
- DRAFT -

 1

DRAFT Submission Requirements and Evaluation Criteria
for the Lightweight Cryptography Standardization Process

Table of contents

1 Introduction ... 2 1

2 Requirements of Submission Packages .. 3 2

2.1 Cover Sheet ... 3 3

2.2 Algorithm Specification and Supporting Documentation... 3 4

2.3 Source Code and Test Vectors .. 4 5

2.4 Intellectual Property Statements / Agreements / Disclosures 4 6

2.4.1 Statement by Each Submitter .. 5 7

2.4.2 Statement by Patent (and Patent Application) Owner(s) .. 6 8

2.4.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s) 7 9

3 Minimum Acceptability Requirements ... 7 10

3.1 AEAD Requirements .. 8 11

3.2 Hash Function Requirements .. 8 12

3.3 Additional Requirements for Submissions with AEAD and Hashing 9 13

3.4 Design Requirements .. 9 14

3.5 Implementation Requirements .. 10 15

3.5.1 AEAD ... 10 16

3.5.2 Hash Function ... 13 17

4 Evaluation Criteria .. 14 18

4.1 Security ... 14 19

4.1.1 Security strength ... 14 20

4.1.2 Side channel resistance ... 14 21

4.2 Cost ... 14 22

4.3 Performance .. 15 23

4.4 Third-party analysis .. 15 24

4.5 Suitability for hardware and software implementations ... 15 25

5 Evaluation Process .. 15 26

27

- DRAFT -

 2

1 Introduction 28

The deployment of small computing devices such as RFID tags, industrial controllers, sensor nodes 29
and smart cards is becoming much more common. The shift from desktop computers to small 30
devices brings a wide range of new security and privacy concerns. It is challenging to apply 31
conventional standards to small devices. In many conventional cryptographic standards, the 32
tradeoff between security, performance and resource requirements was optimized for desktop and 33
server environments, and this makes them difficult or impossible to implement in resource-34
constrained devices. When they can be implemented, their performance may not be acceptable. 35

Lightweight cryptography is a subfield of cryptography that aims to provide solutions tailored for 36
resource-constrained devices. There has been a significant amount of work done by the academic 37
community related to lightweight cryptography; this includes efficient implementations of 38
conventional cryptography standards, and the design and analysis of new lightweight primitives 39
and protocols. 40

In 2013, NIST initiated a lightweight cryptography project to study the performance of the current 41
NIST-approved cryptographic standards on constrained devices and to understand the need for 42
dedicated lightweight cryptography standards, and if the need is identified, to design a transparent 43
process for standardization. In 2015, NIST held the first Lightweight Cryptography Workshop in 44
Gaithersburg, MD, to get public feedback on the constraints and limitations of the target devices, 45
and requirements and characteristics of real-world applications of lightweight cryptography. In 46
March 2017, NIST published NISTIR 8114 Report on Lightweight Cryptography and announced 47
that it has decided to create a portfolio of lightweight algorithms through an open process. In April 48
2017, NIST published the draft whitepaper Profiles for the Lightweight Cryptography 49
Standardization Process to solicit feedback on proposed functionalities for initial inclusion in the 50
portfolio. 51

In this call for submission document, the submission requirements and evaluation process for the 52
lightweight cryptography standardization process are explained. 53

Responses to this draft will inform the final timeline. NIST plans to require that submission 54
packages must be received by NIST by the submission deadline, which will be approximately six 55
months after the final call for submissions is published. Submission packages that are sent to NIST 56
by an earlier date, approximately four months after publication of the final call for submissions, 57
will be reviewed for completeness by NIST; the submitters will be notified of any deficiencies 58
within a month, allowing time for deficient packages to be amended by the submission deadline. 59
After the submission deadline, NIST will publish all first-round submissions received, except that 60
NIST may eliminate submissions that do not meet requirements stated in this call. No changes to 61
packages will be permitted after the submission deadline, except at specified times during the 62
evaluation phase. 63

Due to the specific requirements of the intellectual property statements as specified in Section 2.4, 64
e-mail submissions shall not be accepted for these statements. The statements specified in Section 65
2.4 must be mailed to Dr. Kerry McKay, Information Technology Laboratory, Attention: 66
Lightweight Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop 8930, National 67

- DRAFT -

 3

Institute of Standards and Technology, Gaithersburg, MD 20899-8930. The remainder of the 68
submission package can either be mailed with the intellectual property statements, or sent as e-69
mail to: lightweight-crypto@nist.gov. This submission e-mail shall have subject line precisely 70
“round 1 submission: NAME” where NAME is replaced by the name of the submission. For 71
technical inquiries, send e-mail to lightweight-crypto@nist.gov. To facilitate the electronic 72
distribution of submissions to all interested parties, copies of all written materials must also be 73
submitted in electronic form in the PDF file format. 74

