
CLX: A Family of Lightweight

Authenticated Encryption Algorithms

Designers and Submitters: Hongjun Wu and Tao Huang

Division of Mathematical Sciences
Nanyang Technological University

wuhongjun@gmail.com

29 March 2019

Contents

1 Specifications 3
1.1 Recommended parameter sets . 3
1.2 Operations, Variables and Functions 4

1.2.1 Operations . 4
1.2.2 Variables and Constants 4
1.2.3 The Permutation . 5

1.3 CLX-128 . 6
1.3.1 The initialization . 6
1.3.2 Processing the associated data 7
1.3.3 The encryption . 7
1.3.4 The finalization . 8
1.3.5 The decryption . 8
1.3.6 The verification . 9

1.4 CLX Authenticated Encryption Algorithms 9
1.4.1 The initialization . 10
1.4.2 Processing the associated data 10
1.4.3 The encryption . 11
1.4.4 The finalization . 11
1.4.5 The decryption . 11
1.4.6 The verification . 12

1.5 CLX-Hash . 12
1.5.1 The permutation P ′288,n 12
1.5.2 The initialization . 13
1.5.3 Processing the message 13
1.5.4 The finalization . 13

2 Security Goals 15
2.1 Security goals with unique nonce 15
2.2 Security goals with repeated nonce 15
2.3 Security goals of hash function 16

1

3 Security Analysis 17
3.1 Security of the Duplex Mode . 17
3.2 Properties of the Permutation P160+x,n 17

3.2.1 Differential properties of the permutation 17
3.2.2 Linear properties of the permutation P160+x,n 19
3.2.3 Algebraic properties of the permutation P160+x,n 20

3.3 Forgery Attacks . 21
3.3.1 Forgery attacks on nonce and associated data 21
3.3.2 Forgery attacks on plaintext/ciphertext 21

3.4 State Recovery Based on State Collision 22
3.5 Key Recovery Attacks for Repeated Nonce 22

3.5.1 Differential cryptanalysis 23
3.5.2 Linear cryptanalysis . 23
3.5.3 Algebraic attacks . 23

3.6 Related-key Attacks . 23
3.7 Slide attack . 24
3.8 Security Analysis of CLX-Hash 24

4 The Performance of CLX 25
4.1 Hardware Performance . 25
4.2 Software Performance . 25

5 Features 27

6 Design Rationale 28

2

Chapter 1

Specifications

CLX authenticated encryption algorithms and CLX hash function are specified
in this chapter. CLX authenticated encryption algorithms are based on the
Duplex mode [3], while CLX hash function is based on the sponge mode [2].

1.1 Recommended parameter sets

CLX Authenticated Encryption Algorithms. CLX supports three key
sizes: 128 bits, 192 bits and 256 bits. In the name of an CLX algorithm, letter
’Q’ indicates the fast variant, letter ’H’ indicates the high security variant which
protects the secret key when nonce is reused.

• Primary member: CLX-128
128-bit key, 96-bit nonce, 64-bit tag, 160-bit state
(for small state)

• CLX-128Q
128-bit key, 96-bit nonce, 64-bit tag, 192-bit state

• CLX-128H
128-bit key, 96-bit nonce, 64-bit tag, 192-bit state

• CLX-192Q
192-bit key, 96-bit nonce, 64-bit tag, 256-bit state

• CLX-192H
192-bit key, 96-bit nonce, 64-bit tag, 256-bit state

• CLX-256Q
256-bit key, 96-bit nonce, 64-bit tag, 320-bit state

• CLX-256H
256-bit key, 96-bit nonce, 64-bit tag, 320-bit state

3

CLX Hash Function. CLX provides a hash function with 256-bit message
digest.

• Primary member: CLX-Hash
256-bit message digest, 288-bit state

1.2 Operations, Variables and Functions

The operations, variables and functions used in CLX are defined below.

1.2.1 Operations

The following operations are used in the description of CLX:

⊕ : bit-wise exclusive OR

& : bit-wise AND

∼ : bit-wise NOT

‖ : concatenation

bac : floor operator, gives the integer part of a

1.2.2 Variables and Constants

The following variables and constants are used in CLX:

a{i···j} : the word consists of ai||ai+1|| · · · ‖ aj , where ai is the ith
bit of a

AD : associated data, a sequence of bytes

adi : one bit of associated data

adlen : the length of associated data in bits

C : ciphertext, a sequence of bytes

ci : the ith ciphertext bit

FrameBits : Three-bit FrameBits

FrameBits = 1 for nonce

FrameBits = 3 for associated data

FrameBits = 5 for plaintext and ciphertext

FrameBits = 7 for finalization

FrameBitsi : The ith bit of FrameBits

K : the key

ki : the ith bit of K

4

klen : the key length in bits

M : the plaintext, a sequence of bytes

mi : the ith bit of the plaintext

MD : the message digest

mdi : the ith bit of the message digest

mlen : the length of the plaintext in bits

NONCE : the 96-bit nonce

noncei : the ith bit of the 96-bit nonce

Pw,n : the w-bit permutation with n rounds

S : the state of the permutation

si : the ith bit of the state of the permutation

T : the 64-bit authentication tag

ti : the ith bit of the authentication tag

x : the state size is 160 + x bits

1.2.3 The Permutation

In CLX, permutation P160+x,n is used. The state of the permutation is (160+x)-
bit, and the permutation consists of n rounds. In the ith round of the permuta-
tion, a (160+x)-bit nonlinear feedback shift register is used to update the state.

