
Status Update of ForkAE 

Elena Andreeva1, Virginie Lallemand2, Antoon Purnal3, Reza 
Reyhanitabar4, Arnab Roy5, and Damian Vizár6 

1DTU, Denmark 
2Université de Lorraine, CNRS, Inria, LORIA, France 

3imec-COSIC, KU Leuven, Belgium 
4Elektrobit Automotive GmbH, Germany 

5University of Klagenfurt, Austria
6CSEM, Switzerland 

September 18, 2020 

Abstract 

The present document is the “Status Update” document for the second 
round NIST LWC candidate ForkAE, as called for by NIST LWC team mid-
august 2020, summarizing (i) new security proofs for SAEF mode, (ii) third 
party analyses of the ForkSkinny primitive, (iii) third cryptanalysis of the 
directly related SKINNY tweakable blockcipher, (iv) planned tweaks for the 
fnal round, (v) new application use cases for the ForkAE family, as well as 
(vi) the new implementation aspects of the submission. 

1 New proofs/arguments supporting security claims 

1.1 OAE security of SAEF 

In a recent work Andreeva, Singh Bhati and Vizár (under ongoing review process) 
show that the SAEF mode of operation achieves Online AE (OAE) security. OAE 
security notion is strictly stronger than the basic nonce-based AEAD security 
guarantees originally claimed for SAEF. 
Online AE Security. Online Authenticated Encryption (OAE) by Fleischmann, 
Forler and Lucks (FSE’12) (and corrected by Hoang, Reyhanitabar, Rogaway, 
and Vizár in CRYPTO’15) captures a level of security between the basic nonce-
based AEAD security and the full-fedged MRAE by Rogaway and Shrimpton 
(EUROCRYPT’06), achievable by online AE schemes. An online AE scheme 
processes the plaintext on the fy, such that i-th ciphertext block can be com-
puted after having seen the frst i plaintexts, allowing for a constant memory 
footprint in practice. 

An OAE-secure scheme will leak the length of longest block-aligned prefx of 
two plaintexts encrypted with the same nonce and associated data but nothing 
more. As showed later by Endignoux and Vizár (FSE’17), OAE schemes are also 

1 



resistant to block-wise adaptive attacks (where an application outputs a part of 
the ciphertext before it has been fed the entire plaintext). 
OAE Security of SAEF. SAEF has been proven to be OAE-secure as long 
as the total number of blocks processed with the same key is ˝ 2n/2 with n 
the blocksize of the underlying forkcipher (n = 128 for all SAEF instances in 
the ForkAE family). Such a birthday-bounded security is common among OAE 
schemes (COLM is also birthday secure). SAEF thus provides guarantees that 
are strictly stronger qualitatively and unchanged quantitatively. To our knowl-
edge, there are only four other NIST LWC second round candidates with provable 
claims on nonce misuse security. 

2 Third-party Analysis of ForkSkinny and ForkAE 

ForkSkinny On the Dec. 10, 2019, we launched a cryptanalysis challenge for 
ForkSkinny, detailed on our website: https://www.esat.kuleuven.be/cosic/ 
forkae/home/forkskinny-challenge/ to encourage public cryptanalysis. Till 
this date, to the best of our knowledge, there have been no cryptanalysis results 
that break ForkSkinny with the specifed parameters in the challenge. 

In an article published at ToSC 2020, Bariant, David and Leurent showed 
that the best attacks on SKINNY can be extended to one extra round for most 
ForkSkinny variants, and up to 3 rounds for ForkSkinny-128-256. These results do 
not contradict our security claims, and in particular do not threaten our proposal. 
The ForkSkinny continues to beneft from the comfortable security margin of 
SKINNY (for instance the best current cryptanalysis results for SKINNY-128-
256 reach about half of the total number of rounds). On the contrary, we believe 
that these rather limited improvement are a good sign regarding the security of 
our proposal. 

ForkAE On the 12th of February, Patrick Derbez, Willi Meier, Ling Song, 
Reinhard Lueftenegger, Lenka Marekova and Danping Shi posted a comment on 
the lwc-forum mailing list. The authors reported that ’if an application allows 
to use ForkAE with various nonce lengths it is possible to mount a forgery’. We 
stress that their analysis is incompatible with our cryptographic API, since the 
nonce length is explicitly specifed as a parameter of PAEF, which is chosen and 
fxed for an instance. 

On the 26th of February, Huicong Liang, Hongjun Wu and Meiqin Wang 
reported a forgery attack on the mode of operation PAEF to us. We pointed 
and communicated the invalidity of their analysis and they agreed with us. 

3 Comments on the Security of Forkcipher 

An idea which was used in an earlier forkcipher instantiation - ForkAES, is 
the exploitation of the reconstruction query in a forkcipher. It is unlikely that 
attacks that require inverse ForkSkinny queries in the “reconstruction” direction 
(i.e. adversary submits the “left” ciphertext block and expects to get the value 

2 

https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/
https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/


of the corresponding “right” ciphertext block) are applicable to the algorithms 
in the ForkAE family. Even though the reconstruction of the ciphertext blocks 
chosen by the adversary is computed in the decryption algorithms internally, the 
adversary cannot learn the values of the reconstructed “right” ciphertext block 
in a blackbox attack, unless a forgery occurs (at which point the guarantees of 
ForkSkinny become become void anyway). 

4 Related Cryptanalysis Results 

Our proposal being based on SKINNY and any new cryptanalysis of SKINNY 
can potentially have an impact on the security of ForkSkinny. Thus, we give here 
a brief overview of the most important recent advances on its analysis. 

Although there are many cryptanalysis results published on SKINNY, none 
of them breaks the full round SKINNY. The advancement made since the an-
nouncement of round 2 candidates is rather limited, and as of today the cipher 
still has a security margin close to half its total number of rounds. The main 
recent advances are the following: 

In a DCC article, Zhao and coauthors proposed a new technique that allows 
to attack 28 rounds of SKINNY-128-384 with a related-tweakey rectangle attack, 
which is one more round than before. 

At CSCML 2020, Dunkelman et al. revisited some attacks on SKINNY, 
identifed issues with several of them (for which the patch requires to reduce the 
number of attacked rounds) and showed that the di˙usion of the cipher is low, 
as biases after 8 full rounds of SKINNY can be observed. The maximum number 
of attacked rounds is not increased. 

At FSE 2019, Song et al. re-evaluated the probability of previous boomerang 
distinguishers with the BCT technique and its extension. The probabilities are 
shown to be higher than previously evaluated. At the same conference, Ankele 
et al. developed new zero-correlation and integral attacks that rely on the linear 
tweakey schedule of SKINNY. In these two papers, the total number of attacked 
rounds is not improved. 

In another ToSC paper, Zhang, Cao, Guo, and Pasalic proposed new tech-
niques to fnd integral, truncated and impossible di˙erential distinguishers. The 
authors claim the frst attack reaching 16 rounds out of 40 of SKINNY-128-128 
in the single-key model. 

At ICICS 2019, Chen et al. improved the complexity of the previous MITM 
attack by considering the key-bridging technique. 

5 Planned tweak proposals 

The SKINNY tweakable block cipher comes with large security margin (of around 
50%), a fact supported by a large body of cryptanalytic results. 

We plan to propose a reduction of the number of rounds which are iterated 
in ForkSkinny. More specifcally, for the NIST compliant version ForkSkinny-
128-288, we plan to reduce the number of rounds at least by 5 rounds after 

3 



forking, i.e. r0 = r1 = 26 compared to the exisiting r0 = r1 = 31. We believe 
further reduction in the number of rounds for rinit and r0, r1 are possible and 
we are currently investigating this. The feasibility of reducing of number of 
rounds further (for all versions of ForkSkinny) is also supported by the fnding 
of Bariant et al. that the best attack on SKINNY can be extended by 1 round 
(for the parameters of our ForkSkinny instances). 