NIST welcomes both domestic and international submissions; however, in order to facilitate 75
analysis and evaluation, it is required that the submission packages be in English. This requirement 76
includes the cover sheet, algorithm specification and supporting documentation, source code 77
comments, and intellectual property information. 78

“Complete and proper” submission packages will be posted at 79
https://csrc.nist.gov/Projects/Lightweight-Cryptography for public review. To be considered as a 80
“complete and proper” submission, packages shall satisfy the requirements specified in Section 2 81
and Section 3. 82

2 Requirements of Submission Packages 83

To be considered as a “complete” submission, packages shall contain the following: 84

• Cover sheet 85
• Algorithm specifications and supporting documentation 86
• Source code and test vectors 87
• Intellectual property statements / agreements / disclosures 88

These requirements are detailed below. 89

2.1 Cover Sheet 90

The cover sheet of a submission package shall contain the following information: 91

• Name of the submission. 92
• Name(s) of the submitter(s). Corresponding submitter’s name, e-mail address, telephone, 93

organization, and postal address.  94
• (optional) Backup point of contact (with telephone, postal address, and e-mail address). 95

2.2 Algorithm Specification and Supporting Documentation 96

A complete written specification of the algorithms shall be included, consisting of all necessary 97
mathematical operations, equations, tables, and diagrams that are needed to implement the 98
algorithms. The document shall also include a design rationale, and an explanation for all the 99
important design decisions (with respect to targeted constrained devices) that have been made. The 100
submitter shall explain the provenance of any constants or tables used in the algorithm. 101

mailto:lightweight-crypto@nist.gov
mailto:lightweight-crypto@nist.gov
https://csrc.nist.gov/Projects/Lightweight-Cryptography

- DRAFT -

 4

Each submission package shall describe a single algorithm, or a collection of algorithms, that 102
implements the authenticated encryption with associated data (AEAD) functionality, and 103
optionally also implements the hashing functionality. 104

For algorithms that have tunable parameters, the submission document shall specify concrete 105
values for these parameters. The submission may specify several parameter sets that allow the 106
selection of a range of possible security/performance tradeoffs. The submitter shall provide an 107
analysis of how the security and performance of the algorithms depend on these parameters. 108

The submission package shall include a statement of the expected security strength of each variant 109
of the submission, along with a supporting rationale. The submission package shall include a 110
statement that summarizes the known cryptanalytic attacks on the variants of the submission, and 111
provide estimates of the complexity of these attacks. 112

The submission of algorithms that are not well-understood is discouraged. Submissions are 113
expected to have third-party analysis of the design, or leverage existing standards or heavily-114
analyzed components as part of the design. The submitter shall provide a list of references to any 115
published materials describing or analyzing the security of the submitted algorithm or 116
cryptosystem. The submission package shall include a statement that lists and describes the 117
advantages and limitations of the cryptosystem in terms of security, performance, and implementation 118
costs (e.g., estimates for required RAM, ROM, or gate equivalents). 119

2.3 Source Code and Test Vectors 120

A reference implementation shall be provided with the submission package. The goal of the 121
reference implementation is to promote the understanding of how the submitted algorithm may be 122
implemented and also allow the verification of the optimized implementations. It shall not contain 123
any optimizations that will make it more difficult to understand the algorithm's behavior. The 124
source code shall be accompanied by a set of test vectors that will be generated by the submitter. 125
Information on how the source code and the test vectors should be compiled together to form the 126
source code package can be found in Section 3.5. 127

2.4 Intellectual Property Statements / Agreements / Disclosures 128

Each submitted algorithm, together with each submitted reference implementation and optimized 129
implementation (if any), must be made freely available for public review and evaluation purposes 130
worldwide during the standardization period. 131

Given the nature and use of cryptographic algorithms, NIST’s goals include identifying technically 132
robust algorithms and facilitating their widespread adoption. NIST does not object in principle to 133
algorithms or implementations which may require the use of a patent claim, where technical 134
reasons justify this approach, but will consider any factors which could hinder adoption in the 135
evaluation process. 136

NIST has observed that royalty-free availability of cryptosystems and implementations has 137
facilitated adoption of cryptographic standards in the past. For that reason, NIST believes it is 138
critical that this process leads to cryptographic standards that can be freely implemented in security 139

- DRAFT -

 5

technologies and products. As part of its evaluation of a cryptographic algorithm for 140
standardization, NIST will consider assurances made in the statements by the submitter(s) and any 141
patent owner(s), with a strong preference for submissions as to which there are commitments to 142
license, without compensation, under reasonable terms and conditions that are demonstrably free 143
of unfair discrimination. 144

