256, 64) is the primary AEAD member.



for the processing of the associated data and plaintext blocks, the number of rounds is nr;
for the finalization, the number of rounds is nrf . The concrete values of nr0, nr and nrf for
each KNOT AEAD member are given in Table 2.

The KNOT AEAD family has 4 members. For each member, the key length, the nonce
length and the tag length are all equal to k bits. Let KNOT-AEAD(k, b, r) denote a KNOT-
AEAD member with k-bit key, b-bit state and r-bit rate. Table 2 presents the parameter
sets of the 4 AEAD members. The followings are some additional remarks:

1. The first KNOT-AEAD (i.e., KNOT-AEAD(128, 256, 64)) is the primary AEAD mem-
ber. It needs the lowest hardware area and software memory, due to its 256-bit state
size.

2. The first KNOT-AEAD has a security strength of 125 bits, the fourth KNOT-AEAD
has a security strength of 253 bits. The security of the third KNOT-AEAD is in-between
the first and the fourth one (see Section 7.1 for the security bounds).

3. The second KNOT-AEAD has almost the same security level with the first one, but
it uses a higher bitrate due to its bigger permutation width, hence it has a higher
throughput than the first AEAD.

For a b-bit KNOT permutation pb[nr], consider its bit-slice description (see Section 3),
let Ab,0, Ab,1, Ab,2, Ab,3 denote the 4 subblocks of the b-bit input of pb[nr], then:

1. For KNOT-AEAD(128, 384, 192), Sr = Ab,1 ∥ Ab,0, Sc = Ab,3 ∥ Ab,2.
2. For the other 3 KNOT-AEAD members, Sr = Ab,0, Sc = Ab,3 ∥ Ab,2 ∥ Ab,1.

Similarly, the tag (or hash ouptput) extraction from a b-bit state also starts from Ab,0.

4.2 Padding

The padding function padr(X) returns a bit string obtained by appending a single 1 and
the smallest number of 0s to the bit string X such that the length of the padded bit string
is a multiple of r bits.

The associated data AD is firstly padded by applying the padr(X) function, then the
padded associated data is divided into u blocks of r bits: ADu−1 ∥ · · · ∥ AD0. If the length of
the associated data is zero, then no padding is applied and no associated data is processed.

padr(AD) =

{
0r−1−(|AD|mod r) ∥ 1 ∥ AD = ADu−1 ∥ · · · ∥ AD0 if |AD| > 0,

∅ if |AD| = 0.
(1)

The same padding process is applied to divide the plaintext P into v blocks of r bits:
Pv−1 ∥ · · · ∥ P0. Similarly, if the length of the plaintext is zero, no padding is applied and
no plaintext is processed.

padr(P ) =

{
0r−1−(|P |mod r) ∥ 1 ∥ P = Pv−1 ∥ · · · ∥ P0 if |P | > 0,

∅ if |P | = 0.
(2)

An Example - When AD and P are represented as Byte Arrays When AD and P
are represented as byte arrays, we present an example for clarity. The following is a 12-byte
associated data:

ADarray[12] = {0X01, 0X02, 0X03, 0X04, 0X05, 0X06, 0X07, 0X08, 0X09, 0X0A, 0X0B, 0X0C}.



where 0X01 is the 0th byte, and 0X0C is the 11th byte. Let r = 64, then the padded
associated data has 16 bytes (i.e., 2 blocks of 64 bits each):

padr(ADarray[12]) = {0X01, 0X02, 0X03, 0X04, 0X05, 0X06, 0X07, 0X08,

0X09, 0X0A, 0X0B, 0X0C, 0X01, 0X00, 0X00, 0X00}.
After the dividing, we have:

AD0 = 0X08 ∥ 0X07 ∥ 0X06 ∥ 0X05 ∥ 0X04 ∥ 0X03 ∥ 0X02 ∥ 0X01,

AD1 = 0X00 ∥ 0X00 ∥ 0X00 ∥ 0X01 ∥ 0X0C ∥ 0X0B ∥ 0X0A ∥ 0X09.

4.3 Initialization

The authenticated encryption process is initialized by loading the key K and the nonce N
(both k bits). The b-bit state is initialized as:

S =

{
(0128 ∥ K ∥ N)⊕ (1 ∥ 0383) for KNOT-AEAD(128,384,192),

K ∥ N for the other 3 AEAD members.
(3)

Then nr0 rounds of the round transformation pb[nr0] are applied to the initial state:

S ← pb[nr0](S) (4)

4.4 Processing Associated Data

Each padded associated data block Ai (i = 0, · · · , u− 1) is processed as follows. The block
Ai is XORed to the first r bits of the internal state S, then the state S is updated by the
nr-round permutation pb[nr]:

S ← pb[nr](Sc ∥ (Sr ⊕Ai)), 0 ≤ i ≤ u− 1. (5)

After the last associated data block has been processed or if |A| = 0, a single-bit domain
separation constant is XORed to the internal state S:

S ← S ⊕ (1 ∥ 0b−1) (6)

4.5 Encryption

Each padded plaintext block Pi (i = 0, · · · , v − 1) is processed as follows. The ciphertext
block Ci is equal to the XOR of the plaintext block Pi with the first r bits of the internal state
S. For each block except the last one, the state S is updated by the nr-round permutation
pb[nr]:

Ci ← Sr ⊕ Pi (7)

S ←

{
pb[nr](Sc ∥ Ci), if 0 ≤ i < v − 1,

Sc ∥ Ci, if i = v − 1.
(8)

For the last ciphertext Cv−1 with a length of 0 ≤ l < r bits, l = |P | mod r:

Cv−1 ← ⌊Cv−1⌋l (9)

Then, the ciphertext C = Cv−1 ∥ · · · ∥ C0.



4.6 Decryption

For each ciphertext block except the last one, the plaintext block Pi is computed by XORing
the ciphertext block Ci with the first r bits Sr of the internal state. Then, Sr is replaced by
Ci. For each ciphertext block except the last one, the internal state is updated by nr rounds
of the permutation pb[nr]:

Pi ← Sr ⊕ Ci (10)

S ← pb[nr](Sc ∥ Ci) , 1 ≤ i < v − 1. (11)

For the last ciphertext block Cv−1 with a length of 0 ≤ l < r bits:

Pv−1 ← ⌊Sr⌋l ⊕ Cv−1 (12)

S ← Sc ∥ (⌈Sr⌉r−l ⊕ (0r−1−l ∥ 1)) ∥ Cv−1 (13)

4.7 Finalization

In the finalization, the state is firstly updated by nrf rounds of the permutation pb[nrf ].
Then the tag consists the first k bits of the state.

S ← pb[nrf ](S) (14)

T ← ⌊S⌋k (15)

The encryption process returns the concatenation of the ciphertext blocks and the tag as
its output. To avoid any ambiguity, note that we have used two variables C and T to denote
the ciphertext and the tag respectively. However, the encryption process returns only one
output by appending the tag T to the ciphertext C:

Output: T ∥ C

We emphasize that the decryption process shall not return the plaintext if the verification
fails, that is to say, the decryption process returns the plaintext only if the calculated tag
value matches the received tag value.