The state update function for 160-bit permutation (Fig. 1.1)

StateUpdate(S) for x = 0:
feedback = s0 ⊕ s35 ⊕ (∼ (s93&s106))⊕ s127
for i from 0 to 158: si = si+1

s159 = feedback
end

The state update function for (160+x)-bit permutation (x > 0) (Fig. 1.2)

StateUpdate(S) for x > 0:
feedback = s0 ⊕ sx ⊕ s35+x ⊕ (∼ (s93+x&s106+x))⊕ s127+x

for i from 0 to (160 + x)− 2: si = si+1

s(160+x)−1 = feedback
end

For example, P160,320 means that the 160-bit state of the permutation is updated
with 320 rounds. 32 rounds of the permutation can be computed in parallel on
32-bit CPU.

5

Figure 1.1: The 160-bit Nonlinear Feedback Shift Register in CLX

Figure 1.2: The (160 + x)-bit Nonlinear Feedback Shift Register in CLX

1.3 CLX-128

CLX-128 uses a 128-bit key and a 96-bit nonce. The state size is 160-bit. The
associated data length and the plaintext length are less than 250 bytes. The
authentication tag is 64-bit.

1.3.1 The initialization

The initialization of CLX-128 consists of two stages: key setup and nonce setup.

Key Setup. The key setup is to randomize the state using the key.

1. Set the 160-bit state S as 0.

2. Set s31 = 1.

3. Set s{32,159} = k{0,127}.

4. Update the state using P160,1152.

Nonce Setup. The nonce setup consists of three steps. In each step, the
Framebits (of nonce) are XORed with the state, then we update the state using
the permutation P160,480, then 32 bits of the nonce are XORed with the state.

for i from 0 to 2:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P160,384

s{128···159} = s{128···159} ⊕ nonce{32i···32i+31}
end for

6

1.3.2 Processing the associated data

After the initialization, we process the associated data AD. In each step, the
Framebits (of associated data) are XORed with the state, then we update the
state using the permutation P160,384, then 32 bits of the associated data are
XORed with the state. If the last block is not a full block (or we call it as a
partial block), the last block is padded with zeros, and the number of bytes of
associated data in the partial block is XORed with the state.

/* processing the full blocks of associated data, each block 32 bits*/
for i from 0 to badlen/32c:

s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,384

s{128···159} = s{128···159} ⊕ ad{32i···32i+31}
end for

/* processing the partial block (if exists) of associated data, less than 32
bits*/

if (adlen mod 32) > 0:
s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,384

lenp = adlen mod 32 /* number of bits in partial block */
startp = adlen− lenp /* starting position of partial block */
s{128···128+lenp−1} = s{128···128+lenp−1} ⊕ ad{startp···adlen−1}
/* the length (bytes) of the last partial block is XORed with the state*/
s{64···65} = s{64···65} ⊕ (lenp/8)

end if

1.3.3 The encryption

After processing the associated data, we encrypt the plaintext M . In each step,
the Framebits (of plaintext) are XORed with the state. Then we update the
state using the permutation P160,960, then 32 bits of the plaintext are XORed
with the state and we obtain 32 bits of ciphertext from the XORed state. If
the last block is not a full block, the last block is padded with zeros, and the
number of bytes of plaintext in the partial block is XORed with the state.

/* processing the full blocks of plaintext, each block 32 bits*/
for i from 0 to bmlen/32c:

s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

s{128···159} = s{128···159} ⊕m{32i···32i+31}
c{32i···32i+31} = s{128···159}

end for

/* processing the partial block (if exists) of plaintext, less than 32 bits*/

7

if (mlen mod 32) > 0:
s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
s{128···128+lenp−1} = s{128···128+lenp−1} ⊕m{startp···mlen−1}
c{startp···mlen−1} = s{128···128+lenp−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{64···65} = s{64···65} ⊕ (lenp/8)

end if

1.3.4 The finalization

After encrypting the plaintext, we generate the authentication tag T in two
steps. In each step, the Framebits (of finalization) are XORed with the state,
then we update the state using the permutation P160,960, then obtain 32 bits of
tag as part of the state.

for i from 0 to 1:
s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

t{32i···32i+31} = s{128···159}
end for

1.3.5 The decryption

In a decryption process, the initialization and processing the associate data are
the same as the encryption process. After processing the associated data, we
decrypt the ciphertext C. In each step, the Framebits of ciphertext (the value
is 5) are XORed with the state, then we update the state using the permutation
P160,1152. We obtain 32 bits of plaintext by XORing the ciphertext with 32 state
bits s{128···159}. If the last block is not a full block, the last block is padded
with zeros, and the number of bytes of ciphertext in the partial block is XORed
with the state.