The following signed statements will be required for a submission to be considered complete: 145

1) Statement by each submitter, 146
2) Statement by patent (and patent application) owner(s) (if applicable), and 147
3) Statement by reference/optimized implementations' owner(s). 148

Note that for the last two statements, separate statements must be completed if multiple individuals 149
are involved. 150

2.4.1 Statement by Each Submitter 151

I, _____ (print submitter’s full name), of _____(print full postal address), do hereby declare that 152
the cryptosystem, reference implementation, or optimized implementations that I have submitted, 153
known as ______ (print name of cryptosystem), is my own original work, or if submitted jointly 154
with others, is the original work of the joint submitters. 155

I further declare that (check at least one of the following): 156

� I do not hold and do not intend to hold any patent or patent application with a claim which 157
may cover the cryptosystem, reference implementation, or optimized implementations that I 158
have submitted, known as ____ (print name of cryptosystem); 159

� to the best of my knowledge, the practice of the cryptosystem, reference implementation, or 160
optimized implementations that I have submitted, known as ____ (print name of cryptosystem), 161
may be covered by the following U.S. and/or foreign patents: _____ (describe and enumerate 162
or state “none” if applicable)_____ ; 163

� I do hereby declare that, to the best of my knowledge, the following pending U.S. and/or foreign 164
patent applications may cover the practice of my submitted cryptosystem, reference 165
implementation or optimized implementations: _____ (describe and enumerate or state 166
“none” if applicable) ______. 167

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public 168
for review and will be evaluated by NIST, and that it might not be selected for standardization by 169
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S. 170
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed 171
all patents and patent applications which may cover my cryptosystem, reference implementation 172
or optimized implementations. I also acknowledge and agree that the U.S. Government may, 173
during the public review and the evaluation process, and, if my submitted cryptosystem is selected 174
for standardization, during the lifetime of the standard, modify my submitted cryptosystem’s 175
specifications (e.g., to protect against a newly discovered vulnerability). 176

- DRAFT -

 6

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the 177
draft standards for public comment I do hereby agree to provide the statements required by 178
Sections 2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the 179
practice of my cryptosystem, reference implementation or optimized implementations and the right 180
to use such implementations for the purposes of the public review and evaluation process. 181

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my 182
cryptosystem from consideration for standardization. If my cryptosystem (or the derived 183
cryptosystem) is removed from consideration for standardization or withdrawn from consideration 184
by all submitter(s) and owner(s), I understand that rights granted and assurances made under 185
Sections 2.4.1, 2.4.2 and 2.4.3, including use rights of the reference and optimized 186
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 187

Signed: 188

Title: 189

Date: 190

Place: 191

2.4.2 Statement by Patent (and Patent Application) Owner(s) 192

If there are any patents (or patent applications) identified by the submitter, including those held by 193
the submitter, the following statement must be signed by each and every owner, or each owner’s 194
authorized representative, of each patent and patent application identified. 195

I, _____ (print full name), of _____(print full postal address), am the owner or authorized 196
representative of the owner (print full name, if different than the signer) of the following patent(s) 197
and/or patent application(s): ______ (enumerate) , and do hereby commit and agree to grant to 198
any interested party on a worldwide basis, if the cryptosystem known as _____(print name of 199
cryptosystem) is selected for standardization, in consideration of its evaluation and selection by 200
NIST, a non-exclusive license for the purpose of implementing the standard (check one): 201

� without compensation and under reasonable terms and conditions that are demonstrably free 202
of any unfair discrimination, OR 203

� under reasonable terms and conditions that are demonstrably free of any unfair 204
discrimination. 205

I further do hereby commit and agree to license such party on the same basis with respect to any 206
other patent application or patent hereafter granted to me, or owned or controlled by me, that is 207
or may be necessary for the purpose of implementing the standard. 208

I further do hereby commit and agree that I will include, in any documents transferring ownership 209
of each patent and patent application, provisions to ensure that the commitments and assurances 210
made by me are binding on the transferee and any future transferee. 211

- DRAFT -

 7

I further do hereby commit and agree that these commitments and assurances are intended by me 212
to be binding on successors-in-interest of each patent and patent application, regardless of 213
whether such provisions are included in the relevant transfer documents. 214

I further do hereby grant to the U.S. Government, during the public review and the evaluation 215
process, and during the lifetime of the standard, a nonexclusive, nontransferable, irrevocable, 216
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s 217
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into the 218
standard. 219