4.8 Procedures for KNOT-AEAD

Algorithm 1 specifies the procedures of authenticated encryption and decryption-verification
for KNOT-AEAD.

5 KNOT Hash

A hash function is a function with one input and one output. The input is a variable-length
message, and the output is a fixed-length hash value. It should be computationally infeasible
to find a collision or a (second) preimage for a hash function. A hash function should also
be resistant against length extension attacks.

Guo et al. extended the Sponge construction [26] by allowing a different squeezing bit
rate r′ to offer a tradeoff between efficiency and preimage security. Increasing r′ will directly
reduce the time spent in the squeezing process, but might reduce the preimage security. On
the other hand, decreasing r′ will increase the time spent in the squeezing process, but might
improve the preimage security. The work from Andreeva et al. also independently proposed
a similar extension [3]. In our design of each KNOT-Hash member, a different squeezing bit
rate r′ > r is used to improve the squeezing efficiency at the cost of a reduction for preimage
security.



Algorithm 1 Procedures of Authenticated Encryption and Decryption-Verification for
KNOT-AEAD(k, b, r)

Authenticated Encryption Decryption-Verification
INPUT: INPUT:

key K ∈ {0, 1}k, key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k, nonce N ∈ {0, 1}k,
associated data AD ∈ {0, 1}∗, associated data AD ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗. T ∥ C, (with ciphertext C ∈ {0, 1}∗

and tag T ∈ {0, 1}k).
OUTPUT: OUTPUT:

T ∥ C, (with ciphertext C ∈ {0, 1}∗ plaintext P ∈ {0, 1}∗ or ⊥.
and tag T ∈ {0, 1}k).

Padding: Padding:

ADu−1 ∥ · · · ∥ AD0 ← padr(AD) ADu−1 ∥ · · · ∥ AD0 ← padr(AD)

Pv−1 ∥ · · · ∥ P0 ← padr(P )

Initialization: Initialization:

if b = 384 and r = 192, then if b = 384 and r = 192, then

S = (K ∥ N)⊕ (1 ∥ 0383) S = (K ∥ N)⊕ (1 ∥ 0383)
else S = K ∥ N else S = K ∥ N
S ← pb[nr0](S) S ← pb[nr0](S)

Processing Associated Data: Processing Associated Data:

c = b− r c = b− r

for i = 0, · · · , u− 1, do for i = 0, · · · , u− 1, do

S ← pb[nr](Sc ∥ (Sr ⊕Ai)) S ← pb[nr](Sc ∥ (Sr ⊕Ai))

S ← S ⊕ (1 ∥ 0b−1) S ← S ⊕ (1 ∥ 0b−1)

Encryption: Decryption:

for i = 0, · · · , v − 2, do for i = 0, · · · , v − 2, do

{Ci ← Sr ⊕ Pi {Pi ← Sr ⊕ Ci

S ← pb[nr](Sc ∥ Ci) } S ← pb[nr](Sc ∥ Ci) }
Sr ← Sr ⊕ Pv−1 l = |C| mod r

l = |P | mod r Pv−1 ← ⌊Sr⌋l ⊕ Cv−1

Cv−1 ← ⌊Sr⌋l Sr ← (⌈Sr⌉r−l ⊕ (0r−1−l ∥ 1)) ∥ Cv−1

Finalization: Finalization:

S ← pb[nrf ](S) S ← pb[nrf ](S)

T ← ⌊S⌋k T ′ ← ⌊S⌋k
return T ∥ Cv−1 ∥ · · · ∥ C0 if T = T ′, then

return Pv−1 ∥ · · · ∥ P0

else return ⊥



Table 3. Parameters for the 4 members of KNOT-Hash(n, b, r, r′) Family

Name
Bit Size

Constants
Rounds

n b c r r’ nrh

KNOT-Hash(256,256,32,128) 256 256 224 32 128 CONST7 68

KNOT-Hash(256,384,128,128) 256 384 256 128 128 CONST7 80

KNOT-Hash(384,384,48,192) 384 384 336 48 192 CONST7 104

KNOT-Hash(512,512,64,256) 512 512 448 64 256 CONST8 140

where KNOT-Hash(256, 256, 32, 128) is the primary hash member.

5.1 Parameter Sets of KNOT Hash

The KNOT hash family has 4 members. Let KNOT-Hash(n, b, r, r′) denote a KNOT hash
member with n-bit hash output, b-bit state, r-bit absorbing rate and r′-bit squeezing rate.
Table 3 presents the parameter sets of the 4 members of the KNOT hash family, KNOT-
Hash(256, 256, 32, 128) is the primary hash member.

Like the cases in the KNOT-AEAD members, similarly, the first KNOT-Hash needs the
lowest hardware area and software memory, and has a security strength of 112 bits. The
fourth KNOT-Hash has a security level which is around 224 bits, the security of the third
KNOT-Hash is in-between the first and the fourth one. The second KNOT-Hash has almost
the same security level with the first one, but has a higher throughput.

5.2 Padding

The input message M is padded by applying the padr(X) function, then the padded message
is divided into v blocks of r bits: Mv−1 ∥ · · · ∥M0.

padr(M) = 0r−1−(|M |mod r) ∥ 1 ∥M = Mv−1 ∥ · · · ∥M0. (16)

5.3 Initialization

The b-bit state is initialized as:

S =

{
1 ∥ 0383 for KNOT-Hash(256, 384, 128, 128),

0b for the other 3 hash members.
(17)

5.4 Absorbing

Each padded message block Mi (i = 0, · · · , v − 1) is processed as follows. The block Mi is
XORed to the first r bits of the internal state S, then the state S is updated by the nrh
rounds of the round transformation pb[nrh]:

S ← pb[nrh](Sc ∥ (Sr ⊕Mi)), 0 ≤ i ≤ v − 1. (18)

5.5 Squeezing

After the last message block has been processed, the n-bit output is extracted from the Sr′

part of the state at a time, until a total of n
r′ extractions are completed.



for i = 0 to n
r′ − 2, do

{Hi ← Sr′

S ← pb[nrh](S)
}
H n

r′ −1 ← Sr′

H ← H n
r′ −1 ∥ · · · ∥ H0

5.6 Procedures for KNOT-Hash

Algorithm 2 Procedures for KNOT-Hash(n, b, r, r′)

INPUT:

message M ∈ {0, 1}∗.
OUTPUT:

hash value H ∈ {0, 1}n.
Padding:

Mv−1 ∥ · · · ∥M0 ← padr(M)

Initialization:

if b = 384 and r = 192, then

S ← 1 ∥ 0383

else S ← 0b

Absorbing:

c = b− r

for i = 0, · · · , v − 1, do

S ← pb[nrh](Sc ∥ (Sr ⊕Mi))

Squeezing:

for i = 0, · · · , n
r′ − 2, do

{Hi ← Sr′

S ← pb[nrh](S)}
H n

r′ −1 ← Sr′

returnH ← H n
r′ −1 ∥ · · · ∥ H0

Algorithm 2 specifies the procedures for KNOT-Hash.

