From: Ron Steinfeld <ron.steinfeld@monash.edu>

Sent: Tuesday, January 02, 2018 7:29 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: CFPKM

Dear All,

The following C function "crypto_kem_atk_dec" breaks the IND-CPA security of the CFPKM KEM for both CFPKM128 and
CFPKM182 parameter sets.

The attack function quickly decrypts the shared secret given only the ciphertext and the public key, with high probability
close to 1. It uses a rounded product of ciphertext and public keys to compute the shared secret instead of a rounded
product of ciphertext and secret keys as in the legitimate decryption algorithm.

The attack run-time is about m (=81 and 116 for the CFPKM128 and CFPKM182 parameter sets respectively)
multiplications and MS-bit roundings mod q (q~2/50 and 2755 respectively for CFPKM128 and CFPKM182 parameter
sets). This attack run-time is faster than the run-time of the legitimate "crypto_kem_dec" reference implementation of
the decryption algorithm that uses the secret key. In comparison, the CFPKM128 and CFPKM182 are claimed to achieve
27128 and 272192 IND-CPA security, respectively.

The attack decryption function "crypto_kem_atk_dec" can be found as an additional function in the modified version of
the CFPKM reference implementation file KEM.c available at the following link:
https://drive.google.com/file/d/1Jrysn5nMO0J3UItQAfUF _A6r W29gXX4x/view?usp=sharing

The attack function successfully decrypted the session key in all 100 KATs for CFPKM128 and CFPKM182.

To test the attack function with KATs, replace "KEM.c" in the design reference implementation with the above modified
version, and replace the the modified KAT generation program "PQCgenKAT_kem.c" in the design reference
implementation with the modified version available at the following link:

https://drive.google.com/file/d/1c5IT pWTGrC2CMf5fK7AalLB3 jFtycDJ/view?usp=sharing

The response file contains two additional entries for each KAT, sd (the shared key decrypted by the attack) and mt (=0 if
sd matches the encrypted shared secret ss, and 1 else). Computed response files for 100 KATs for both CFPKM128 and
CFPKM182 are available at the following links:
https://drive.google.com/file/d/1na0j8X3cplUuPoUMx10X9BV2LZgQHbwi/view?usp=sharing

and

https://drive.google.com/file/d/1ibXVWI10KkIkRDT7ZTTC4xUQVIzoh1SIH/view?usp=sharing

respectively.

Best Regards,

Ron Steinfeld

Dr. Ron Steinfeld

Senior Lecturer,
Cybersecurity Lab,

https://drive.google.com/file/d/1ibXVWI10KkIkRDT7TTC4xU0VIzoh1SlH/view?usp=sharing
https://drive.google.com/file/d/1na0j8X3cpIUuPoUMx1oX9BV2LZgQHbwi/view?usp=sharing
https://drive.google.com/file/d/1c5IT_pWTGrC2CMf5fK7AaLB3_jFtycDJ/view?usp=sharing
https://drive.google.com/file/d/1Jrysn5nM0J3UItQAfUF_A6r_W29gXX4x/view?usp=sharing

Faculty of Information Technology,
Monash University,

Clayton VIC 3800

Australia

Email: ron.steinfeld@monash.edu

Phone: +61 3 99055225

Fax: +61 3 9905 5159

Web:

* Personal: http://users.monash.edu.au/~rste/

* Monash Cybersecurity Lab: http://www.monash.edu/cybersecurity-lab

The attack decryption function (calling the functions defined in the design reference implementation source file KEM.c):

int crypto_kem_atk_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *pk){
inti;
unsigned long long *b1=malloc(M*sizeof(unsigned long long));
unsigned char *seed=malloc(SEEDSIZE*sizeof(unsigned char));
unpack_pk(b1, seed, pk);

unsigned long long *b2=malloc(M*sizeof(unsigned long long));
unsigned char *c=malloc(M*sizeof(unsigned char));
unpack_ct(b2,c,ct);

unsigned long long *w = malloc(M*sizeof(unsigned long long));
for (i=0;i < M;i++)
{
wli]=(b1[i]*b2[i]) ;}

kem_rounding(ss, w);

return O;

http://www.monash.edu/cybersecurity-lab
http://users.monash.edu.au/~rste
mailto:ron.steinfeld@monash.edu