Signed: 220

Title: 221

Date: 222

Place: 223

2.4.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s) 224

The following must also be included: 225

I, _____ (print full name), _______(print full postal address), am the owner or authorized 226
representative of the owner (print full name, if different than the signer) of the submitted reference 227
implementation, optimized and additional implementations and hereby grant the U.S. Government 228
and any interested party the right to reproduce, prepare derivative works based upon, distribute 229
copies of, and display such implementations for the purposes of the lightweight cryptography 230
public review and evaluation process, and implementation if the corresponding cryptosystem is 231
selected for standardization and as a standard, notwithstanding that the implementations may be 232
copyrighted or copyrightable. 233

Signed: 234

Title: 235

Date: 236

Place: 237

3 Minimum Acceptability Requirements 238

To be considered as a “proper” submission, packages shall satisfy the requirements stated in this 239
section. The following requirements have some similarities with the call of Competition for 240
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) 241
(https://competitions.cr.yp.to/caesar-call.html) and eBACS: ECRYPT Benchmarking of 242
Cryptographic Systems (https://bench.cr.yp.to/). This has been done to facilitate the submission of 243
algorithms, and the benchmarks of algorithm performance. 244

https://bench.cr.yp.to/

- DRAFT -

 8

3.1 AEAD Requirements 245

An authenticated encryption with associated data (AEAD) algorithm is a function with four byte-246
string inputs and one byte-string output. The four inputs are a variable-length plaintext, variable-247
length associated data, a fixed-length nonce, and a fixed-length key. The output is a variable-248
length ciphertext. Authenticated decryption, also known as decryption-verification, shall be 249
supported: it shall be possible to recover the plaintext from a valid ciphertext (i.e., a ciphertext 250
that corresponds to the plaintext for a given associated data, nonce, and key), given associated 251
data, nonce and key. 252

From a security point of view, an AEAD algorithm should ensure both the confidentiality of the 253
plaintexts (under adaptive chosen-plaintext attacks) and the integrity of the ciphertexts (under 254
adaptive forgery attempts). AEAD algorithms are expected to maintain security as long as the 255
nonce is unique (not repeated under the same key). Any security loss when the nonce is not unique 256
shall be documented, and algorithms that do not lose all security with repeated nonces may 257
advertise this as a feature. 258

The submitters are allowed to submit a family of AEAD algorithms, where members of the family 259
may vary in external parameters (e.g., key length, nonce length), or in internal parameters (e.g., 260
number of rounds, or state size). The family shall include at most 10 members. The following 261
requirements apply to all members of the family. 262

An AEAD algorithm shall not specify key lengths that are smaller than 128 bits. Cryptanalytic 263
attacks on the AEAD algorithm shall require at least 2112 computations on a classical computer in 264
a single-key setting. If a key size larger than 128 bits is supported, it is recommended that at least 265
one recommended parameter set has a key size of 256 bits, and that its resistance against 266
cryptanalytical attacks is at least 2224 computations on a classical computer in a single-key setting. 267

AEAD algorithms shall accept all input byte strings that satisfy the input length requirements. 268
Submissions shall include justification for any length limits. 269

The family shall include one primary member that has a key length of 128 bits, a nonce length of 270
96 bits, a tag length of 64 bits. The limits on the input sizes (plaintext, associated data, and the 271
amount of data that can be processed under one key) for this member shall not be smaller than 272
250-1 bytes. 273

3.2 Hash Function Requirements 274

A hash function is a function with one byte-string input and one byte-string output. The input is a 275
variable-length message. The output is a fixed-length hash value. 276

It should be computationally infeasible to find a collision or a (second) preimage for this hash 277
function. The hash function should also be resistant against length extension attacks. For example, 278
if part of the message is a secret key that is unknown to the attacker, it should be infeasible for this 279
attacker to construct a hash value corresponding to a different message that contains the same 280
secret key. In several practical applications, hash functions may need to satisfy other security 281

- DRAFT -

 9

properties as well, such as retaining some level of security when the output is truncated. Hash 282
function submissions should describe any additional security properties that are provided. 283

The submitters are allowed to submit a family of hash functions, where members of the family 284
may vary in external parameters (e.g., maximum message length, output hash size), or in internal 285
parameters (e.g., number of rounds, or state size). The family shall include at most 10 members. 286
The following requirements apply to all members of the family. 287

Cryptanalytic attacks on the hash function shall require at least 2112 computations on a classical 288
computer. The hash function shall not specify hash values that are smaller than 256 bits. 289

Hash functions shall accept all input byte strings that meet the specified maximum length of 290
messages. Submissions shall include justification for any length limits. 291

The family shall include one primary member that has a hash value length of 256 bits. The limit 292
on the message size for this member shall not be smaller than 250-1 bytes. 293

