
DryGASCON status update 
NIST LWC round 2 candidate 

Sébastien Riou 

Tiempo S.A.S., France, sebastien.riou@tiempo-secure.com 

Abstract. This paper gives a status update on DryGASCON submission to NIST’s 
LWC standardization process. 
Keywords: AEAD · Side Channels · Fault attacks · Leakage resilience 

1 Clarifcation on AEAD instance names 
DryGASCON AEAD has an unusual feature: it supports 3 key sizes (aka “profles”) for 
each security level. This has led to some confusion, this section introduce names for each 
variant described in the submission document. 

The di˙erences between the profles are explained in page 7 of the round 2 submission 
document. 

Table 1: DryGASCON AEAD named instances 
Security level in bits Key size in bytes Instance name Profle 

16 DryGASCON128k16 Small 
128 32 DryGASCON128k32 Fast 

56 DryGASCON128k56 Full 
32 DryGASCON256k32 Small 

256 48 DryGASCON256k48 Fast 
88 DryGASCON256k88 Full 

2 Implementations 
2.1 Software implementations 
We use the names reported in the result page of the benchmark hosted at lwc.las3.de. We 
limit the list to the most eÿcient implementations. 

2.1.1 rhys 

The implementation is done in C99. When compiling for Microchip AVR CPUs, the 
GASCON primitive is implemented in assembly. This implementation is the fastest on 
AVR CPU. link: Authors’ repository 

Supported instances: 

• DryGASCON128k16 

• DryGASCON256k32 

• DryGASCON128 hash 

• DryGASCON256 hash 

mailto:sebastien.riou@tiempo-secure.com
https://lwc.las3.de
https://github.com/rweather/lightweight-crypto/tree/master/src/individual/DryGASCON


2 DryGASCON status update 

2.1.2 add_arm_cortex-m 

This implementation is done in C99, it targets little endian CPUs. When compiling for 
ARM Cortex-M CPUs, the F and G primitives are implemented in assembly. link: las3.de 
submitted package 

Supported instances: 

• DryGASCON128k16 

• DryGASCON128k32 

• DryGASCON128k56 

• DryGASCON128 hash 

Remark 1. In future submission packages this implementation will be renamed “opt_arm_cortex-
m”. 

This implementation has been submitted for inclusion in Rhys Weatherley’s benchmark. 
(see this pull request). At the time of writing this has need been done so we present here 
our measurement using that benchmark framework: 

Table 2: rhys vs add_arm_cortex-m on STM32F411RE (ChaCha-poly unit) 
implementation variant encrypt 16 bytes encrypt 128 bytes 

rhys DryGASCON128k16 0.35x 0.19x 

add_arm_cortex-m pure C 
DryGASCON128k16 
DryGASCON128k32 

0.54x 
0.55x 

0.31x 
0.31x 

DryGASCON128k56 0.55x 0.31x 
DryGASCON128k16 0.98x 0.58x 

add_arm_cortex-m with asm DryGASCON128k32 
DryGASCON128k56 

1.00x 
1.01x 

0.58x 
0.58x 

Remark 2. The fgures are lower than in the online benchmark because the benchmarking 
platform is di˙erent. Online benchmark use a device based on ARM-Cortex-M3 CPU, here 
we use the STM32F411RE which is based on ARM-Cortex-M4 CPU. This seems to give 
an advantage to ChaCha-poly cipher and therefore lowers the score of all benchmarked 
ciphers. 

2.1.3 le32 

This implementation is done in C99, it targets little endian CPUs. All instances are 
supported. link: Authors’ repository 

2.1.4 Side channel protection 

As DryGASCON provides side channel and fault protection at the algorithmic level, none 
of the implementation includes expensive countermeasures such as masking. Nevertheless 
not all implementation are equal with respect to side channel attacks. For example, the C 
reference implementation manipulates all values byte by byte to be independant of system 
endianness. 

We expect all implementations discussed in this document to be protected against 
side channel attacks. To study side channel attacks on DryGASCON, we recommend to 
target the add_arm_cortex-m implementation. This implementation contains the full 
F primitive as assembly code. This avoids to depend on compiler version and parameters. 

https://lab.las3.de/gitlab/lwc/candidates/tree/master/drygascon/Implementations/crypto_aead/drygascon128/add_arm_cortex-m
https://lab.las3.de/gitlab/lwc/candidates/tree/master/drygascon/Implementations/crypto_aead/drygascon128/add_arm_cortex-m
https://rweather.github.io/lightweight-crypto/performance.html
https://github.com/rweather/lightweight-crypto/pull/2
https://github.com/sebastien-riou/DryGASCON/tree/master/Implementations/crypto_aead/drygascon128/le32


