
Grain-128AEAD - Status Document 
September, 2020 

Martin Hell1 , Thomas Johansson1 , Alexander Maximov2 , Willi Meier3 , 
1Jonathan Sönnerup , and Hirotaka Yoshida4 

1Lund University, Sweden 
2Ericsson AB, Sweden 
3FHNW, Switzerland 

4AIST, Japan 

1 Introduction 

This short note summarizes our implementation efforts for the Grain-128AEAD stream ci-
pher, and also discusses some advantages of using Grain-128AEAD. 

2 Software Implementations 

The provided reference implementation is, together with the specification document, pri-
marily designed to give an easy to grasp overview of the cipher. No serious optimization 
attempts are included with the reference implementations. Instead, optimized software im-
plementations are provided separately. The optimizations are discussed in detail in [2] and 
target the two most constrained architectures used in the FELICS-AEAD framework [1]. 
We refer to that document for details and provide only a very short summary here. 

The implementations have been included in the framework and the results are those 
delivered by FELICS-AEAD. The two processors used were the 8-bit AVR ATmega 128 and 
the 16-bit MSP430F1611. Both these architectures provided optimization challenges and we 
give four different implementations, one for each processor and targeting either fast execution 
or small code size. The implementations can be found in the FELICS-AEAD framework. 

There is often a tradeoff between execution time and code size, so we also provide results 
for a more balanced choice, where we use the product of the code size and execution time 
as a metric. The FELICS-AEAD framework includes different scenarios. The results in 
Table 1 gives our results for a balanced choice between size and speed, and for the scenario 
with authenticated encryption of 1224 bytes of payload and 40 bytes associated data. In 

1 



the table, Grain is compared to other algorithm available in the FELICS-AEAD framework. 
In [2] we give more results, e.g., that Grain-128AEAD can be implemented with code size 
1100 bytes on the 8-bit architecture AVR and 926 bytes on the 16-bit architecture MSP. 

Table 1: Balanced choices, using smallest Code-size × min total time. 
Name RAM Code 

state size 
RAM Total time 
stack (cycles) 

Code size 
× Total time 

AVR balanced choice 
ACORN 37 3024 81 396798 230.16 

AES-GCM 228 2338 96 1460677 231.67 

ASCON 40 24590 63 53272 230.29 

(Alt.) ASCON 40 3724 122 362589 230.33 

Grain 49 1734 38 263101 228.77 

Ketje-Jr 25 5156 190 311949 230.58 

NORX 64 5028 201 124062 229.22 

MSP balanced choice 
ACORN 37 1750 64 676228 230.14 

AES-GCM 228 1952 126 2174330 231.98 

ASCON 40 5572 336 417711 231.12 

Grain 50 1358 44 184104 227.90 

Ketje-Jr 25 6248 196 335624 230.97 

NORX 64 4216 212 71419 228.17 

3 Hardware Implementations 

The design document included a rough estimate of the hardware performance of Grain-
128AEAD. In [3], hardware implementations targeting ASICs were presented and discussed. 
The code was implemented in VHDL, and synthesized using Synopsys Design Compiler 
2013.12 along with a 65 nm library from ST Microelectronics. Both high speed and low 
power implementations were provided. 

3.1 High Speed Implementation 

In order to reach high clock speeds, several RTL optimization techniques were utilized, 
such as Galois transforms, pipelining, optimization of control logic, and unrolling. Different 
synthesis options were also explored. The synthesis script utilizes clock gating and high 
speed transistors (LVT). 

The best high-speed results are shown in Table 2. The throughput is increased for every 
level of parallelization at the expense of power consumption. The fastest implementation is 
the 64 times parallelized one, with a throughput of 33.6 Gb/s, at the cost of a huge area 
increase and a power increase. A parallelization level of 4 yields the most power efficient 

2 



implementation. The most area efficient implementation is given when n = 32. This is due to 
the architectural design of the Grain family, which allows for relatively cheap parallelization 
up to 32x. 

Using fixed message lengths, the energy consumption is calculated. We encrypt 1 and 
1000 blocks, where each block is 64 bits, and the results are shown in Table 3. Again, a 
parallelization level of 4 results in the lowest energy consumption, closely followed by the 
32x version. 

Table 2: Results for the high-speed implementation. The throughput per area is given in 
kbit/s per GE. The throughput per power is given in Gb/s per mW . 

n Period Freq. Thrp. Area Power Thrp. / Thrp. / 
Area Power 

(ns) (GHz) (Gb/s) (GE) (mW ) 

1 0.40 2.5 1.25 2645 0.25 472 5.00 
2 0.43 2.32 2.32 2695 0.23 861 10.09 
4 0.47 2.13 4.26 3335 0.29 1277 14.69 
8 0.46 2.17 8.68 4448 0.67 1951 12.96 
16 0.48 2.08 16.64 7118 1.55 2338 10.74 
32 0.64 1.56 24.96 9206 1.78 2710 14.02 
64 0.95 1.05 33.60 16958 2.76 1982 12.17 

Table 3: Energy consumption for the high-speed implementation. 