3.3 Additional Requirements for Submissions with AEAD and Hashing 294

This section provides additional requirements on the submissions that provide both AEAD and 295
hashing functionality. 296

Submissions shall state which design components the AEAD and hashing algorithms have in 297
common, and explain how these common components lead to a reduced implementation cost. 298

Submissions shall specify list of pairs of AEAD and hash function family members to be evaluated 299
jointly. This list is permitted to be as short as one recommendation. Primary member of the AEAD 300
family and primary member of the hash function family shall be paired together. This list shall 301
not be longer than ten recommendations. 302

3.4 Design Requirements 303

Submitted AEAD algorithms and optional hash function algorithms should perform significantly 304
better in constrained environments (hardware and embedded software platforms) compared to 305
current NIST standards. They should be optimized to be efficient for short messages (e.g., as short 306
as 8 bytes). Compact hardware implementations and embedded software implementations with 307
low RAM and ROM usage should be possible. The performance on ASIC and FPGA should 308
consider a wide range of standard cell libraries. The algorithms should be flexible to support 309
various implementation strategies (low energy, low power, low latency). The performance on 310
microcontrollers should consider a wide range of 8-bit, 16-bit and 32-bit microcontroller 311
architectures. For algorithms that have a key, the preprocessing of a key (in terms of computation 312
time and memory footprint) should be efficient. 313

The implementations of the AEAD algorithms and the optional hash function algorithms should 314
lend themselves to countermeasures against various side-channel attacks, including timing attacks, 315
simple and differential power analysis (SPA/DPA), and simple and differential electromagnetic 316
analysis (SEMA/DEMA). 317

- DRAFT -

 10

Designs may make tradeoffs between various performance requirements. A submission is allowed 318
to prioritize certain performance requirements over others. To satisfy the stringent limitations of 319
some constrained environments, it may not be possible to meet all performance requirements stated 320
in the previous paragraph. The submission document should, however, explain the bottlenecks that 321
were identified and the tradeoffs that were made. 322

3.5 Implementation Requirements1 323

Each submission shall be accompanied by a portable reference software implementation, in the C 324
language, to support public understanding of the algorithms, cryptanalysis, verification of 325
subsequent implementations, etc. An implementation shall be provided for all members of the 326
family, and shall compute exactly the functions specified in the submission. This reference 327
implementation is expected to be easy to understand, and should not include code that is solely 328
intended to optimize performance on certain platforms. For example, the reference implementation 329
shall not contain compiler intrinsics, platform-specific headers, or compiler-specific features. The 330
submission may also include optimized implementations that use the same API, or additional 331
implementations that highlight specific implementation features of the algorithms. There are no 332
restrictions on the API for the additional implementations. 333

The correctness of the reference implementation shall be verified on the NIST test vector 334
verification platform. This platform is an Intel x64-based system, running Ubuntu 16.04 (64-bit) 335
and the reference implementations shall be compiled with GCC 5.4.0 using the compiler flags: 336

-std=c99 -Wall -Wextra -Wshadow -fsanitize=address,undefined -O2 337

First, we will specify the API of the AEAD algorithm, and then the API of the hash function. 338

3.5.1 AEAD 339

A minimal reference implementation of a variant of an AEAD algorithm consists of two files: 340
api.h and encrypt.c. As an example, MyAEAD algorithm with 256-bit keys would consist of 341
the files: crypto_aead/myaead256v1/ref/api.h and crypto_aead/myaead256v1/ref/ 342
encrypt.c. There are three levels of directory names: 343

• The first-level directory name crypto_aead is the same for all AEAD algorithms. 344

• The second-level directory name is a lowercase version of the name of the algorithm, 345
including the version number and a family member identifier (if multiple family members 346
in submission). A reference implementation covering multiple family members must have 347
a second-level directory for each member. Dashes, dots, slashes, and other punctuation 348
marks are omitted; the directory name consists solely of digits (0123456789) and lowercase 349
ASCII letters (abcdefghijklmnopqrstuvwxyz). 350

1 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental

procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

- DRAFT -

 11

• The third-level directory name is ref for the reference implementation. Other 351
implementations of the same AEAD algorithm (with the same parameter set) use other 352
third-level directory names. Third-level directory names starting with add_ may be used 353
only for the additional implementations that highlight specific implementation features of 354
the algorithms, and are not expected to compile within the benchmarking framework. 355
These include software implementations that do not satisfy the API, as well as any 356
hardware implementations that may be included in the submission. 357

• For each of the implementations that satisfy the API, the NIST-provided genkat_aead.c 358
shall be used to generate the LWC_AEAD_KAT.txt test vector output file. The submitters 359
shall verify that the test vector output files are identical for all implementations in the 360
second-level directory, and shall provide one of the files as 361
crypto_aead/myaead256v1/LWC_AEAD_KAT.txt for the variant of the MyAEAD 362
algorithm with 256-bit keys in the aforementioned example. 363