/* processing the full blocks of ciphertext, each block 32 bits*/
for i from 0 to bmlen/32c:

s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

m{32i···32i+31} = s{128···159} ⊕ c{32i···32i+31}
s{128···159} = c{32i···32i+31}

end for

8

/* processing the partial block of ciphertext, less than 32 bits*/
if (mlen mod 32) > 0:

s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
m{startp···mlen−1} = s{128···128+lenp−1} ⊕ c{startp···mlen−1}
s{128···128+lenp−1} = c{startp···mlen−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{64···65} = s{64···65} ⊕ (lenp/8)

end if

1.3.6 The verification

After decrypting the ciphertext, we generate a 64-bit authentication tag T ′, then
compare T ′ with the received tag T . The value of the finalization Framebits is 7.

for i from 0 to 1:
s{68···70} = s{68···70} ⊕ FrameBits{0···2}
Update the state using P160,1152

t{32i···32i+31} = s{128···159}
end for

T ′ = t′{0···63}. Accept the message if T ′ = T ; otherwise, reject.

1.4 CLX Authenticated Encryption Algorithms

The specifications of all the CLX authenticated encryption algorithms are sim-
ilar to that of CLX-128. In a CLX authenticated encryption algorithm, the
state size is 160 + x bits. The associated data length and the plaintext length
are less than 250 bytes. The authentication tag is 64-bit. The same secret key
should not be used in different CLX algorithms. The parameters used in the
CLX authenticated encryption algorithms are given in Table 1.2.

Table 1.2: The Parameters of CLX Authenticated Encryption Algorithms

State x Permu1 Permu2 Permu3 Permu4

CLX-128Q 192 bits 32 P192,384 P192,640 P192,1280 P192,640

CLX-128H 192 bits 32 P192,384 P192,1280 P192,1280 –

CLX-192Q 256 bits 96 P256,384 P256,768 P256,1408 P256,768

CLX-192H 256 bits 96 P256,384 P256,1408 P256,1408 –

CLX-256Q 320 bits 160 P320,384 P320,896 P320,1536 P320,896

CLX-256H 320 bits 160 P320,384 P320,1536 P320,1536 –

9

1.4.1 The initialization

The initialization consists of key setup and nonce setup.

Key Setup.

1. Set the (160+x)-bit state S as 0.

2. Set s31+x = 1.

3. Set s{32+x,127+2x} = k{0,95+x}.

4. Update the state using Permu3.

Nonce Setup.

for i from 0 to 2:
s{36+x···38+x} = s{36+x···38+x} ⊕ FrameBits{0···2}
Update the state using Permu1
s{128+x···159+x} = s{128+x···159+x} ⊕ nonce{32i···32i+31}

end for

1.4.2 Processing the associated data

The associated data is divided into 32-bit blocks, then a 32-bit associated data
block is processed in each step.

/* processing the full blocks of associated data, each block 32 bits*/
for i from 0 to badlen/32c:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu1
s{128+x···159+x} = s{128+x···159+x} ⊕ ad{32i···32i+31}

end for

/* processing the partial block of the associated data*/
if (adlen mod 32) > 0:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu1
lenp = adlen mod 32 /* number of bits in partial block */
startp = adlen− lenp /* starting position of partial block */
s{128+x···128+x+lenp−1} = s{128+x···128+x+lenp−1} ⊕ ad{startp···adlen−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{64+x···65+x} = s{64+x···65+x} ⊕ (lenp/8)

end if

/*After processing the associated data, the state is updated again*/
/* Omit this step when Permu4 is undefined for the variant */
Update the state using Permu4

10

1.4.3 The encryption

The plaintext is divided into 32-bit blocks and get encrypted.

/* processing the full blocks of plaintext, each block 32 bits*/
for i from 0 to bmlen/32c:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu2
s{128+x···159+x} = s{128+x···159+x} ⊕m{32i···32i+31}
c{32i···32i+31} = s{128+x···159+x}

end for
/* processing the partial block of plaintext, less than 32 bits*/
if (mlen mod 32) > 0:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu2
lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
s{128+x···128+x+lenp−1} = s{128+x···128+x+lenp−1} ⊕m{startp···mlen−1}
c{startp···mlen−1} = s{128+x···128+x+lenp−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{64+x···65+x} = s{64+x···65+x} ⊕ (lenp/8)

end if

1.4.4 The finalization

We generate the tag in two steps. In each step, the framebits for finalization
(with value 7) are XORed to the state, then the state gets updated and 32 bits
of the tag are generated.

for i from 0 to 1:
s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu3
t{32i···32i+31} = s{128+x···159+x}

end for

1.4.5 The decryption

In a decryption process, the initialization and processing the associate data are
the same as the encryption process. After processing the associated data, we
decrypt the ciphertext C. The ciphertext is divided into 32-bit blocks and get
decrypted.

11

/* processing the full blocks of plaintext, each block 32 bits*/
for i from 0 to bmlen/32c:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu2
m{32i···32i+31} = s{128+x···159+x} ⊕ c{32i···32i+31}
s{128+x···159+x} = c{32i···32i+31}

end for
/* processing the partial block of plaintext, less than 32 bits*/
if (mlen mod 32) > 0:

s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu2
lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
m{startp···mlen−1} = s{128+x···128+x+lenp−1} ⊕ c{startp···mlen−1}
s{128+x···128+x+lenp−1} = c{startp···mlen−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{64+x···65+x} = s{64+x···65+x} ⊕ (lenp/8)

end if

1.4.6 The verification

After decrypting the ciphertext, we generate a 64-bit authentication tag T ′, then
compare T ′ with the received tag T . In each step, the framebits for finalization
(with value 7) are XORed to the state.

for i from 0 to 1:
s{68+x···70+x} = s{68+x···70+x} ⊕ FrameBits{0···2}
Update the state using Permu3
t{32i···32i+31} = s{128+x···159+x}

end for
T ′ = t′{0···63}. Accept the message if T ′ = T ; otherwise, reject.