Energy (nJ) x1 x2 x4 x8 x16 x32 x64 

1 Block 0.064 0.032 0.022 0.025 0.030 0.023 0.026 
1000 Blocks 12.85 6.35 4.38 4.95 5.98 4.58 5.26 

3.2 Low Power Implementation 

When targeting a low power design, a clock period must be defined. Here, we chose a clock 
frequency of 100 kHz, which is close to proximity cards that run at 125 kHz. The synthesis 
script utilizes clock gating and low power transistors (HVT). 

The results for the low power implementation is shown in Table 4. We see that the power 
consumption is roughly a factor 1000 lower compared to the high speed implementation, 
with an area decrease between 10-20%. Even though the power increases for every value of 
n, the total energy consumption decreases, since the computation can be done in shorter 
time. The most energy efficient implementation is the 64-parallelized version, but again 
with a substantial increase of area due to the design not natively supporting parallelization 
of degree higher than 32. 

3 



Table 4: Result for low power implementation at 100 kHz. 

Energy (nJ)
n Area (GE) Power (µW ) 

1 block 1000 blocks 

1 2375 0.23 1.47 296 
2 2588 0.28 0.90 180 
4 2950 0.29 0.46 93.2 
8 3692 0.31 0.25 49.8 
16 5053 0.39 0.16 31.3 
32 7950 0.46 0.09 18.5 
64 13800 0.63 0.06 12.7 

4 Use Cases and Advantages 

Grain-128AEAD was designed to be an efficient and secure cipher in hardware. However, 
the cipher performs also well in software on constrained devices, as indicated in Section 2. 
Advantages speaking in favor of Grain-128AEAD are at least the following: 

• The algorithm allows for nice implementation tradeoffs, as it has good performance 
both in hardware and in software implementations on constrained CPUs. Regard-
ing industrial relevance, Grain-128AEAD can be used in products that allow for both 
hardware and software implementations. Hardware implementations also have a nat-
ural tradeoff between gate complexity and speed. 

• Variants of Grain-128AEAD are successfully fielded already. The design is very close 
to Grain-128a, which is an ISO standard for RFID systems (ISO/IEC 29167-13:2015). 
In [4], some results of memory-optimized implementations of Grain-128a requiring 84 
RAM bytes on ARM Cortex-M3 are presented. Existing implementation knowledge 
and know-how can be reused with small modifications. This indicates that Grain-
128AEAD can be suitable for the use case of PKES (Passive Keyless Entry and Start) 
system in an automotive domain. 

• The Grain family of stream ciphers has received intense cryptanalysis over a long time. 

• Grain-128AEAD is the only remaining stream cipher in NIST round 2. It is good with 
diversity among designs for the remaining candidates. 

• We finally highlight some security properties that we believe are in favour of Grain-
128AEAD in comparison with ciphers based on the duplex construction. It is often 
stated in specifications, that in order to fulfill the security claims implementations must 
make sure that the nonce is never repeated for two encryptions using the same key. 
Furthermore, it is specified that decrypted plaintexts are only released after successful 
verification of the tag. We note that for both these assumptions, violating one of them 

4 



may lead to a state recovery for duplex-based constructions. For a synchronous 
stream cipher like Grain-128AEAD, however, such violation can at most lead to a 
leakage of plaintext information, never a state recovery. 

In particular, not releasing the plaintext before the tag has been verified may be a large 
practical burden in some applications and one might find use cases where plaintext has 
to be released before tag verification takes place. Then a synchronous stream cipher 
will be more suitable. 

Similar arguments are valid in the case when the user excludes the authentication 
mechanism and only encrypts with an AEAD primitive. 

References 

[1] Luan Cardoso dos Santos, Johann Großschädl, and Alex Biryukov. FELICS-AEAD: 
Benchmarking of lightweight authenticated encryption algorithms, 2019. Lightweight 
Cryptography Workshop. 

[2] Alexander Maximov and Martin Hell. Software evaluation of Grain-128AEAD for 
embedded platforms. Cryptology ePrint Archive, Report 2020/659, 2020. https: 
//eprint.iacr.org/2020/659. 

[3] Jonathan Sönnerup, Martin Hell, Mattias Sönnerup, and Ripudaman Khattar. Effi-
cient hardware implementations of Grain-128AEAD. In Feng Hao, Sushmita Ruj, and 
Sourav Sen Gupta, editors, Progress in Cryptology – INDOCRYPT 2019, pages 495–513. 
Springer International Publishing, 2019. 

[4] Yuhei Watanabe, Hideki Yamamoto, and Hirotaka Yoshida. Towards minimizing RAM 
requirement for implementation of grain-128a on ARM cortex-m3. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci., 103-A(1):2–10, 2020. 

5 

https://eprint.iacr.org/2020/659
https://eprint.iacr.org/2020/659

	Introduction
	Software Implementations
	Hardware Implementations
	High Speed Implementation
	Low Power Implementation

	Use Cases and Advantages