The file api.h has five lines, each containing a definition needed by the benchmarking platform. 364
For example: 365

 #define CRYPTO_KEYBYTES 32 366
 #define CRYPTO_NSECBYTES 0 367
 #define CRYPTO_NPUBBYTES 12 368
 #define CRYPTO_ABYTES 16 369
 #define CRYPTO_NOOVERLAP 1 370
 371
This indicates that for this variant of the MyAEAD algorithm, the key is 32 bytes, the nonce is 12 372
bytes, and that the ciphertext is at most 16 bytes longer than the plaintext. (A typical AEAD 373
algorithm has a constant gap between plaintext length and ciphertext length, but the requirement 374
here is to have a constant limit on the gap.) The definition NSECBYTES shall always be set to zero. 375

The last definition CRYPTO_NOOVERLAP is an optional definition in SUPERCOP API and indicates 376
whether the implementation can handle overlapping input and output buffers. To ensure 377
compatibility with the SUPERCOP API, api.h file shall contain "#define CRYPTO_NOOVERLAP 378
1". Regardless of whether this flag is needed in the SUPERCOP framework, it clarifies how the 379
API is intended to be used; the implementation is not expected to handle overlapping input and 380
output buffers. (Note that if CRYPTO_NOOVERLAP is not defined, the SUPERCOP framework 381
assumes that inputs and outputs can overlap, and returns an error if this behavior is not supported.) 382

The file encrypt.c has the following structure: 383

 #include "crypto_aead.h" 384
 385
 int crypto_aead_encrypt(386
 unsigned char *c,unsigned long long *clen, 387
 const unsigned char *m,unsigned long long mlen, 388
 const unsigned char *ad,unsigned long long adlen, 389
 const unsigned char *nsec, 390
 const unsigned char *npub, 391
 const unsigned char *k 392

- DRAFT -

 12

) 393
 { 394
 ... 395
 ... the code for the cipher implementation goes here, 396
 ... generating a ciphertext c[0],c[1],...,c[*clen-1] 397
 ... from a plaintext m[0],m[1],...,m[mlen-1] 398
 ... and associated data ad[0],ad[1],...,ad[adlen-1] 399
 ... and nonce npub[0],npub[1],... 400
 ... and secret key k[0],k[1],... 401
 ... the implementation shall not use nsec 402
 ... 403
 return 0; 404
 } 405
 406
 int crypto_aead_decrypt(407
 unsigned char *m,unsigned long long *mlen, 408
 unsigned char *nsec, 409
 const unsigned char *c,unsigned long long clen, 410
 const unsigned char *ad,unsigned long long adlen, 411
 const unsigned char *npub, 412
 const unsigned char *k 413
) 414
 { 415
 ... 416
 ... the code for the AEAD implementation goes here, 417
 ... generating a plaintext m[0],m[1],...,m[*mlen-1] 418
 ... and secret message number nsec[0],nsec[1],... 419
 ... from a ciphertext c[0],c[1],...,c[clen-1] 420
 ... and associated data ad[0],ad[1],...,ad[adlen-1] 421
 ... and nonce number npub[0],npub[1],... 422
 ... and secret key k[0],k[1],... 423
 ... 424
 return 0; 425
 } 426
 427
The outputs of crypto_aead_encrypt and crypto_aead_decrypt shall be determined entirely 428
by the inputs listed above (except that the parameter nsec is kept for compatibility with 429
SUPERCOP and will not be used) and shall not be affected by any randomness or other hidden 430
inputs. 431

The crypto_aead_decrypt function shall return -1 if the ciphertext is not valid. 432
The crypto_aead_encrypt and crypto_aead_decrypt functions may return other negative 433
numbers to indicate other failures (e.g., memory-allocation failures). 434

The file crypto_aead.h is not included in the reference implementation; it is created 435
automatically by the testing framework. 436

A reference implementation can use names other than encrypt.c. It can split its code across 437
several files *.c defining various auxiliary functions; the files will be automatically compiled 438
together. 439

- DRAFT -

 13

3.5.2 Hash Function 440

A minimal reference implementation of a hash function consists of two files: api.h and hash.c. As 441
an example, MyHash hash function with 256-bit output would consists of the files: 442
crypto_hash/myhash256v1/ref/api.h and crypto_hash/myhash256v1/ref/hash.c. There 443
are three levels of directory names: 444

• The first-level directory name crypto_hash is the same for all hash functions. 445