6 Pairs of KNOT-AEAD and KNOT-Hash Members

We group KNOT-AEAD and KNOT-Hash members into pairs according to their parame-
ters. As listed in the Table 4, there are four KNOT-Pairs, where KNOT-Pair I is the primary
pair. For each KNOT-Pair, the corresponding KNOT-AEAD and KNOT-Hash use identical
round transformations pb (ignoring the constant addition) in the underlying permutation-
s, which leads to a unified hardware implementation and a reduced ROM utilization in
implementing the software.



Table 4. List of Pairs of KNOT-AEAD and KNOT-Hash Members

AEAD Member Hash Member

KNOT-Pair I KNOT-AEAD(128, 256, 64) KNOT-Hash(256, 256, 32, 128)

KNOT-Pair II KNOT-AEAD(128, 384, 192) KNOT-Hash(256, 384, 128, 128)

KNOT-Pair III KNOT-AEAD(192, 384, 96) KNOT-Hash(384, 384, 48, 192)

KNOT-Pair IV KNOT-AEAD(256, 512, 128) KNOT-Hash(512, 512, 64, 256)

where KNOT-Pair I is the primary pair.

7 Security Model

7.1 Security of AEAD Modes

Let Π be an authenticated encryption scheme, and P a list of idealized permutations (which
Π may depend on). Define the advantage of an adversary A in breaking the privacy of Π
as follows:

AdvprivΠ (A) = |Prp,K(Ap±,EK = 1)− Prp,$(Ap±,$ = 1)|

where the probabilities are taken over the random choices of p, $,K, and A, if any. The fact
that the adversary has access to both the forward and inverse permutations in p is denoted
by p±. The adversary A is nonce-respecting, which means that it never makes two queries
to EK or $ with the same nonce. Let AdvprivΠ (qp, qE , λE) denote the maximum advantage
taken over all adversaries that query p± at most qp times, and that make at most qE queries
of total length (over all queries) at most λE blocks to EK or $. This privacy notion is also
known as the indistinguishability under chosen plaintext attack (IND-CPA) security of an
(authenticated) encryption scheme.

As above, let P denote the list of underlying idealized permutations of Π. Define the
advantage of an adversary A in breaking the integrity of Π as follows:

AdvauthΠ (A) = Prp,K(Ap±,EK ,DK forges)

where the probability is taken over the random choices of p, $,K, and A, if any. If DK ever
returns a message other than ⊥ on input of (N ;H,C, T ;A) where (C,A) has never been
output by EK on input of a query (N ;H,M ;T ) for some M , then we say that adversary
A forges. Adversary A is nonce-respecting, which means that it never makes two queries to
EK with the same nonce. Nevertheless, A is allowed to repeat nonces in decryption queries.
Let AdvauthΠ (qp, qE , λE , qD, λD) denote the maximum advantage taken over all adversaries
that query p± at most qp times, and that make at most qE queries of total length (over all
queries) at most λE blocks to EK , and at most qD queries of total length at most λD blocks
to DK .

The constant ρ is defined by r and c as follows:

ρ =

3.4× 2
c−r
2 if c

5 < r ≤ c− 2log2c,
1.4r

log2r + r − c− 2
if c ≤ r ≤ c+ elog2c− eβ

(19)

where β = log2e+ log2log2e.

Theorem 1 ([35]). Let Π = (E ,D) be KNOT-AEAD based on an ideal underlying primi-
tive p. Then,



AdvprivΠ (qp, qE , λE) ≤
3(qp + σE)

2

2b+1
+

σE

min{2b/2, 2c}
+

2ρqp
2c

+
qp + σE

2k

where σE denotes the number of primitive evaluations via the encryption queries.

Theorem 2 ([35]). Let Π = (E ,D) be KNOT-AEAD based on an ideal underlying primi-
tive p. Then,

AdvauthΠ (qp, qE , λE , qD, λD) ≤
(qp + σE + σD)

2

2b
+

σE

min{2b/2, 2c}
+

2ρqp
2c

+
qp + σE + σD

2k
+

(qp + σE + σD)σD

2c
+

qD
2τ

where σE (σD) denotes the number of primitive evaluations via the encryption (decryption)
queries.

7.2 Security of Hash Modes

For an extended Sponge hash function with a different squeezing bitrate r′, the following
theorem presents its security against generic attacks.

Theorem 3 ([10, 26]). For a Sponge hash function with hash size n, absorbing bitrate r, ca-
pacity c and squeezing bitrate r′, the best known generic attacks require the following amount
of computations when the underlying permutation is modeled as a random permutation:

1. Preimage attacks: min{2min{n,b},max{2min{n,b}−r′ , 2c/2}}
2. Second-preimage attacks: min{2n, 2c/2}
3. Collision attack: min{2n/2, 2c/2}

8 Expected Security Strength of Each KNOT-AEAD and
KNOT-Hash Members

8.1 KNOT-AEAD

The KNOT-AEAD algorithms maintain security as long as the nonce is unique (not repeated
under the same key), Table 5 presents the security goals for the 4 KNOT-AEAD members.

The AEAD algorithm lose the plaintext confidentiality if the same nonce N is used
to encrypt two different plaintexts under the same key K. In this case, the attacker can

Table 5. Claimed Security Strength and Data Limit for the 4 KNOT-AEAD Members

Plaintext Ciphertext Data

Confidentiality Integrity Limit

KNOT-AEAD(128, 256, 64) 125 125 264

KNOT-AEAD(128, 384, 192) 128 128 264

KNOT-AEAD(192, 384, 96) 189 189 296

KNOT-AEAD(256, 512, 128) 253 253 2128

Note: The security strength is indicated by the logarithm base 2 of the attack cost, and the unit is the underlying
KNOT permutation Pb[nr] used by the KNOT-AEAD member.



detect the first differing block of the two plaintexts and calculate the XOR difference of the
corresponding plaintext block.

Plaintexts can not be returned by the decryption-verification process if the ciphertext
is invalid. Release of unverified decrypted ciphertexts also has an impact on the plaintext
confidentiality as it allows an attacker to collect data which may be useful at a later attack.

Note that nonce violation and release of unverified decrypted ciphertext have no influ-
ences on integrity.

For each KNOT-AEAD member, Table 5 also presents the upper limit M on the data
complexity, i.e., the number of processed plaintext and associated data blocks is limited to
M blocks under one key. For example, KNOT-AEAD(128, 256, 64) has a message length
limit of 267 bytes, and KNOT-AEAD(192, 384, 96) has a limit of 3× 266 bytes.