3 Sébastien Riou 

2.2 Hardware implementations 
2.2.1 Full hardware implementation 

This implementation is compliant to the LWC hardware API. It has been submitted to 
both the FPGA and ASIC benchmarks, we do not have the results yet. link: GitHub 
repository 

2.2.2 Accelerator for microcontrollers 

In microcontrollers, it is popular to implement only core primitives in hardware and let the 
software handle the higher levels of algorithms. For DryGASCON, that means supporting 
F and G in hardware and let software manage key setup, domain separators, the number 
of rounds and so on. This strikes a trade o˙ between performances, area and development 
e˙ort. It also provides fexibility, allowing to use the hardware for future algorithm which 
would rely on the same primitives. 

The accelerator connects as a standard slave on APB3 bus. It is implemented as a 
single fle, easing integration. 

link: GitHub repository 
Remark 3. FPGA synthesis results are given in the submission document in section “13.1 
Hardware implementations”. 

2.2.3 Side channel protection 

As DryGASCON provides side channel and fault protection at the algorithmic level, none 
of the implementation includes expensive countermeasures such as masking. 

2.3 Python implementation 
The package drysponge contains CLI programs and expose an API to compute all Dry-
GASCON v1 variants. It allows to print out intermediate values. 

3 Targeted use cases 
3.1 Secure element integrated in SOC 
Advanced technology nodes such as 16nm and below do not have on-chip NVM. More 
precisely, they lack “multiple times programable, non volatile memory” or MTP-NVM 
(EEPROM, fash and MRAM are MTP-NVMs, fuse and ROM are not). This is a 
problem when a SOC integrates a secure element (aka secure enclave, HSM, root of 
trust...). Typically a secure element is integrated in a SOC to handle payments or strong 
authentication (in order to support billing, like in the case of SIM applications). Those 
applications requires some amount of MTP-NVM, typical range is between 128KB (low 
end payment) to 2MB (high end SIM). Since that type of memory is not available on-chip, 
integrated secure elements use an external one (typically a QPSI fash). Since the data 
in a QSPI fash is easily accessible, the secure element use an internally generated secret 
key and an AEAD algorithm to guarantee confdentiality and integrity. Typically the 
memory is managed by chunks maching the internal cache line size, usually between 32 
to 256 bytes. Typically there is at most one block of associated data. Last but not least, 
some industry groups requires 256 bit security. The AEAD or at least the core primitive 
is typically implemented in hardware. 

In this use case, the AEAD is fully exposed to side channel and fault injection attacks. 
The attacker may control the encryption input data since it can be some data provided 

https://cryptography.gmu.edu/athena/index.php?id=LWC
https://github.com/sebastien-riou/DryGASCON-LWC-API
https://github.com/sebastien-riou/DryGASCON-LWC-API
https://github.com/sebastien-riou/DryGASCON/blob/master/Implementations/crypto_aead/drygascon128/add_verilog/drygascon128_1round_cycle/drygascon128_ACC_PIPE_MIX_SHIFT_REG.v
https://drygascon.readthedocs.io/en/latest/


4 DryGASCON status update 

externally. The attacker is able to replay decryptions unlimited number of times and may 
be able to observe decryption output in some cases. 

Due to the risk of fault attack, AES-CCM is prefered over AES-GCM (GCM tag 
can be correct even though the decryption result is wrong since the tag is computed 
from the ciphertext). Using AES-OCB would provide a speed up however the patent 
situation is a show stopper for hardware IP providers and it is not currently in the list 
of “NIST approved” algorithm, so it would not be accepted in the market (some industry 
groups explicitely require the use of “NIST approved” algorithms). Even if those show 
stoppers would be removed, AES-OCB still requires side channel protection of the AES. 
This is a major drawback since side channel protection is expensive (development e˙ort, 
risk of vulnerability revealed only on silicon, higher area and power consumption, lower 
performances...). 

DryGASCON would bring a signifcant improvement over any AES based AEAD 
for this use case. We would recommend in particular a hardware implementation of 
DryGASCON128k32 or DryGASCON256k48. The resulting implementation is much more 
eÿcient overall than an AES fully protected against both side channel and fault attacks 
which also requires a signifcant amount of random numbers. The implementation and 
security validation e˙orts are also greatly reduced as the side channel and fault attack 
protection comes for free with DryGASCON. 

4 DryGASCON vs current NIST standards 
Section 3.1 discussed already the advantages of DryGASCON AEAD versus AES-GCM, 
AES-CCM and any other AES based AEAD standardized so far. The performance 
advantage is even more signifcant when considering software implementation on MCUs if 
they have to be protected against side channel and/or fault attacks. lwc.las3.de results 
show that DryGASCON128 is faster than unprotected AES-GCM on ARM-Cortex-M 
CPUs. 