1.5 CLX-Hash

CLX-Hash hashes a byte sequence less than 250 bytes and generates a 256-
bit authentication tag. CLX-Hash is based on the sponge mode. A 288-bit
permutation P ′288,n is used in CLX-Hash. The state update function of CLX-
128 is part of that of CLX-Hash, so it is efficient to implement both CLX-128
and CLX-Hash on hardware.

1.5.1 The permutation P ′
288,n

The permutation P ′288,n is an extension of the (160+128)-bit permutation.

12

The state update function for P ′288,n

StateUpdate(S) for x > 0:
feedback = s0 ⊕ s19 ⊕ s128 ⊕ s163 ⊕ (∼ (s221&s234))⊕ s255
for i from 0 to 286: si = si+1

s287 = feedback
end

1.5.2 The initialization

The state is set to constant in the initialization.

1. Set the 288-bit state S as 0.

2. Set s196 = 1.

3. Update the state using P ′288,1024.

1.5.3 Processing the message

The message is divided into 32-bit blocks, then a 32-bit message block is hashed
in each step. When there is partial block, the length (bytes) of the last partial
block is XORed to the state.

/* processing the full blocks of message, each block 32 bits*/
for i from 0 to bmlen/32c:

s196 = s196 ⊕ 1
s{256···287} = s{256···287} ⊕m{32i···32i+31}
Update the state using P ′288,2560

end for

/* processing the partial block of message*/
if (mlen mod 32) > 0:

s196 = s196 ⊕ 1
lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
s{256···256+lenp−1} = s{256···256+lenp−1} ⊕m{startp···mlen−1}
s{192···193} = s{192···193} ⊕ (lenp/8)
Update the state using P ′288,2560

end if

1.5.4 The finalization

We generate the message digest, MD, as follows.

13

for i from 0 to 7:
md{32i···32i+31} = s{256···287}
s196 = s196 ⊕ 1
Update the state using P ′288,256

end for

14

Chapter 2

Security Goals

2.1 Security goals with unique nonce

In CLX authenticated encryption algorithms, each pair of key and nonce is used
to protect only one message. If verification fails, the new tag and the decrypted
ciphertext should not be given as output.

The security goals of CLX for unique nonce are given in Table 2.1. We
assume that each each key is used to process at most 250 byes of messages
(associated data, plaintext/ciphertext), and each message is at least 8 bytes.
Note that the authentication security in Table 2.1 includes the integrity security
of plaintext, associated data and nonce.

Table 2.1: Security Goals of CLX with Unique Nonce

Encryption Authentication

CLX-128 112-bit 64-bit

CLX-128Q 112-bit 64-bit

CLX-128H 112-bit 64-bit

CLX-192Q 168-bit 64-bit

CLX-192H 168-bit 64-bit

CLX-256Q 224-bit 64-bit

CLX-256H 224-bit 64-bit

2.2 Security goals with repeated nonce

When nonce is reused in CLX authenticated encryption algorithms, the secret
key security of CLX-128H, CLX-196H and CLX-256 remains strong.

15

When nonce is reused in CLX, the authentication security of CLX-128H,
CLX-196H and CLX-256 remains strong.

When nonce is reused, an attacker is able to decrypt a ciphertext since the
CLX encryption is somehow similar to the cipher feedback mode.

Table 2.2: Security Goals of CLX with Repeated Nonce (∗the security of CLX-
128 is for the nonce being repeated only 212 times)

Secret Key Authentication

CLX-128 112-bit∗ 64-bit∗

CLX-128Q – –

CLX-128H 112-bit 64-bit

CLX-192Q – –

CLX-192H 168-bit 64-bit

CLX-256Q – –

CLX-256H 224-bit 64-bit

2.3 Security goals of hash function

The security goals of CLX-Hash are given in Table 2.3.

Table 2.3: Security Goals of CLX-Hash

Preimage Second Preimage Collision

CLX-Hash 112-bit 112-bit 112-bit

16

Chapter 3

Security Analysis

3.1 Security of the Duplex Mode

The Duplex mode [3] was proposed to use the sponge hash mode to construct
an authenticated encryption scheme. In [10], the security of the Duplex mode
was thoroughly analysed. For a Duplex mode design with key size k, block size
b, rate r and capacity c, the security is approximately min{2b/2, 2c, 2k}. The
security bound can be explained as follows. The key can be attacked using
brute force, so the security cannot go beyond 2k. c bits of the state are the only
unknown information of the state, so the security cannot go beyond 2c. The
complexity 2b/2 is required for a state collision to occur (b-bit state).

In the lightweight applications, the amount of data being processed is as-
sumed to be at most 250 bytes for a single key. For CLX, it means that there
are at most 248 data blocks (assume that each message is at least 8 bytes). To
obtain a state collision, an attacker needs to try 2b−48 random states in order to
obtain a collision with the cipher states. The security of Duplex mode becomes
min{2b−48, 2c, 2k} for a lightweight authenticated encryption algorithm. For a
lightweight authenticated encryption algorithm, the minimum state size is thus
160-bit for 112-bit security.