The security strength and the message length limit for each KNOT-AEAD member are
mainly determined by Theorem 1 and Theorem 2 in Section 7.1. According to Theorem 1,
a Duplex-based AEAD algorithm can offer confidentiality as long as the total complexity
qp + σE does not exceed min{2b/2, 2k} and the total number of primitive queries qp does
not exceed 2c/ρ, where ρ denotes a constant. According to Theorem 2, a Duplex-based
AEAD algorithm can offer integrity as long as the total complexity qp + σE + σD does not
exceed 2c/σD, where σE (σD) denotes the number of primitive evaluations via the encryption
(decryption) queries.

For each KNOT-AEAD member, the underlying permutations used in the processing
of associated data/plaintexts and the finalization are not ideal, but we emphasize that the
number of rounds is sufficient for the claimed security strength. Non-random properties for
these permutations are known, but it do not violate the claimed security.

8.2 KNOT-Hash

Table 6 presents the security of each KNOT-Hash member against the 3 generic attacks,
which is based on Theorem 3 in Section 7.2. The message length limit is simply in accordance
with the corresponding KNOT-AEAD member. The AEAD and the corresponding hash
(with close security strength and the same round transformation) can be put together. Note
that the message length limit on each KNOT-Hash member does not violate the claimed
security listed in Table 6.

Length extension means that an attacker tries to predict the value of H(X ∥ M) for
some string X, given the hash value H(M) for an unknown input M [10]. For a Sponge
function, length extension is successful if one can recover the inner state at the end of the
squeezing of M , which comes down to state recovery. If a hash function is secure against
state recovery attacks, then it can resist length extension attacks.

Table 6. Claimed Security Strength and Data Limit for the 4 KNOT-Hash Members

Name
Security (bit)

Data limit
pre. 2nd pre. col.

KNOT-Hash(256, 256, 32, 128) 128 112 112 264

KNOT-Hash(256, 384, 128, 128) 128 128 128 264

KNOT-Hash(384, 384, 48, 192) 192 168 168 296

KNOT-Hash(512, 512, 64, 256) 256 224 224 2128



Table 7. Difference Distribution Table of the KNOT S-box

∆I
∆O

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 16 · · · · · · · · · · · · · · ·
1 · · · 2 · · 2 2 · · 2 2 · 2 2 2
2 · 2 · · · 2 · · 2 2 · 4 · · 2 2
4 · · · · · · · · · 4 2 · 4 2 2 2
8 · · · · · · · · · · 4 · · 4 4 4

3 · 2 · · · 2 · 4 2 2 · · · · 2 2
5 · · · 2 · · 2 2 · 4 · 2 4 · · ·
6 · 2 · · · 2 4 · 2 2 2 · · 2 · ·
9 · 4 4 · · · · · 4 · · · 4 · · ·
A · · 2 2 4 2 · · · · · 2 · 2 · 2
C · 4 4 2 · · 2 2 · · · 2 · · · ·
7 · 2 · 4 · 2 · · 2 2 2 · · 2 · ·
B · · 2 · 4 2 2 2 · · 2 · · · 2 ·
D · · · 2 · · 2 2 4 · · 2 4 · · ·
E · · 2 · 4 2 2 2 · · · · · 2 · 2

F · · 2 2 4 2 · · · · 2 2 · · 2 ·
where ∆I is the input difference, ∆O is the output difference.

9 Security Analysis

In this section, we present the results of our security analysis of the KNOT permutations.
The round constant addition is ignored, which has no impact on the results. For a fixed per-
mutation width b and a fixed number of rounds, we regard the permutations parameterized
by different round constants as the same permutation.

9.1 Properties of the KNOT S-box

Let x0, x1, x2, x3 and y0, y1, y2, y3 respectively denote the input and output of the KNOT
S-box, where x0 is the least significant bit. The following is the algebraic normal form (ANF)
of the S-box:

y0 = x0x1 + x2 + x0x2 + x3 + x1x3 + x0x1x3 + x2x3

y1 = x1 + x2 + x0x3 + x2x3 + x1x2x3

y2 = 1 + x0 + x1 + x2 + x1x2 + x3

y3 = x1 + x0x1 + x2 + x3

The algebraic degree of the KNOT S-box is 2. In Table 7 and Table 8, we present the
difference distribution table and linear distribution table of the KNOT S-box respectively.

9.2 Differential Cryptanalysis

Differential [12] and linear [31] cryptanalysis are among the most powerful techniques avail-
able for block ciphers. A block cipher is a set of 2k permutations operating on b-bit vectors,
where k is the key length and b the block length. To distinguish a b-bit KNOT permu-
tation from a random permutation using differential cryptanalysis (DC), there must be a
predictable difference propagation with a probability significantly larger than 21−b. A dif-
ference propagation is composed of a set of differential trails, where its probability is the



Table 8. Linear Distribution Table of the KNOT S-box

ΓI
ΓO

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 8 · · · · · · · · · · · · · · ·
1 · · 2 · · 2 4 2 · 2 4 2 2 · 2 2
2 · · · · · · · · 4 4 · · · 4 4 ·
4 · 2 · · · 2 2 4 2 · 4 2 2 2 · 2
8 · · · · · · · · · 4 · · 4 · 4 4

3 · 4 2 · · 2 · 2 · 2 4 2 2 · 2 2
5 · 2 2 · · 4 2 2 2 2 · · 4 2 2 ·
6 · 2 4 · · 2 2 · 2 · 4 2 2 2 · 2
9 · · 2 4 · 2 · 2 · 2 · 2 2 4 2 2
A · 4 · · · 4 4 · · · · 4 · · · ·
C · 2 · · 4 2 2 4 2 · · 2 2 2 · 2

7 · 2 2 · · · 2 2 2 2 · 4 · 2 2 4
B · · 2 4 · 2 · 2 4 2 · 2 2 · 2 2
D · 2 2 4 4 · 2 2 2 2 · · · 2 2 ·
E · 2 4 · 4 2 2 · 2 · · 2 2 2 · 2

F · 2 2 4 4 · 2 2 2 2 · · · 2 2 ·
where ΓI is the input selection pattern, ΓO is the output selection pattern.

sum of the probabilities of all differential trails that have the specified input difference and
output difference [22]. The weight of a differential trail (or a difference propagation) is the
negative of the binary logarithm of its probability.

M.Matsui has presented a search algorithm for the best differential/linear trail of DES
in [32], which uses branch-and-bound methods. Based on the improved search algorithm [6],
we have written a program to search for the best differential trails for each of the 3 KNOT
permutations. LetWD

b,i denote the weight of the best i-round differential trail (i = 1, 2, 3, . . . )
for the b-bit KNOT permutation. The followings are our experimental results:

1. WD
256,i = WD

384,i = WD
512,i for 1 ≤ i ≤ 11.

2. WD
256,i = WD

256,i−3 + 16 for 12 ≤ i ≤ 49; WD
384,i = WD

384,i−3 + 16 for 12 ≤ i ≤ 73;

WD
512,i = WD

512,i−3 + 16 for 12 ≤ i ≤ 97.