From: Alperin-Sheriff, Jacob (Fed) <jacob.alperin-sheriff@nist.gov>

Sent: Tuesday, January 02, 2018 8:00 AM

To: pqc-forum@list.nist.gov

Cc: Ron Steinfeld; Tanja Lange

Subject: [pgc-forum] FW: OFFICIAL COMMENT: CFPKM
Hi all,

Fernando’s post isn’t showing up on the forum for some reason (I also didn’t receive it via my non-work email forum
subscription), so I’'m posting it here; in case it was the Python script attachment that was the problem, posting it as text
at the bottom

On 1/2/18, 7:12 AM, "Fernando Virdia" <fernando.virdia.2016@Ilive.rhul.ac.uk> wrote:
Dear CFPKM authors,

We think there is a practical attack leading to the recovery of the
higher order bits of Key_b, and hence the shared secret, circumventing
the polynomials with errors problem.

Correctness of the scheme depends on Alice and Bob agreeing on the most
significant bits (MSB) of Key_a and Key_b. In particular,

Key b =MSB of {f(s_b) \odotb 1+e 3}
= MSB of { f(s_b) \odot f(s_a)
+ f(s_b) \odote_1
+e 3}

where all the terms involving the e_i have small coefficients.
Therefore, the shared secret should consist of the MSB of f(s_b) \odot
f(s_a). These can be recovered from the public values

b 1=f(s_a)+e 1
b 2=f(s_ b)+e 2

by computing the component-wise product
b_1\odot b_2 = f(s_a) \odot f(s_b)

+f(s_a) \odote_2

+f(s_b) \odote_1

+e_1\odote_ 2

We attached a Sage script executing this attack on the 128 bits KATs.

Best regards

mailto:fernando.virdia.2016@live.rhul.ac.uk

Martin R. Albrecht, Eamonn Postlethwaite and Fernando Virdia

-*- coding: utf-8 -*-
Shared secret recovery attack against CFPKM 128 KATs.
The script assumes the KATs to be in "./CFPKM/KAT/KEM/CFPKM128/PQCkemKAT_128.rsp".

The (un)pack_{pk,ct} functions are translated and adapted from the reference implementation.
AUTHOR:

Martin R. Albrecht - 2017
Fernando Virdia - 2017

from sage.all import vector, IntegerModRing, ceil, log, floor, parent, ZZ, set_random_seed, randint

def openKAT(path):
utility function
def ReadHex(buf):
if len(buf) == 0:
return ['\x00']
else:
res =[]
for x in range(len(buf)/2):
res += [int("0Ox" + buf[2*x:2*x+2], 0)]
return res

=]
with open(path) as f:
el ={}
for linein f:
if line in ["# CFPKM\n", "\n"]:
continue
if "count" in line:
[+=[el]
el = {"count": line.split("=")[1].strip() }
else:
pre, fix = line.split(
el[pre.strip()] = ReadHex(fix.strip())

[+=[el]
return [1:]

def balance(e, g=None):
try:
p = parent(e).change_ring(Z2)

return p([balance(e_, q=q) for e_in e])
except (TypekError, AttributeError):
if q is None:
try:
g = parent(e).order()
except AttributeError:
g = parent(e).base_ring().order()
e=2Z(e) % q
return e-q if e>q//2 else e

def size_estimate(e):
check x != 0 to avoid ceil(-Infinity) that fails
return vector(Zz, len(e), [ceil(log(abs(x), 2)) if x != 0 else 0 for x in e])

def odot(a, b, q):
return vector(IntegerModRing(q), len(a), [a[i] * bl[i] for i in range(len(a))])