3.2 Properties of the Permutation P160+x,n

3.2.1 Differential properties of the permutation

In this section, we analyse the differential properties [4, 5] of the CLX permu-
tation P160+x,n. The following five types of differences will be analysed.

• Type 1. Input differences at S128+x···159+x

• Type 2. Arbitrary input differences, output differences at S128+x···159+x

• Type 3. Input differences at S128+x···159+x, output differences at S128+x···159+x

17

• Type 4. Differences in two-block case

• Type 5. Arbitrary input differences, arbitrary output differences

In the following, we will analyse the differential propagation using the Mixed
Integer Linear Programming (MILP) [13]. We will use the Gurobi optimizer [8]
to find the exact bound for some rounds.

Type 1 Differences

For the Type 1 differences, the input differences are at S128+x···159+x, and there
is no restriction on the output differences. The largest differential probabilities
of the Type 1 differences are summarized in Table 3.1.

Table 3.1: Type 1 Differential Properties of the Permutation

Design Round Probability Method

P160,n

384 2−39 MILP

512 2−64 MILP

P192,n

384 2−41 MILP

512 2−69 MILP

P256,n

384 2−41 MILP

512 2−69 MILP

P320,n

384 2−38 MILP

544 2−67 MILP

Type 2 Differences

For the Type 2 differences, there is no restriction on the input differences, and
output differences are at S128+x···159+x. The largest differential probabilities of
the Type 2 differences are summarized in Table 3.2.

Table 3.2: Type 2 Differential Properties of the Permutation

Design Round Probability Method

P160,n 384 2−23 MILP

P192,n 384 2−28 MILP

P256,n 384 2−7 MILP

P320,n 384 2−2 MILP

18

Type 3 Differences

For the Type 3 differences, the input differences are at S128+x···159+x, and output
differences are at S128+x···159+x. The largest differential probabilities of the
Type 3 differences are summarized in Table 3.3.

Table 3.3: Type 3 Differential Properties of the Permutation

Design Round Probability Method

P160,n 384 ≤ 2−89 MILP

P192,n 384 ≤ 2−111 MILP

P256,n 384 0 MILP

P320,n 384 0 MILP

Type 4 Differences

For the Type 4 differences, the arbitrary input differences injected to S128+x···159+x

after 384 rounds. This is to capture the differential propagation through more
than one message blocks. The largest differential probabilities of the Type 4
differences are summarized in Table 3.4.

Table 3.4: Type 4 Differential Properties of the Permutation

Design Round Probability Method

P160,n 576 2−67 MILP

P192,n 576 2−74 MILP

P256,n 576 2−76 MILP

P320,n 576 2−66 MILP

Type 5 Differences

The Type 5 differences are arbitrary input difference and arbitrary output dif-
ference. Our observation of the MILP results shows that the optimal differential
(of Type 5) of CLX appears when there is one bit difference in a middle state.
Based on this observation, we use MILP to find the largest differential proba-
bilities of the Type 5 differences. The results are summarized in Table 3.5.

3.2.2 Linear properties of the permutation P160+x,n

In this section, we analyse the linear properties of the CLX permutation P160+x,n .
The linear bias for output bits at S96+x···127+x will be analysed.

19

Table 3.5: Type 5 Differential Properties of the Permutation

Design Round Probability Method

P160,n 1280 2−160 MILP

P192,n 1280 2−180 MILP

P256,n 1280 2−95 MILP

P320,n 1920 2−99 MILP

In the analysis, we use the Mixed Integer Linear Programming (MILP) [13].
We will use the Gurobi optimizer [8] to find the exact linear bias for some
rounds. The results are summarized in Table 3.6.

Table 3.6: Linear bias of the permutation

Design Round Bias

P160,n 480 2−31

P192,n 480 2−33

P256,n 448 2−31

P320,n 448 2−27

3.2.3 Algebraic properties of the permutation P160+x,n

We consider the algebraic property for the input bits at S128+x···159+x. Our
experiment shows that after 500 rounds, every output bit at S96+x···127+x is
affected by the 32-bit input cube tester at S128+x···159+x. The results are sum-
marized in Table 3.7.

Table 3.7: Round number for 32-bit cube tester to affect output bits

Design Round Cube Tester

P160,n 493 32-bit

P192,n 493 32-bit

P256,n 481 32-bit

P320,n 493 32-bit

20

3.3 Forgery Attacks

For an authenticated encryption scheme, an internal state collision will directly
lead to a forgery attack. To produce a state collision, an attacker can inject
difference into nonce, associated data or plaintext/ ciphertext, then eliminate
the difference in the state using the difference in the later input blocks.

3.3.1 Forgery attacks on nonce and associated data

In CLX, each 32-bit nonce block and associated data block is processed us-
ing P160+x,384 (with different Framebits for nonce and associated data). The
associated data also plays the role of nonce in CLX.

Nonce and associated data are processed in a very similar way in CLX (the
only difference is the used of different FrameBits). In the following, we only
need to consider the forgery attacks on associated data. There are two cases of
forgery attacks on the associated data:

Case 1. Forgery attacks with differences at only two adjacent associated data
blocks, i.e., ∆adi 6= 0 and ∆adi+1 6= 0

For this type of forgery attacks, the input difference to P160+x,384 is
at s128+x···159+x, and the output difference is at s128+x···159+x. This is
the Type 3 differences analysed in Sect. 3.2.1. According to Table 3.3,
the largest differential probability of Type 3 differences of P384 is at
most 2−89. It means that the forgery attack succeeds with probability
at most 2−89 using this type of differential attack.