Our search results from 1 round to 14 rounds are presented in Table 9. Using the above
results, one can easily calculate the weight of the best differential trail for a given number
of rounds of a KNOT permutation. Especially, we have:

1. For the 256-bit KNOT permutation, the probability of the best 49-round differential
trail is 2−258;

2. For the 384-bit KNOT permutation, the probability of the best 73-round differential
trail is 2−386;

3. For the 512-bit KNOT permutation, the probability of the best 97-round differential
trail is 2−514.

For RECTANGLE, we have investigated the clustering of differential trails. The probabil-
ity of the best 15-round differential trail is 2−66. Based on the branch-and-bound algorithm,
we have searched for all the differential trails of 15-round RECTANGLE with probabili-
ty between 2−66 and 2−76 (up to a rotation equivalence) and examined all the difference
propagations made up of the investigated trails. The followings are the experimental results
[41]:



Table 9. Probabilities of the Best Differential Trails of the 3 KNOT permutations

♯ R Prob. ♯ R Prob. ♯ R Prob.

1 2−2 6 2−18 11 2−55

2 2−4 7 2−25 12 2−60

3 2−7 8 2−32 13 2−66

4 2−10 9 2−40 14 2−71

5 2−14 10 2−49
.
.
.

.

.

.

where ♯ R denotes the number of rounds, and Prob. denotes the probability of the best differential trail.

1. There are 32 best difference propagations with probability 1300× 2−76 ≈ 2−65.66 each.
Each is composed of 7 differential trails.

2. Among all the difference propagations, the maximum number of trails of a difference
propagation is 131, i.e., a difference propagation is composed of at most 131 different
differential trails.

From the above results, it can be seen that the clustering of differential trails of RECT-
ANGLE is very limited, which can not be used to construct an effective difference propaga-
tion with more than 14 rounds.

For the KNOT permutations, due to their bigger widths, it seems very time-consuming
(or unpractical) to investigate the clustering of the differential trails. However, due to the
great similarity between the KNOT permutations and RECTANGLE, it can be deduced
that the clustering of differential trails is also limited for the KNOT permutations.

9.3 Linear Cryptanalysis

Assume a linear trail hold with probability p , define the bias ϵ as (p − 1
2 ), the correlation

contribution Cor as 2ϵ. To distinguish a b-bit KNOT permutation from a random permu-
tation using linear cryptanalysis (LC), there must be a predictable linear propagation with
an amplitude (i.e., |Cor|) significantly larger than 2−

n
2 . A linear propagation is composed

of a set of linear trails, where its amplitude is the sum of the correlation contributions of all
linear trails that have the specified input and output selection patterns [22]. The correlation
contributions of the linear trails are signed and their sign depends on the value of the round
keys. The weight of a linear trail/propagation is the negative of the binary logarithm of its
amplitude.

Since the strong round key dependence of interference makes locating the input and
output selection patterns for which high correlations occur practically infeasible [22], we
have to use the following theorem for an estimation.

Theorem 4 ([22]). The square of a correlation (or correlation contribution) is called corre-
lation potential. The average correlation potential between an input and an output selection
pattern is the sum of the correlation potentials of all linear trails between the input and
output selection patterns:

E(C2
t ) =

∑
i

(Ci)
2

where Ct is the overall correlation, and Ci the correlation coefficient of a linear trail.



Table 10. Correlation Amplitude of the Best Linear Trails of the 3 KNOT Permutations

♯ R |Cor| ♯ R |Cor| ♯ R |Cor|

1 2−1 6 2−10 11 2−26

2 2−2 7 2−13 12 2−29

3 2−4 8 2−17 13 2−32

4 2−6 9 2−20 14 2−35

5 2−8 10 2−23
.
.
.

.

.

.

We have searched for the best linear trails for each of the 3 KNOT permutations. Let
WL

b,i denote the weight of the best i-round linear trail (i = 1, 2, 3, . . . ) for the b-bit KNOT
permutation. The followings are our experimental results:

1. WL
256,i = WL

384,i = WL
512,i for 1 ≤ i ≤ 8.

2. WL
256,i = WL

256,i−1 + 3 for 9 ≤ i ≤ 40; WL
384,i = WL

384,i−1 + 3 for 9 ≤ i ≤ 40; WL
512,i =

WL
512,i−1 + 3 for 9 ≤ i ≤ 40.

Our search results from 1 round to 14 rounds are presented in Table 10. Using the above
results, one can easily calculate the weight of the best linear trail for a given number of
rounds of a KNOT permutation. Especially, we have:

1. For the 256-bit KNOT permutation, the probability of the best 40-round linear trail is
2−113, and it can be deduced that the probability of the best 49-round linear trail is
2−140;

2. For the 384-bit KNOT permutation, the probability of the best 40-round linear trail is
2−113, and it can be deduced that the probability of the best 73-round linear trail is
2−212;

3. For the 512-bit KNOT permutation, the probability of the best 40-round linear trail is
2−113, it can be deduced that the probability of the best 97-round linear trail is 2−284.

For RECTANGLE, we have investigated the clustering of linear trails. The correlation
potential of the best 15-round linear trail is 2−74. Also based on the branch-and-bound algo-
rithm, we have searched for all the linear trails of 15-round RECTANGLE with correlation
potential between 2−74 and 2−80 (up to a rotation equivalence) and examined all the linear
propagations made up of the investigated trails. The followings are the experimental results
[41]:

1. There are 128 best linear propagations with an average correlation potential 1860 ×
2−80 ≈ 2−69.14 each, which is lower than 2−64. Each is composed of 891 linear trails.

2. Among all the linear propagations, the maximum number of trails of a linear propagation
is 891. Actually, the best linear propagations have the maximum number of trails.

From the above results, it can be seen that the clustering of linear trails of RECTANGLE
is limited, which can not be used to construct an effective linear propagation with more than
14 rounds.

For the KNOT permutations, it also seems very time-consuming (or unpractical) to
investigate the clustering of the linear trails. Due to the great similarity between the KNOT
permutations and RECTANGLE, it can also be deduced that clustering of linear trails is
limited for the KNOT permutations.



9.4 Integral and Division Cryptanalysis

Integral cryptanalysis (or square attack) [20, 27] considers the propagation of sums of a set
of carefully chosen data. Division property [36] is a newly extension of integral cryptanalysis.
In this subsection, we adopt the MILP-based search strategy presented in [38] to analyze
the underlying permutations of KNOT.

We have found 17-, 17- and 19-round integral distinguishers for the KNOT permutations
with state size b =256, 384 and 512 bits respectively. All of the three distinguishers take a
constant value in the single bit at the bottom left corner of the state and take all possibilities
in the other b−1 bits. This set of input values will result in balancedness at the bottom left
corner bit of the state for all the three distinguishers. The program ran for several days, and
could not return useful information for 18, 18 and 20 rounds with state size 256, 394 and 512
bits respectively. However, according to the known results of division cryptanalysis against
other ciphers, we believe that the longest division-based integral distinguishers for the 3
state sizes are around 17, 17, and 19 rounds (at most 1-3 rounds are added) respectively.

9.5 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis [9] exploits differential trails with probability 0. Im-
possible differential distinguishers are usually constructed by meet-in-the-middle approach,
that is to say, one differential trail with probability one along the forward direction and one
differential trail with probability one along the backward direction, whose conditions cannot
be met in the middle.

For a b-bit permutation, let numfdb denote the minimal number of rounds for full
dependency. According to the state of art of impossible cryptanalysis, the longest impossible
differential distinguisher for a b-bit permutation is around 2numfdb rounds. For the 256-,
384- and 512-bit KNOT permutation, numfdb is 8, 9 and 10 respectively. Take the KNOT S-
box into account, we estimate that the longest impossible differential distinguisher is around
17, 19 and 21 rounds for the 256-, 384- and 512-bit KNOT permutation respectively.

9.6 Algebraic Attacks

The KNOT S-box does not exhibit any special algebraic structure. Furthermore, it seems
that successful applications of algebraic attacks [18] on block ciphers/permutations can only
reach a very limited number of rounds [34, 29]. Therefore, we do not expect that algebraic
attacks form a danger for any KNOT member.

9.7 Summary

Table 11 summarizes the maximal lengths of distinguishers that have been found or esti-
mated for various cryptanalytic methods. According to the results in this section, we can
estimate the security of KNOT-AE and KNOT-Hash against various attacks. In Section
10.6, we will justify the choices of number of rounds for the KNOT permutations based on
our security evaluations against known attacks.

10 Design Rationale

In this section, we justify the choices we took during the design of KNOT-AEAD and
KNOT-Hash.



Table 11. Distinguisher Length of KNOT Permutations for Various Attacks

Distinguisher Length Distinguisher Length Distinguisher length

for b = 256 for b = 384 for b = 512

differential cryptanalysis 48 72 96

linear cryptanalysis 44∗ 66∗ 87∗

division cryptanalysis 17 17 19

imp. differential cryptanalysis 17∗ 19∗ 21∗

Note: the length of linear distinguisher is deduced from our known experimental results; the length of
impossible differential distinguisher is estimated based on the state-of-art results on other ciphers.

10.1 Sponge and Duplex Constructions

The mode of KNOT-AEAD is based on the Monkey-Duplex construction [19, 13], and the
mode of KNOT-Hash is based on the extended Sponge construction [10, 26]. The two con-
structions are provably secure against generic attacks and extended in many publications,
here are a small part [13, 24, 35, 10, 26]. The Sponge construction is used in the design of the
SHA-3 winner Keccak and several lightweight hash functions [11, 15, 26]. A significant frac-
tion of the CAESAR competition submissions use Sponge/Duplex-based modes for AEAD
schemes, including Ascon, Ketje, Keyak, NORX, PRIMATEs [24, 13, 14, 4, 2] and so on. Be-
sides AEAD and hash functions, the two constructions can also be used for constructing
MACs, stream ciphers, Pseudo-random generators. In addition, the fundamental crypto-
graphic primitive underlying the two constructions is a fixed-length permutation, which has
the advantages that it does not have a key schedule and that its inverse does not need to
be implemented.

Compared with classical Merkle-Damgard hash constructions, the Sponge-based design
generally has a smaller footprint, mainly due to the smaller state size. The lightweight hash
functions SPONGENT and PHOTON are both based on the Sponge construction. Similarly,
several lightweight AEADs are built on the Duplex construction, including Ascon, Ketje and
Beetle [16].

Based on the two mode constructions and RECTANGLE-like permutations, in this sub-
mission, we demonstrate that we can build lightweight AEAD and hash primitives that can
be well-suited for both hardware and software environments.

10.2 Bit-Slice Technique and Lightweight Primitives

The bit-slice technique was introduced by Biham in 1997 for speeding up the software
speed of DES [8], and was used in the design of the Serpent block cipher [1]. In a bit-slice
implementation, one software logical instruction corresponds to simultaneous execution of m
hardware logical gates, wherem is the length of a subblock. Ascon[24], JH [39], Keccak(SHA-
3) [11], Noekeon [21] and Trivium [23] are 5 other primitives that can benefit from the bit-
slice technique for their software performance. It is worth noticing that these primitives not
only perform well in hardware but also in software. Furthermore, a bit-slice implementation
is safe against implementation attacks such as cache and timing attacks compared with a
table-based implementation [33]. When it comes to a dedicated lightweight AEAD/Hash
with bit-slice style, there is plenty of room for improvement on tradeoff between security,
performance and resource requirements.

The KNOT permutations are extensions of the lightweight block cipher RECTANGLE.
Consider a b-bit SP-network permutation, the S-layer consists of b

4 4-bit S-boxes in parallel,



Table 12. Choice of the Rotation Offsets of ShiftRowb transformation

Permutation Number of Minimal number of rounds

width b candidates for full dependency

256 11 8

384 1 9

256 24 10

thus the subblock length is b
4 for a bit-slice implementation. Let a b-bit state be arranged

as a 4 × b
4 array. First, apply the same S-box to each column independently. Then, the

P-layer should make each column dependent on some other columns, aiming to provide
good diffusion. In such a situation, b

4 -bit rotations are probably the best choice: they are
simple wirings in hardware implementation; they can achieve the goal of mixing up different
columns; they can be easily implemented in software using bit-slice technique. So far, we
got the framework of KNOT permutations.

10.3 The ShiftRow Transformation

Let ci (i = 0, 1, 2, 3) denote the left rotation offset of the i-th row. For each permutation
width b, the choice criteria of ci are as follows:

1. The four offsets are different;
2. c0 = 0, c1 = 1, c2 ≡ 0 (mod 8), c3 ≡ 1 or 7 (mod 8), and c1 < c2 < c3;
3. Full dependency after a minimal number of rounds.

Table 12 gives our experimental results. For each of the candidates satisfying the above
criteria, after the minimal number of rounds for full dependency, each of the b input bits
influences each of the b output bits. For each b, we choose one candidate as the rotation
offsets of the ShiftRowb transformation.

10.4 Design Criteria of the S-box

Let S denote a 4× 4 S-box. Let △I,△O ∈ F 4
2 , define NDS(△I,△O) as:

NDS(△I,△O) = ♯{x ∈ F 4
2 |S(x)⊕ S(x⊕△I) = △O}.

Let ΓI, ΓO ∈ F 4
2 , define the imbalance ImbS(ΓI, ΓO) as:

ImbS(ΓI, ΓO) = |♯{x ∈ F 4
2 |ΓI • x = ΓO • S(x)} − 8|.

where • denotes the inner product on F 4
2 . The design criteria of the S-box of KNOT are as

follows:

1. Bijective, i.e., S(x) ̸= S(x′) for any x ̸= x′.
2. For any non-zero input difference △I ∈ F 4

2 and any non-zero output difference
△O ∈ F 4

2 , we require:
NDS(△I,△O) ≤ 4.