We additionally intend to extend and complement the ForkAE family with 
instances of the RPAEF mode, presented at ASIACRYPT’19. RPAEF is similar 
to PAEF but optimized to eÿciently handle longer queries (requiring just one 
instance of ForkSkinny with a longer tweak compared to PAEF). Thanks to this 
inclusion, ForkAE family will become more versatile; it will still be the go-to 
solution for shortest queries, but it will also have a solution for the longer ones. 

Finally, our yet unpublished results (under ongoing review process) show 
that ForkSkinny lends itself to the construction of CTR-like modes that achieve 
BBB security and improve eÿciency of encryption-only for messages of any size. 
This is an additional feature of the ForkAE family which we may include in the 
next round. 

6 New Use Cases 

The new analysis referenced in Section 1.1 applies to SAEF without any need for 
modifcation, implying that ForkAE submission includes algorithms that cover 
the intersection between “lightweight” and “defense-in-depth” use cases, with 
the latter being a new use cases reported for ForkAE. We further illustrate the 
relevance of the use case below 

Nonce misuse in lightweight applications. Many lightweight applications can-
not use the most robust HW (due to cost constraints), while being exposed to 
physical attackers, making it easy for attackers to artifcially amplify sources of 
accidental nonce misuse. 

Blockwise encryption for external fash. When embedded platforms receive 
a large amount of data (such as a new frmware image), this has to be stored 
(at least temporarily) in the cheap but vulnerable external fash memory, simply 
because the data does not ft anywhere else. When encrypting such data, plat-
form will have no choice but to encrypt on the fy, and write chiphertext blocks 
before all of the data is received, opening doors to blockwise adaptive attacks. 

7 Implementation aspects 

Software. In work to appear at CARDIS 2020, Deprez and coauthors make op-
timized software implementations of ForkAE (including ForkSkinny) on several 
platforms. Among other things, they show a decryption speed-up for implemen-
tations on low-end devices, and that SIMD hardware (e.g., x86 AVX or ARM 
Neon) can leverage multiple sources of parallelism in ForkSkinny. 
Hardware. In our 2019 LWC Workshop paper, we already highlighted several 
interesting implementation strategies of the ForkSkinny primitive. In addition to 

4 



8 

this, in his thesis Jowan Pittevils explored several speed-area trade-o˙s in the 
forkcipher. Among other things, he shows that forking can have very low impact 
on the implementation area (if necessary). More details can be found on the 
ForkAE website (www.esat.kuleuven.be/cosic/forkae). 

Conclusion 

The recent result summarized in this update document have revealed more of the 
true potential of the NIST LWC second round candidate ForkAE. Third party 
cryptanalysis, and our public challenge to break the novel ForkSkinny primitive 
have not revealed any unexpected weakness; on the contrary, they confrm the 
results of our own investigation. The new implementation results show the versa-
tility and competitiveness of ForkAE, which can be eÿciently implemented with 
various implementation trade-o˙s in SW and HW. The new security proofs show 
that the ForkAE family also gives much stronger guarantees than claimed previ-
ously, making it a candidate that covers “short-message”, “general lightweight” 
and “defense in depth” use cases, and most importantly their intersection. We 
believe that this makes ForkAE a strong submission that can cater to the needs 
and constraints of real-world applications, while at the same time providing ro-
bust security. 

5 

www.esat.kuleuven.be/cosic/forkae

	New proofs/arguments supporting security claims
	OAE security of SAEF

	Third-party Analysis of ForkSkinny and ForkAE
	Comments on the Security of Forkcipher
	Related Cryptanalysis Results
	Planned tweak proposals
	New Use Cases
	Implementation aspects
	Conclusion