Case 2. Forgery attacks involving more than two associated data blocks, i.e.,
∆adi 6= 0 and ∆adj 6= 0, where j > i + 1 . (∆adw may or may not be
zero for i < w < j.)

For this type of forgery attacks, at least two permutations P160+x,384

are involved. This is the Type 4 differences analysed in Sect. 3.2.1.
According to Table 3.4, the largest differential probability of Type 4
differences is at most 2−66. Since there are at least 768 rounds in this
case, the forgery attack succeeds with probability should be less than
2−66 using this type of differential attack.

The above analysis shows that the differential forgery attack on nonce and
associated data succeeds with probability at most max(2−89, 2−66) = 2−66. Note
that 2−66 is for 576 rounds of P320,576, while the differential needs to pass
through at least 768 rounds of P320,768. So the security margin is very large (we
computed the differential for only 576 rounds due to the high computational
complexity of MILP for large rounds).

3.3.2 Forgery attacks on plaintext/ciphertext

We analyse the forgery attacks when differences are introduced into plain-
text/ciphertext. When an adversary introduces a difference in a plaintext

21

block Mi or ciphertext block Ci , the difference introduces input difference at
s128+x···159+x of the permutation Pn. According to Table 3.1, the differential is
at most 2−64 after 544 rounds.

In CLX, at least 1024 rounds are used to encrypt a plaintext block, so
the differential forgery attack on plaintext/ciphertext succeeds with probability
much smaller than 2−64.

3.4 State Recovery Based on State Collision

The state recovery attack based on state collision [1] is useful for analyzing
stream ciphers. The idea is that an attacker can try many random states off-
line, then generate keystreams from the states, then compare the keystreams
with the received keystreams to identify the state.

For lightweight applications, there is constraint that a key is used to process
at most 250 bytes of data. If we assume that a message is at least 8 bytes, a key
is used to process at most 248 data blocks in CLX. To provide n-bit security,
the state size should be at least n+48 bits when non-keyed permutation is used
in the Duplex mode to prevent the state recovery attack using state collision.
When nonce is misused in the Duplex mode, message block can be applied to
set part of the state to constant. When 32-bit message block is used, the state
size should be at least n + 48 + 32 bits when non-keyed permutation is used in
the Duplex mode.

The state sizes of CLX are chosen to be large enough to resist the state
collision when nonce is unique. CLX-128 is able to provide 112-bit security
since its state size is 112 + 48 = 160 bits. This is the smallest state size for
112-bit security when less than 250 bytes of data are processed by a single key.
The state sizes of other variants are n + 48 + 32 bits, providing even higher
security.

The state sizes of CLX-128H, CLX-192H, CLX-256H are large enough to
resist the state collision when nonce is misused since their state sizes are n +
48 + 32 bits.

The state size of CLX-128 is 160-bit, so CLX-128 is not able to provide
112-bit security when nonce is repeated 2112 times. However, if we assume
that the nonce of CLX-128 being repeated only 216 times (one message from
each repeated nonce), then the attacker still needs to try 2112 states in order
to recover the state through state collision. Our security goal is that CLX-128
provides 112-bit security when nonce is repeated 212 times.

3.5 Key Recovery Attacks for Repeated Nonce

In this section ,we analyse the security of CLX-128, CLX-128H, CLX-192H and
CLX-256H for repeated nonce.

22

3.5.1 Differential cryptanalysis

When nonce is misused, a difference can be injected into the state at s128+x···159+x

through a plaintext block, then the output difference can be observed in the next
ciphertext block.

According to Table 3.1, the maximum differential probability is less than
2−60 after 512 rounds. In CLX-128H, CLX-192H and CLX-256H, at least 1280
rounds are used to encrypt a 32-bit message block. The differential probability
for 1280 rounds is much smaller than 2−32, we thus believe that it is impossible
to recover the key of CLX using the differential cryptanalysis.

3.5.2 Linear cryptanalysis

When nonce is misused, an attacker can try to find the linear relation [11, 12]
between the input s128+x···159+x and the output s96+x···127+x of P160+x,n.

According to Table 3.6, the linear bias is at most 2−27 after 480 rounds. This
linear bias is much smaller than 2−16 (the message block size is 32-bit). At least
1280 rounds are used in the encryption of one plaintext block in CLX-128H,
CLX-192H and CLX-256H, we thus believe that it is impossible to recover the
key of TinyJAMBU using the linear cryptanalysis.

3.5.3 Algebraic attacks

We experimentally tested the number of rounds for each output bit being af-
fected by 32-bit cube [7] for the input.

According to Table 3.7, after 500 rounds, every output bits is affected by the
32-bit cube tester. Hence, we believe that the 1024-round encryption provides
large security margin against the algebraic cryptanalysis since the message block
size is 32-bit.

3.6 Related-key Attacks

CLX provides resistance against the related-key key recovery attack. According
to Table 3.5, the related-key differential probability is at most 2−95 for CLX-
128, CLX-128Q, CLX-128H, CLX-192Q, and CLX-192H, because the key was
processed with at least 1024+384 = 1408 rounds before the nonce being injected
into the state.