3. Let △I ∈ F 4
2 be a non-zero input difference and △O ∈ F 4

2 a non-zero output
difference. Let wt(x) denote the Hamming weight of x. Define SetD1S as:
SetD1S = {(△I,△O) ∈ F 4

2 ×F 4
2 |wt(△I) = wt(△O) = 1 and NDS(△I,△O) ̸= 0}.



Let CarD1S denote the cardinality of SetD1S , we require CarD1S = 2.
4. For any non-zero input selection pattern ΓI ∈ F 4

2 and any non-zero output selection
pattern ΓO ∈ F 4

2 , we require:
ImbS(ΓI, ΓO) ≤ 4.

5. Let ΓI ∈ F 4
2 be a non-zero input selection pattern and ΓO ∈ F 4

2 a non-zero output
selection pattern, define SetL1S as:
SetL1S = {(ΓI, ΓO) ∈ F 4

2 × F 4
2 |wt(ΓI) = wt(ΓO) = 1 and ImbS(ΓI, ΓO) ̸= 0}.

Let CarL1S denote the cardinality of SetL1S , we require CarL1S = 2.
6. No fixed point, i.e., S(x) ̸= x for any x ∈ F 4

2 .

10.5 Selection of the S-box of KNOT

In the following, an S-box means a 4× 4 S-box.

Definition 1 ([28]). Two S-boxes S and S′ are called permutation-then-XOR equiv-
alent if there exist 4 × 4 permutation matrices P0, P1 and constants a, b ∈ F 4

2 such that
S′(x) = P1(S(P0(x) + a)) + b. The equivalence is called PE equivalence for short.

If an S-box satisfies criteria 1-5 (see Section 9.4), then any of its PE equivalent S-boxes
also satisfies criteria 1-5. In [41], we have shown that there are only 4 PE classes fulfilling
criteria 1-5. We list a representative for each PE class in Table 13. In each row of Table 13,
the first integer represents the image of 0, the second the image of 1, and so on.

Up to adding constants before and after an S-box, which does not change any of the
criteria 1-5 and furthermore does not change the probability of the best differential/linear
trail for a specific number of rounds, there are 4×4!×4! = 2304 S-boxes that can be generated
from the 4 representatives in Table 13. After discarding a part of the S-box candidates which
can result in a differential (or linear) trail with a single active S-box in each round, there
remained only 528 S-boxes, see [41] for details.

Next, we create a further filtering by considering the security of the underlying permu-
tation against differential and linear cryptanalysis. Fix the ShiftRow256 transformation, for
each choice of the remained 528 S-boxes, by checking the probability of the best differential
trail and the correlation coefficient of the best linear trail up to 20 rounds, we have chosen
96 S-boxes with good performance in this filtering. By further checking the best differential
and linear trails with b = 384 and 512, we finally choose one S-box with the best perfor-
mance from the 96 S-boxes. Finally, by adding constants before and after the S-box, we can
get 256 different S-boxes. Among the 256 S-boxes, we choose one with no fixed point, low
area requirement and good software performance as the S-box for KNOT.

10.6 The Number of Rounds nr0, nr, nrf and nrh

During the initialization, the key and nonce are firstly loaded to the b-bit state; then, after
the pb[nr0] transformation, it shall destroy all structures an attacker can apply in choosing

Table 13. Representatives for all the 4 PE classes fulfilling criteria 1-5

PE0 6,0,8,15,12,3,7,13,11,14,1,4,5,9,10,2

PE1 3,2,8,13,15,5,6,10,9,14,4,7,0,12,11,1

PE2 6,8,15,4,12,7,9,3,11,1,0,14,5,10,2,13

PE3 8,1,6,12,5,15,10,3,7,11,13,2,0,14,9,4



K ∥ N [13]. Based on our security analysis of the KNOT permutations, we selected nr0 =
52, 76, 76 and 100 for the 4 KNOT-AEAD members respectively.

During the processing of associated data and plaintexts, an attacker can not have access
to the inner state. Based on our security analysis of the KNOT permutations, differential
cryptanalysis is the most effective approach. Moreover, taking the security strength of each
KNOT-AEAD into account, it requires that, for the permutation pb[nr], there is no effective
differential propagation with probability above 2−k. As a result, we selected nr = 28, 28,
40 and 52 for the 4 KNOT-AEAD members respectively.

As for forgery attacks, the success probability of correctly predicting the output of the
final permutation pb[nrf ] from its input difference should not be better than a random guess.
Hence, it requires that there is no effective differential propagation with probability above
2−k for pb[nrf ]. Adding an extra redundancy, we selected nrf = 32, 32, 44 and 56 for the 4
KNOT-AEAD members respectively.

Rebound attack [37] is one of the most effective cryptanalysis against hash functions.
It can be applicable to both AES-based and permutation-based hash functions. Based on
the state of the art of rebound attacks and our differential cryptanalysis of the KNOT
permutations, we estimate that the highest attacked rounds using rebound attacks with 3
inbound phases is at most 60, 69, 93 and 123 for the 4 KNOT-Hash members respectively.
Adding an extra redundancy of about 12%, we selected nrh = 68, 80, 104 and 140 for the
4 KNOT-Hash members respectively.

11 Performance in Various Environments

11.1 Hardware Evaluation of KNOT

The hardware implementation area of an AEAD algorithm greatly depends on design pa-
rameters, such as the utilized protocol, the width of the interface and etc. These design
parameters normally are chosen for specific application scenarios and reflect the applica-
bility and the flexibility of an AEAD algorithm. In order to study the intrinsic hardware
performance of KNOT, we focus on the core datapath of an KNOT. Together with various
compact controllers, the core datapath of an KNOT is capable to accomplish all functional
modes, including AE mode and hash mode.

Fig. 1. The datapath of a crypto core of KNOT-Pair I

Figure 1 illustrates the core datapath of KNOT-AEAD(128,256,64). In this figure, the
KNOT permutation and round constant generator are denoted by Pb and RC. The key and



nonce are loaded via a multiplex to initialize the state. The associated data, plaintext and
ciphertext are fed into the datapath by XORing with specific segments of the state.