• The second-level directory name is a lowercase version of the name of the algorithm, 446
including the version number and a family member identifier (if multiple family members 447
in submission). A reference implementation covering multiple family members must have 448
a second-level directory for each member. Dashes, dots, slashes, and other punctuation 449
marks are omitted; the directory name consists solely of digits (0123456789) and lowercase 450
ASCII letters (abcdefghijklmnopqrstuvwxyz). 451

• The third-level directory name is ref for the reference implementation. Other 452
implementations of the same hash function (with the same parameter set) use other third-453
level directory names. Third-level directory names starting with add_ may be used only for 454
the additional implementations that highlight specific implementation features of the 455
algorithms, and are not expected to compile within the benchmarking framework. These 456
include software implementations that do not satisfy the API, as well as any hardware 457
implementations that may be included in the submission. 458

• For each of the implementations that satisfy the API, the NIST-provided genkat_hash.c 459
shall be used to generate the LWC_HASH_KAT.txt test vector output file. The submitters 460
shall verify that the test vector output files are identical for all implementations in the 461
second-level directory, and shall provide one of the files as 462
crypto_hash/myhash256v1/LWC_HASH_KAT.txt for the 256-bit output of the MyHash 463
hash function in the aforementioned example. 464

The file api.h has one line: 465

 #define CRYPTO_BYTES 32 466
 467
This indicates that for this variant of the MyHash algorithm, the hash value is 32 bytes long. 468

The file hash.c has the following structure: 469

 #include "crypto_hash.h" 470
 471
 int crypto_hash(472
 unsigned char *out, 473
 const unsigned char *in, 474
 unsigned long long inlen 475
) 476
 { 477
 ... 478
 ... the code for the hash function implementation goes here 479

- DRAFT -

 14

 ... generating a hash value out[0],out[1],...,out[CRYPTO_BYTES-1] 480
 ... from a message in[0],in[1],...,in[in-1] 481
 482
 ... 483
 return 0; 484
 } 485
 486
To ensure compatibility with the SUPERCOP, the implementation of crypto_hash shall handle 487
overlapping input and output buffers. 488

The output of crypto_hash shall be determined entirely by the message input and shall not be 489
affected by any randomness or other hidden inputs. 490

The crypto_hash function may return a negative number to indicate other failure (e.g., memory-491
allocation failures). 492

The file crypto_hash.h is not included in the reference implementation; it is created 493
automatically by the testing framework. 494

A reference implementation can use names other than hash.c. It can split its code across several 495
files *.c defining various auxiliary functions; the files will be automatically compiled together. 496

Finally, all implementations are packaged into a tarball, such as mysubmissionv1.tar.gz for a 497
reference implementation of MySubmission v1, including all members of the MyAEAD v1 family 498
of AEAD algorithms. If the submission specifies a hash function, it will also include the members 499
of the MyHash v1 family of hash functions. This tarball shall be included in the submission 500
package. 501

4 Evaluation Criteria 502

4.1 Security 503

4.1.1 Security strength 504

The security strength provided by an algorithm will be considered under several attack models. 505

4.1.2 Side channel resistance 506

Side channel resistance is the ability for an implementation to reduce the information gained by 507
measurable phenomena about the inner workings of a cryptographic computation (such as timing, 508
power, electromagnetic field, ciphertext length). While implementations will not be required to 509
provide side channel resistance, the ability to provide it easily and at low cost is highly desired. 510
Side channel resistance may be necessary in some applications. 511

4.2 Cost 512

Submissions will be evaluated in terms of various cost metrics (e.g., area, memory, energy 513
consumption), as appropriate. 514

- DRAFT -

 15

4.3 Performance 515

Submissions will be evaluated in terms of various performance metrics (e.g., latency, throughput, 516
power consumption), as appropriate. 517

4.4 Third-party analysis 518

Submissions that have significant third-party analysis or leverage components of existing 519
standards will be favored for selection. 520

4.5 Suitability for hardware and software implementations 521

An algorithm may be well-suited for both hardware and software, or it may be specifically tailored 522
for performance in either one. Submissions that perform well in both will likely be given greater 523
consideration; however, a submission that excels in highly-constrained hardware may also be 524
granted greater consideration for selection. 525

5 Evaluation Process 526

NIST will form an internal selection panel composed of NIST researchers to analyze the 527
submissions. All of NIST’s analysis results will be made publicly available. 528

Although NIST will be performing its own analyses of the submitted algorithms, NIST strongly 529
encourages public evaluation and publication of the results. NIST will take into account its own 530
analysis, as well as the public comments that are received in response to the posting of the 531
“complete and proper” submissions, to make its decisions. 532