For CLX-256Q and CLX-256H, the key was processed with at least 1536 +
384 = 1920 rounds before the nonce being injected into the state. According to
Table 3.5, the related-key differential probability is at most 2−99.

Each key is used to process at most 250 bytes of data, so CLX is strong
against the related-key key recovery attack.

23

3.7 Slide attack

The slide attack is an effective tool to analyse the cipher with self-similarity
round functions. Although CLX permutation has the sliding property, the frame
bits being added to the state will prevent the slide attack since the position of
the frame bits is fixed. Further, due to the large state size of CLX (at least
(160-bit), and the data being processed is at most 250 bytes, the chance that
there are slide states is negligently small.

3.8 Security Analysis of CLX-Hash

CLX-Hash is built on the 288-bit permutation P ′288,n using the sponge mode.
We compute the Type 5 difference as in Section 3.2.1 for the permutation P ′288,n.
The probability of the 2048-round Type 5 differential for P ′288 is 2−307. Since
each 32-bit message block is compressed using 2560-round permutation P ′288,2560,
we expect that CLX-Hash has strong collision resistance.

24

Chapter 4

The Performance of CLX

4.1 Hardware Performance

We implement CLX-128 VHDL using the CAESAR Hardware API [9]. In our
lightweight implementations of CLX, we compute 8 and 32 rounds in one clock
cycle. We synthesis our implementations with the Synopsys Design Compiler
for an ASIC using 90 nm UMC technology. The results are summarized in Ta-
ble 4.1. The hardware cost of the whole cipher (including initialization, process-
ing associated data, encryption and decryption, tag generation and verification)
is counted. We exclude the cost of the CAESAR Hardware API (preproces-
sor and postprocessor) which is the same for all the authenticated encryption
algorithms.

4.2 Software Performance

In software implementation, the amount of RAM and ROM required by CLX
is expected to be very small. We will test CLX later on the low end processors
for the exact cost of RAM and RAM. Some estimations are given below.

1. 160+x bits of RAM are used to store the state.

2. The cipher does not need the storage of the key on the device.

3. Only 12 bits of ROM are needed to store constants (Framebits). (Alter-
natively, we may use 4 bytes of ROM to store the constants)

4. According to the reference code, the binary code of CLX is expected to
be very small since we repeatedly using the permutation in the implemen-
tation, and the permutation is implemented using only 16 lines of code.
The amount of ROM being used to store the binary code is expected to
be small.

25

Table 4.1: The hardware performance of CLX (the whole cipher is implemented,
including the initialization, processing AD, encryption/decryption, tag genera-
tion and verification.

Implementation Area
(GE)

Throughput for
long AD (Mbps)

Throughput for
long P (Mbps)

CLX-128 (8 rounds) 1501 81.7 27.2

CLX-128 (32 rounds) 1884 223.7 74.5

CLX-128Q (8 rounds) 1730 80.1 48.0

CLX-128Q (32 rounds) 2195 225.2 135.1

CLX-192Q (8 rounds) 1743 80.1 40.0

CLX-192Q (32 rounds) 2597 223.7 111.8

CLX-256Q (8 rounds) 2564 81.6 35.0

CLX-256Q (32 rounds) 3013 223.7 95.8

CLX-Hash (8 rounds) 2301 - 12.2

CLX-Hash (32 rounds) 2696 - 35.4

26

Chapter 5

Features

• Lightweight Permutation. The permutation is based on a (160+x)-bit non-
linear feedback shift register with only 5 taps (6 taps for register larger
than 160 bits). It is thus efficient to implement the permutation in hard-
ware.

• Lightweight Input Loading. The nonce, associated data and the plain-
text/ciphertext can be loaded into the state bit-by-bit when the nonlinear
feedback shift register of the permutation is clocked. It is thus efficient to
load the input stream into the cipher in hardware.

• Parallel Computation. In CLX, 32 steps can be computed in parallel. This
parallel feature benefits fast hardware and software implementations.

• Associated data can be treated as part of the nonce. As long as the pairs
(nonce, associated data) are different, we consider that nonce is unique.

27

Chapter 6

Design Rationale

• Design goal
We aim to design a lightweight authenticated encryption algorithm which
is optimized for the devices in which changing keys are used, and the keys
are not stored in the devices.

• Use the Duplex authenticated encryption mode

When the key is not stored in the devices, it is desirable to use the non-
keyed permutation to design lightweight authenticated encryption algo-
rithms so as to avoid the cost of storing the key.

When non-keyed permutation is used, Duplex mode is suitable for lightweight
design, so we choose the Duplex mode in CLX.

[Note that when the key is already stored in the devices (or when the key
must be stored in the devices), it is desirable to use the keyed permutation
to design lightweight authenticated encryption since much smaller state
can be used in the keyed permutation to obtain the same security (because
the constraint on the amount of data being processed by each key of a
lightweight cipher in practice, and the state size of non-keyed permutation
must be sufficiently large to resist the state recovery attack using collision
[1]).]

• Choose the permutation size

Non-keyed permutation is used in CLX, the permutation should be large
enough to resist the state recovery attack based on state collision [1]. We
assume that each key is used to process less than 250 bytes of data, so
there are at most 248 data blocks (we assume that each message is at least
8 bytes). To obtain 112-bit security of the secret key, the minimum state
size should be 160 bits.