Table 14. Hardware results of the crypto core of KNOT-AEAD(128,256,64)

KNOT-AEAD(128, 256, 64)
Area
(GE)

Latency
(ns)

crypto core 3628 0.89

Permutation 1206.67 0.33

one S-box 18.67 0.27

Round Constant 6 48.67 0.12

State 1450.67 N/A

Table 15. Hardware results of the crypto core of KNOT members

crypto core
Area
(GE)

Latency
(ns)

KNOT-AEAD(128, 256, 64) 3628 0.89

KNOT-AEAD(128, 384, 192) 5905 0.92

KNOT-AEAD(192, 384, 96) 5421 0.91

KNOT-AEAD(256, 512, 128) 7218 0.89

To evaluate the hardware performance of KNOT-AEAD(128,256,64), the design shown
in Figure 1 was synthesized with Synopsys Design Compiler G-2012.06-SP5 to the NAN-
GATE 45 open cell library(PDKv1 3 v2010 12). Table 14 summarizes the results. The core
datapath consumes in total around 3.7 kGE(gate equivalent), while the consumption of the
permutation part and the state are 1.2 kGE and 1.4 kGE. The critical path of this core
datapath is around 0.89 ns, implying that a theoretical upper bound of maximal working
frequency is around 1.12 GHz.

We repeated the same evaluation approach for all the other KNOT-AEAD members. The
result is listed in Table 15. Thanks to their similar architectures, the hardware implemen-
tations of the cryptographic cores for all KNOT-AEAD members have similar critical path
length. As shown in Table 15, the hardware area of these implementations varies, mainly due
to their different state sizes. It is known that the throughput of an AEAD algorithm greatly
depends on sizes of its input and output interface, which should be specified according to
a target application. Therefore, instead of analyzing the throughput, we studied latencies
of the critical path of all proposed implementations. We note that these latencies can be
improved to achieve a higher maximal working frequency by techniques such as pipeline,
multiple clock domains and etc. In the ideal case, there is no further throughput reduction
caused by interfaces, KNOT-AEAD(128, 256, 64) could achieve a throughput of 0.642 -
2.568 Gbps.

The same core datapath of KNOT-AEAD members can be reused by corresponding
KNOT-Hash members from the same pair. Under the ideal case assumption, the KNOT-
Hash(256, 256, 32, 128) could reach a throughput of 175.39 - 528.75 Mbps.



11.2 Software Implementation

The platform used to evaluate the software implementation of KNOT is an Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz based system running Ubuntu 18. We follow the requirement on
compiler and flags:

GCC 7.3.0 using flags: -std=c99 -Wall -Wextra -Wshadow -fsanitize=address,undefined -O2

The main purpose of the reference implementation is to support public understanding, we
provide well-documented and straightforward implementations for all the KNOT members.
In the following, we present the results of optimized implementations of KNOT. Table 16
presents the encryption speed of the 4 KNOT-AEAD members for 8-byte and 4096-byte
messages respectively. Table 17 presents the message processing speed of the 4 KNOT-Hash
members, also for 8-byte and 4096-byte messages respectively.

Table 16. KNOT-AEAD Encryption Speed

cycles/byte cycles/byte
(for 8 bytes) (for 2048 bytes)

KNOT-AEAD(128, 256, 64) 74 23
KNOT-AEAD(128, 384, 192) 137 17
KNOT-AEAD(192, 384, 96) 159 51
KNOT-AEAD(256, 512, 128) 198 47

Table 17. KNOT-Hash Message Processing Speed (Reference Code)

cycles/byte cycles/byte
(for 8 bytes) (for 2048 bytes)

KNOT-Hash(256, 256, 32, 128) 234 111

KNOT-Hash(256, 384, 128, 128) 310 74

KNOT-Hash(384, 384, 48, 192) 685 299

KNOT-Hash(512, 512, 64, 256) 769 253

11.3 Capability of Integrating Side-Channel Countermeasures

For application scenarios where side-channel resistance is critical, KNOT by design can
be implemented efficiently. Implementations of the KNOT families could follow the bit-
slice style without using the look-up tables, which helps to mitigate the threat of cache-
timing attacks. The 4-bit S-box used in KNOT comes from the same class as RECTANGLE
and PRESENT [7]. The existence of countermeasures for S-boxes of RECTANGLE and
PRESENT implies the feasibility of implementing efficient first-order and high-order mask-
ing, or threshold implementations for KNOT algorithms.

11.4 Targeted Constrained Devices of KNOT

The bit-slice style makes KNOT well-suited for both hardware and software. Due to small
state size, careful selection of the 4-bit S-box and a bit permutation as the diffusion layer,



KNOT is extremely hardware-friendly. As for software, the KNOT S-box can be implement-
ed using a sequence of 12 basic logical instructions, the P-layer of each KNOT permutations
is composed of 3 b/4-bit rotations, which makes KNOT also very friendly for software
implementations. Moreover, the bit-sliced design principle allows KNOT for very flexible
hardware/software implementations.

The researchers in University of Luxembourg developed an open-source framework-
FELICS (Fair Evaluation of Lightweight Cryptographic Systems) in 2015, which aims at
fairly evaluating the software performance of lightweight ciphers on embedded devices. By
extracting Flash, RAM consumption and execution time on 3 widely used microcontrollers:
8-bit AVR, 16-bit MSP and 32-bit ARM, the ciphers are ranked respectively with an average
value under scenario 1(communication protocol) and scenario 2(authentication protocol).
There are 22 lightweight block ciphers in this evaluation, the RECTANGLE block cipher
ranked the 4th in Scenario 1 and 5th in Scenario 2, which indicates that RECTANGLE has
very good software performance on embedded devices. Since the KNOT permutations are
extensions of RECTANGLE, it can be deduced that KNOT also has very good performances
on these 3 microcontrollers.

To sum up, KNOT is well suited in constrained environments, including various hardware
and embedded software platforms.

12 Advantages and Limitations of KNOT

We would like to emphasize the following advantages of KNOT:

1. KNOT uses two provably secure modes, that is, Monkey Duplex for KNOT-AEAD and
an extended Sponge for KNOT-Hash.

2. KNOT-AEAD has 4 members, KNOT-Hash also has 4 members, which can provide
different security requirements.

3. Security of the KNOT permutations against known cryptanalytic approaches can be
thoroughly evaluated, especially the security against differential and linear cryptanalysis.
Moreover, the KNOT permutations are based on the design of RECTANGLE, hence,
the security analysis and hardware/software implementations of KNOT can benefit from
the known results on RECTANGLE [40, 25, 5, 30].

4. Due to the bit-slice style, KNOT allows for very efficient and flexible implementations in
both hardware and software environments. Moreover, the implementation of the round
function can be reused in the KNOT-AEAD and KNOT-Hash of the same KNOT-Pair,
which reduces the hardware area or software ROM compared to use of two different
primitives. The last but not least, bit-slice style, together with carefully selected S-box,
enables efficient side-channel resistant implementations of KNOT.

5. KNOT is especially well-suited for constrained devices, due to its mode selection, small
state size, 4-bit Sbox and a bit permutation as the diffusion layer.

6. KNOT is inverse-free, that is, there is no need to implement the inverse of the underlying
permutations.

7. No hidden weaknesses in KNOT. All design choices are explained and motivated in this
document.

It requires that the nonce of KNOT is unique, the uniqueness of the nonce is as critical
as the secrecy of a key. KNOT is a new design, we encourage further security analysis on
KNOT.
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