Following the close of the call for submission packages, NIST will review the received packages 533
to determine which are “complete and proper,” as described in Sections 2 and 3 of this notice. 534
NIST will post all “complete and proper” submissions at 535
https://csrc.nist.gov/Projects/Lightweight-Cryptography for public review. 536

The initial phase of evaluation will consist of approximately twelve months of public review of 537
the submitted algorithms. During this initial review period, NIST intends to evaluate the submitted 538
algorithms as outlined in Section 4. Depending on the number of submissions, NIST may eliminate 539
algorithms from consideration early in the first evaluation phase in order to focus analysis on the 540
strongest submissions. A workshop will be held ten to eleven months after the submission deadline 541
to discuss analysis of first round candidates. NIST will review the public evaluations of the 542
submitted algorithms’ cryptographic strengths and weaknesses, implementation costs, and 543
implementation performance and will use these to narrow the candidate pool for more careful study 544
and analysis. The purpose of this selection process is to identify candidates that are suitable for 545
standardization in the near future. Algorithms that are not included in the narrowed pool may still 546
be considered for standardization at a later date, unless they are explicitly removed from 547
consideration by NIST or the submitter. 548

https://csrc.nist.gov/Projects/Lightweight-Cryptography

- DRAFT -

 16

Because of limited resources, and also to avoid moving evaluation targets (i.e., modifying the 549
submitted algorithms undergoing public review), NIST will not accept modifications to the 550
submitted algorithms during this initial phase of evaluation. 551

For informational and planning purposes, near the end of the initial public evaluation process, 552
NIST intends to hold another lightweight cryptography standardization conference. Its purpose 553
will be to publicly discuss the submitted algorithms, and to provide NIST with information for 554
narrowing the field of algorithms for continued evaluation. 555

NIST plans to narrow the field of algorithms for further study, based upon its own analysis, public 556
comments, and all other available information. It is envisioned that this narrowing will be done 557
primarily on security, cost, performance, and intellectual property considerations. NIST will issue 558
a report describing its findings. 559

During the course of the initial evaluations, it is conceivable that some small deficiencies may be 560
identified in even some of the most promising submissions. Therefore, for the second round of 561
evaluations, small modifications to the submitted algorithms will be permitted for either security 562
or efficiency purposes. Submitters may submit minor changes (no substantial redesigns), along 563
with a supporting justification that must be received by NIST prior to the beginning of the second 564
evaluation period. (Submitters will be notified by NIST of the exact deadline.) NIST will 565
determine whether the proposed modification would significantly affect the design of the 566
algorithm, requiring a major re-evaluation; if such is the case, the modification will not be 567
accepted. If modifications are submitted, new reference and optimized implementations and 568
written descriptions must also be provided by the announced deadline. This will allow a thorough 569
public review of the modified algorithms during the entire course of the second evaluation phase. 570

Note that all proposed changes shall be conveyed by the submitter; no proposed changes (to the 571
algorithm or implementations) will be accepted from a third party. 572

The second round of evaluation will consist of approximately nine to twelve months of public 573
review, with a focus on a narrowed pool of candidate algorithms. During the public review, NIST 574
will similarly evaluate these algorithms. After the end of the public review period, NIST intends 575
to hold another lightweight cryptography standardization conference. (The exact date is to be 576
scheduled.) 577

Following the third lightweight cryptography standardization conference, NIST will prepare a 578
summary report, which may select algorithm(s) for possible standardization. Any selected 579
algorithm(s) for standardization will be incorporated into draft standards, which will be made 580
available for public comment. 581

Specific parameters will be chosen during the standardization process following the final 582
evaluation phase. Specific parameter sets may permit NIST to select a different 583
performance/security tradeoff than originally specified by the submitter, in light of discovered 584
attacks or other analysis. NIST will consult with the submitter of the algorithm, as well as the 585
cryptographic community, if it plans to select that algorithm for development as a NIST standard 586
with a different parameter set than originally specified by the submitter. 587

- DRAFT -

 17

 588

When evaluating algorithms, NIST will make every effort to obtain public input and will 589
encourage the review of the submitted algorithms by outside organizations. NIST encourages the 590
reviewers to demonstrate their findings and attacks both on the versions with parameters that 591
achieve full security levels, as well as with practical attacks on the provided parameter sets with 592
lower security levels. The final decision as to which (if any) algorithm(s) will be selected for 593
standardization is the responsibility of NIST. 594

It should be noted that this schedule for the evaluation process is somewhat tentative, depending 595
upon the type, quantity, and quality of the submissions. Specific conference dates and public 596
comment periods will be announced at appropriate times in the future. NIST estimates that some 597
algorithms could be selected for standardization after two to four years. However, due to 598
developments in the field, this could change. 599