In case of nonce misuse, the attacker is able to set part of the state to a
constant value in the Duplex mode, so the effective state size is reduced. If

28

we use 32-bit message block size, then 192-bit permutation must be used
for 112-bit security for reused nonce.

• Design the permutation

The permutation is based on a simple nonlinear feedback shift register
with only 5 taps (6 taps for register larger than 160 bits). There are three
reasons for using the nonlinear feedback shift register to update the state:

– The hardware cost of nonlinear feedback shift register is low.

– A number of steps of the nonlinear feedback shift registers can be
computed in parallel for efficient hardware and software implemen-
tation.

– The stream input data can be easily loaded into the state.

There is slide property in the permutation based on a feedback shift reg-
ister. We use the FrameBits for each permutation to protect the cipher
against the slide property.

• Design the nonlinear feedback shift register

All the CLX algorithms are based on the 160-bit nonlinear feedback shift
register with 5 taps. A (160+x)-bit feedback shift register is to extend
the 160-bit register by x bits without modifying the 160-bit feedback shift
register. In this way, all the variants of CLX algorithms share the main
component. It saves the hardware cost when we need to implement more
than one CLX algorithms in hardware. It also allows the CLX algorithms
being described and understood easily.

In the 160-bit nonlinear feedback shift register, we need to choose four tap
positions.

– The tap positions are chosen to ensure that 32 steps can be computed
in parallel.

– There are 15 tap distances for the feedback register with 6 taps. The
tap positions are chosen to ensure that most of those 15 tap distances
are co-prime to each other. When two tap distances are not co-prime,
the greatest common divisor should be small.

– After the above filtering of tap positions, we tested the differen-
tial and linear property of the permutation (with 32-bit message
block). We choose the tap distances that give high security against
the forgery attack on associated data and the plaintext/ciphertext.

• Different processing of associated data and plaintext

In CLX, we use a strong permutation for encrypting plaintext, while we
use a weak permutation for processing associated data so that we can get
better efficiency. The reason is that as long as there is no state collision
due to the associated data, there is no state information leakage, so a weak

29

permutation can be used for processing the associated data. However, the
ciphertext leaks the state information, so strong permutation is needed
for encrypting the plaintext.

30

Bibliography

[1] S. Babbage. “A Space/Time Tradeoff in Exhaustive Search Attacks on
Stream Ciphers”. European Convention on Security and Detection, IEE
Conference Publication No. 408, May 1995.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche.
“Sponge Functions”. Ecrypt Hash Workshop 2007.

[3] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che. “Duplexing the sponge: Single-pass authenticated encryption and
other applications”. In Selected Areas in Cryptography – SAC 2011, pages
320–337.

[4] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[5] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer-Verlag, London, UK, 1993.

[6] CAESAR: Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness. Available at https://competitions.cr.yp.to/

caesar-submissions.html

[7] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polyno-
mials. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, pages 278–299, 2009. Springer Berlin Heidelberg.

[8] Gurobi Optimizer. Available at http://www.gurobi.com/

[9] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farah-
mand, Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. CAESAR hard-
ware API. IACR Cryptology ePrint Archive, 2016:626, 2016.

[10] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Ya-
suda. Beyond conventional security in sponge-based authenticated en-
cryption modes. Journal of Cryptology, Jun 2018.

[11] Mitsuru Matsui. Linear Cryptanalysis Method for DES cipher. In Ad-
vances in Cryptology–EUROCRYPT’93, pages 386–397. Springer, 1994.

31

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://www.gurobi.com/

[12] Mitsuru Matsui and Atsuhiro Yamagishi. A New Method for Known
Plaintext Attack of FEAL Cipher. In Advances in Cryptology – EURO-
CRYPT’92, pages 81–91. Springer, 1993.

[13] Nicky Mouha, Qingju Wang, Dawu Gu, Bart Preneel. Differential and lin-
ear cryptanalysis using Mixed-Integer Linear Programming. Information
security and cryptology – Inscrypt 2011, pages 57–76.

32

	Specifications
	Recommended parameter sets
	Operations, Variables and Functions
	Operations
	Variables and Constants
	The Permutation

	CLX-128
	The initialization
	Processing the associated data
	The encryption
	The finalization
	The decryption
	The verification

	CLX Authenticated Encryption Algorithms
	The initialization
	Processing the associated data
	The encryption
	The finalization
	The decryption
	The verification

	CLX-Hash
	The permutation P'288,n
	The initialization
	Processing the message
	The finalization

	Security Goals
	Security goals with unique nonce
	Security goals with repeated nonce
	Security goals of hash function

	Security Analysis
	Security of the Duplex Mode
	Properties of the Permutation P160+x,n
	Differential properties of the permutation
	Linear properties of the permutation P160+x,n
	Algebraic properties of the permutation P160+x,n

	Forgery Attacks
	Forgery attacks on nonce and associated data
	Forgery attacks on plaintext/ciphertext

	State Recovery Based on State Collision
	Key Recovery Attacks for Repeated Nonce
	Differential cryptanalysis
	Linear cryptanalysis
	Algebraic attacks

	Related-key Attacks
	Slide attack
	Security Analysis of CLX-Hash

	The Performance of CLX
	Hardware Performance
	Software Performance

	Features
	Design Rationale