SHA2 is even harder to protect against side channel attacks than AES. This is due to 
its ‘ARX’ nature. This is well explained in Why Keccak is not ARX. This is unfortunate 
because in the context of HMAC side channel attacks are applicable. 

SHA3 is easier to protect against side channel attacks than SHA2 and AES. It requires 
nevertheless careful implementation of countermeasures which are not easy to verify 
by simulation. In the context of implementations on ASIC, side channel weaknesses are 
typically found after the ASIC is produced. This means that having side channel protection 
at implementation level is a huge risk. Often the only way to fx the weakness is to modify 
the design and launch a respin of the chip. 

DryGASCON solve this problem by providing protection at algorithmic level. ASIC 
designers only have to ensure correct functionality, something which is trivially done using 
simulation. 

Last but not least, DryGASCON, even in its 256 bit version, is signifcantly smaller 
than unprotected SHA3 (SHA3 state size is almost twice as large). 

5 Tweaks 
5.1 XOF mode 
DryGASCON v1 includes a hash mode but not a XOF mode. This is something we wish 
to add in the round 3 submission if we have this opportunity. In this mode, DryGASCON 
performances shall be very close to ASCON performances as it would involve only the G 
function. 

https://lwc.las3.de
https://keccak.team/2017/not_arx.html


 
 

 

 

 

 
 

 

 

5 Sébastien Riou 

5.2 KSneq32v2: uniformization of key profles 
For each security level we defned three profles. The full profle match the natural key size 
of the primitive. The fast profle reduce the key size as much as possible while keeping 
the key setup fast and straightforward. The small profle reduce the key size to the strict 
minimum such that the key size match the security level. The small profle allows to use 
DryGASCON as a drop in replacement of most other AEAD, including the ones based on 
AES128 and AES256. One inevitable drawback of the small profle is that such a small 
key is more vulnerable to side channel attacks during the key loading phase. For that 
reason, we recommend to use the fast profle. For cases in which it is mandatory to stick to 
minimum key sizes, the small profle as specifed in “DryGASCON v1” is fne however it is 
somewhat complex and it is not compatible with the fast profle. That means that all users 
have to use the same key profle for a given application. This is workable but it would 
be much better if the choice of the key profle could be considered as an implementation 
choice rather than as a choice of algorithm. This would allow a server to use compact 128 
bits keys while connected objects could use fast 256 bits keys. 

The tweak describe here allows to map all keys from the small key profle to keys in 
the fast and full profle, therefore achieving ‘upward’ interoperability. 

Algorithm 1 KSneq32v2 
Input: K secret key, width 2 [minwidth, fastwidth, fullwidth] 
Output: (c, x) 

1: if width == fullwidth then 
2: c Sel(K, c.width, 0) 
3: x K ˛ c.width 
4: else 
5: kwords minwidth/32 
6: for i 2 0, · · · , c.width/32 do 
7: Sel(c, 32, i) Sel(K, 32, i mod kwords) 
8: end for 
9: if width == fastwidth then 

10: x K ˛ minwidth 
11: else 
12: x GASCON(c, 0) 
13: x Sel(x, x.width, 0) 
14: end if 
15: end if 
16: match = 0 
17: for i 2 0, · · · , xwords − 1 do 
18: for j 2 i + 1, · · · , xwords do 
19: if Sel(x, 32, i) == Sel(x, 32, j) then 
20: match = 1 
21: end if 
22: end for 
23: end for 
24: if match == 1 then 
25: mask 0xFFFFFFFF ˝ log2(xwords) 
26: for i 2 0, · · · , xwords do 
27: Sel(x, 32, i) (Sel(x, 32, i) & mask) | i 
28: end for 
29: end if 
30: return (c, x) 



6 DryGASCON status update 

Remark 4. The test vectors for the full and fast profles remain unchanged. 
Remark 5. The small profle is simplifed and can be implemented in constant time. 
Remark 6. In the small profle, this version injects 2 known bits into each 32 bit word of 
x. This may reduce the level of protection against side channel attack. In practice this 
injection of known bits happens with probablity 2−30, meaning that it is rather unlikely 
even for feet of millions of connected objects. We do not see this as a problem since we 
recommend to use the other profles in applications which target side channel protection. 
Remark 7. In the full and fast profles, DryGASCON v1 accept only keys with special 
format for the 128 msb. This tweak allows to accept any key by ‘fxing up’ the keys that 
do not have the required property. Applications which requires protection against side 
channel shall avoid using such ‘fxed up’ keys. This is trivial to do, one has to check that 
the ‘match’ variable is 0 (see lines 16 to 23). 

5.3 Allow precomputation over associated data 
DryGASCON v1 enforce to process the NONCE before the associated data. Swapping the 
order of computation would allow precomputation over the associated data, something 
that may be useful in some applications. This would involve removing support for the 
“static data” feature to avoid a collision of domain separators. This is not a problem since 
that feature would be somewhat redundant with what this change provides. 

6 The case for merging with ASCON and ISAP 
ASCON is an interesting candidates as it combines good performances, ease of masking 
and reasonable hardware ressources. In addition, its primitive is reused in ISAP which 
brings algorithmic security against DPA, at the cost of much slower performance though. 

Comparison with DryGASCON: 

Table 3: DryGASCON vs ASCON vs ISAP 
DryGASCON128 Ascon-128 ISAP-A-128a 

Performances without countermeasures* Medium Fastest Slowest 
Performances with countermeasures* Fastest Slowest Medium 
Support 256 bit security level Yes No No 
Support Hash 
TAG protects plain-text 

Yes 
Yes 

Yes 
No 

No 
No 

Remark 8. The stars indicate lines in which the ranking is debatable. It refects only our 
expectations in the context of real world use cases. 
Remark 9. The “TAG protects plain-text” property is important when considering fault 
attacks. Without it, implementers have to add costly countermeasures for decryption. 

If ASCON-128 is standardized, we hope ISAP-A-128a will be too. This would allow 
semiconductor manufacturers to support both with a single hardware accelerator. A MCU 
with such accelerator would therefore appeal to applications with need of performance 
without physical security AND to applications with need of physical security. 

Our expectation is that DryGASCON is safer and signifcantly faster than ISAP-A-128a, 
unfortunately DryGASCON does not use exactly the same permutation as ASCON. Dry-
GASCON is built on a tweaked version of the ASCON permutation we called GASCONC5. 
The tweaks have been introduced to meet requirements of the drysponge contruction and 
have the nice side e˙ect to speed up execution of software implementation on 32 bits CPUs. 
Much of the cryptanalysis done on ASCON permutation is applicable to GASCONC5. It 



7 Sébastien Riou 

follows that the GASCONC5 permutation can be safely used with the ASCON AEAD, 
Hash and XOF modes. We will refer to this combination simply as GASCON. Similarly 
GASCONC5 permutation can be safely used with the ISAP AEAD, we will refer to this 
combination simply as GISAP. 

GASCON and GISAP would be faster than ASCON and ISAP on 32 bit CPUs because 
the GASCONC5 permutation is using 32 bit friendly “bit interleaved rotations” instead 
of the regular 64 bit rotations. On little endian CPUs (which seems to be the trend in 
embedded systems), another speed up is provided as GASCONC5 can take advantage of 
the memory layout. Proof of concept implementations benchmarked using SUPERCOP 
confrm this. We also did another proof of concept based on the ASCON implementation 
from https://github.com/rweather/lightweight-crypto/. The results in table 4 show a 
signifcant speed up in favor of GASCON for all variant of ASCON. 

Table 4: GASCON vs ASCON on STM32F411RE (ChaCha-poly unit) 
encrypt 16 bytes encrypt 128 bytes 

ASCON-128 1.07x 0.84x 
GASCON-128 1.29x 0.92x 
ASCON-128a 1.14x 1.08x 
GASCON-128a 1.46x 1.25x 
ASCON-80pq 1.06x 0.84x 
GASCON-80pq 1.26x 0.92x 

Standardizing DryGASCON, GASCON and GISAP would allow semiconductor man-
ufacturers to support the three modes with a single hardware accelerator. Users would 
typically use GASCON or DryGASCON depending if they need physical security or not. 
The GISAP mode being available as a backup solution in the event of a devastating attack 
appearing on DryGASCON. 
Remark 10. Our proposal for GASCON and GISAP is limited to the 128 bit security 
level. An adaptation to the 256 bit security level is certainly possible but would involve 
careful analysis to select parameters like the number of rounds. The absence of attacks on 
DryGASCON256 with a given number of round is not implying the absence of attacks on 
what would be named GASCON256 because the drysponge construction is shielding the 
permutation of most attacks. 

https://github.com/sebastien-riou/lightweight-crypto/blob/master/src/combined/gascon128.c
https://github.com/rweather/lightweight-crypto/

	Clarification on AEAD instance names
	Implementations
	Software implementations
	Hardware implementations
	Python implementation

	Targeted use cases
	Secure element integrated in SOC

	DryGASCON vs current NIST standards
	Tweaks
	XOF mode
	KSneq32v2: uniformization of key profiles
	Allow precomputation over associated data

	The case for merging with ASCON and ISAP