LAMBDA = 256
SEEDSIZE = 48

LOG2_Q =50

N = 80

B=6

M =81

Q = 1125899906842624

COFSIZE = 4096

SECRETVAL_LENGTH = 1

SHAREDKEYSIZE=M * B/ 8

ERROR_LENGTH = 1

PK_LENGTH =M * 8

RANGE = 7

B_BAR=10G2_Q-B

CRYPTO_SECRETKEYBYTES = N + SEEDSIZE

CRYPTO_PUBLICKEYBYTES = PK_LENGTH + SEEDSIZE CRYPTO_BYTES = M CRYPTO_CIPHERTEXTBYTES = PK_LENGTH + M

def pack_pk (b1, seed):
:params: b1, list(int)
:params: seed, list(int)

:returns: pk, list(int)
bl =bi1[:]
pk = [0] * CRYPTO_PUBLICKEYBYTES
foriin range(SEEDSIZE):
pkli] = seed[i]
mask = 255
foriin range(M):
forjin range(8)[::-1]:

temp = b1[i] & mask

b1[i] = b1[i] >> 8

pk[SEEDSIZE+i*8+j] = temp
return pk

def unpack_pk(pk):

:params: pk, list(int)

:returns: seed, list(int)
:returns: bl, list(int)
seed = pk[:SEEDSIZE]
bl=[0]*M
foriin range(M):
unpacks PK to give out seed and the public vector b1*/
for jin range(7):
temp = pk[i*8+j+SEEDSIZE]
b1[i]=b1[i] + temp
b1[i]=b1[i] << 8
bi[i] = b1[i] + pk[i*8+7+SEEDSIZE]
return seed, bl

def pack_ct(b2, c):
:params: b2, list(int)
:params: ¢, list(int)

:returns: ct, list(int)
b2 =b2[:]
ct=[0] * CRYPTO_CIPHERTEXTBYTES
foriin range(M):
ct[i] = cJi]
mask = 255

foriin range(M):
forjin range(8)[::-1]:
temp = b2[i] & mask # this is casted to (unsigned char) in the ref implementation
b2[i] = b2[i] >>8
ct[M+i*8+j] = temp
return ct

def unpack_ct(ct):

:params: ct, list(int)

:returns: b2, list(int)
:returns: ¢, list(int)

c=[0]*M

b2 =[0] * M

foriin range(M):
c[i] = ct]i]

foriin range(M):
for jin range(7):
temp = ct[i*8+j+M]
b2[i] = b2[i] + temp
b2[i] = b2[i] << 8
b2[i] = b2[i] + ct[i*8+7+M]
return (b2, c)

def test_pack_unpack():
kat = openKAT("CFPKM/KAT/KEM/CFPKM128/PQCkemKAT_128.rsp")

ix = randint(0, len(kat)-1)
pk = kat[ix]["pk"]
ct = kat[ix]["ct"]

test pack/unpack pk

print "Saved pk"

print pk

print

seedl, b11 = unpack_pk(pk)

pk2 = pack_pk(b11, seedl)

print "Packed o Unpacked (pk) = pk"
print pk2 == pk

print

seed2, b12 = unpack_pk(pk2)

print "seeds match", seed1 == seed2
print "b1l match", b11 == b12

print

test pack/unpack ct

print "Saved ct"

print ct

print

b21, c1 = unpack_ct(ct)

ct2 = pack_ct(b21, c1)

print "Packed o Unpacked (ct) = ct",
print ct2 ==ct

print

b22, c2 = unpack_ct(ct2)
print "b2 match", b21 == b22
print "c match", c1 == c2

def attack():
kat = openKAT("CFPKM/KAT/KEM/CFPKM128/PQCkemKAT_128.rsp")

est =]

forix in range(len(kat)):
pk = kat[ix]["pk"]
ct = kat[ix]["ct"]
ss = kat[ix]["ss"

seed, bl = unpack_pk(pk)
b2, ¢ = unpack_ct(ct)

b1 = vector(IntegerModRing(Q), b1)
b2 = vector(IntegerModRing(Q), b2)
ss = vector(IntegerModRing(Q), ss)

Print the bitlength of the difference between bl odot b2 and the shared secret.
est += [size_estimate(balance(odot(b1, b2, Q) - 2**B_BAR * ss, Q))]
print est[ix]

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe @list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pqc-forum/.

https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov

