
A Code-based Hash and Sign Signature Scheme

Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas
Debris-Alazard, Philippe Gaborit, Pierre Karpman, Johanna Loyer, Ruben
Niederhagen, Nicolas Sendrier, Benjamin Smith and Jean-Pierre Tillich

Inria, École Polytechnique

ROADMAP

1. Wave: standardization candidate (NIST),

2. Next steps,

3. Code-based hash and sign,

4. Design Rationale: Wave Trapdoor,

5. Leakage free signatures,

6. Removing Approximation in Prange.

https://wave-sign.org

1

https://wave-sign.org

WAVE: STANDARDIZATION CANDIDATE (NIST)

GPV FRAMEWORK

Wave is a hash and sign digital signature scheme.

By proving that signatures are leakage-free,

−→ Wave instantiates Gentry-Peikert-Vaikuntanathan (GPV) framework
like Falcon, Squirrels, HuFu

But Wave security relies on coding problems

3

ADVANTAGES

Even if parameters are highly conservative

• Short signatures: linear scaling in the security

Post-quantum target security Level I Level III Level V
Signature length (Bytes) 822 1249 1644

• Fast Verification: (Intel Core i5-1135G7 platform at 2.40GHz)

Post-quantum target security Level I Level III Level V
Verification (MCycles) 1.2 2.5 4.3

• Immune to statistical attacks.

• Proven secure (Q)ROM with tight reductions.

4

LIMITATIONS

• Big public-key: quadratic scaling in the security

Post-quantum target security Level I Level III Level V
Public-key size (MBytes) 3.6 7.8 13.6

• Signing and key generation rely on Gaussian elimination on large matrices

• Security based on fairly new assumption (2018): distinguishing random and
generalized (U | U+ V)-codes

5

NEXT STEPS

ABOUT PARAMETERS

Wave parameters are highly conservative!

Attack model:
Cost of A to solve P :

α
def
= lim

n→+∞

1
n
log2 Time (A)

Then choose n s.t:
αn = λ (α ≈ 0.0149)

−→ It ignores (super-)polynomial factors and memory access!

For instance: considered attack to forge a signature
Time = P(λ)2λ and Memory = Q(λ)2λ.

Next Step:
Providing parameters for “concrete” security.

7

A MORE OPTIMIZED/SECURE IMPLEMENTATION

Wave reference implementation
• portable C99,

• KeyGen and Sign in constant-time,

• bit-sliced arithmetic over F3 .

Bottleneck of Wave: Gaussian elimination on big matrices/memory access

(it impacts key generation and signing not verification)

Next Step:

• Providing optimized implementation: AVX,
−→ Wavelet: AVX2 (intel) & ARM CORTEX M4 in verification (2x faster),

• Providing a Wave version with countermeasures, maskings,
• Providing (friendly) tools to ensure that Wave is properly implemented.

8

CODE-BASED HASH AND SIGN

FULL DOMAIN HASH SIGNATURE SCHEME

▶ Hash(·) hash function,

▶ f trapdoor one-way function

x f(x)

Easy

Hard
Easy with trapdoor

▶ To sign m:
Compute σ ∈ f−1(Hash(m)).

f needs to be surjective!

▶ To verify (m, σ):
Check f(σ) ?

= Hash(m).
10

CODE-BASED ONE-WAY FUNCTION (1)

−→ Coding theory provides one-way functions!

• A [n, k]-code C is a defined as a k dimension subspace of Fnq .

• Fnq embedded with Hamming weight,

∀x ∈ Fnq, |x| def= ♯ {i, x(i) 6= 0} .

11

CODE-BASED ONE-WAY FUNCTION (2)

One-way in code-based crypto:

fw : (c, e) ∈ C × {e : |e| = w} 7−→ c+ e.

(inverting fw : decoding C at distance w)

−→ To hope fw surjective: choose noise distance w large enough

But, be careful...

w parametrizes the hardness of inverting fw!

−→ for some w, it is easy to invert fw ...

12

CODE-BASED ONE-WAY FUNCTION (2)

One-way in code-based crypto:

fw : (c, e) ∈ C × {e : |e| = w} 7−→ c+ e.

(inverting fw : decoding C at distance w)

−→ To hope fw surjective: choose noise distance w large enough

But, be careful...

w parametrizes the hardness of inverting fw!

−→ for some w, it is easy to invert fw ...

13

HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting fw:

• Given: [n, k]-C, y uniformly distributed over Fnq and w,
• Find: c ∈ C such that |y− c| = w.

Fact: by linear algebra (Gaussian elimination)

C has dimension k: ∀z ∈ Fkq , easy to compute c ∈ C such that,

c = z

k symbols freely chosen n− k, no control

∈ C

Given a uniform y ∈ Fnq : compute c ∈ C,

y− c =

n− k symbols
(Unif Distributed over Fq)

k symbols (to choose, guide the distance)

e e′′

exponential polynomial exponential
w

0 nq−1
q (n− k) k+ q−1

q (n− k)

14

HARD OR EASY TO INVERT? PRANGE ALGORITHM

Inverting fw:

• Given: [n, k]-C, y uniformly distributed over Fnq and w,
• Find: c ∈ C such that |y− c| = w.

Fact: by linear algebra (Gaussian elimination)

C has dimension k: ∀z ∈ Fkq , easy to compute c ∈ C such that,

c = z

k symbols freely chosen n− k, no control

∈ C

Given a uniform y ∈ Fnq : compute c ∈ C,

y− c =

n− k symbols
(Unif Distributed over Fq)

k symbols (to choose, guide the distance)

e e′′

exponential polynomial exponential
w

0 nq−1
q (n− k) k+ q−1

q (n− k) 15

INSTANTIATION TO A SIGNATURE SCHEME

▶ Public data: a hash function Hash(·), an [n, k]-code C and,

w /∈
[
q− 1
q

(n− k), k+ q− 1
q

(n− k)
]

(signing distance)

▶ Signing m:

1. Hashing: m −→ y def= Hash(m) ∈ Fnq ,

2. Decoding: find with a trapdoor c ∈ C such that |y− c| = w.

▶ Verifying (m, c):
c ∈ C and |Hash(m)− c| = w.

Security:
Signing distance w s.t hard to find c ∈ C at distance w

−→ Unless to own a secret/trapdoor structure on C!

16

DECODING WITH OUR TRAPDOOR

hard
easy

hard
w

0 n

w−
easy w+

easy

wUV− w+
UV

easy with our trapdoor

Trapdoor:
An [n, k]-code C with a peculiar structure enabling to decode at distance

w /∈ [w−
easy,w+

easy]

Security:

C indistinguishable from a random code (unless to know its peculiar structure)

17

DECODING WITH OUR TRAPDOOR

hard
easy

hard
w

0 n

w−
easy w+

easy

wUV− w+
UV

easy with our trapdoor

Trapdoor:
An [n, k]-code C with a peculiar structure enabling to decode at distance

w /∈ [w−
easy,w+

easy]

Security:

C indistinguishable from a random code (unless to know its peculiar structure)

18

DESIGN RATIONALE: WAVE TRAPDOOR

SOME NOTATION

• Vector permutation:

x = (x(i))1≤i≤n ∈ Fnq ; π permutation of {1, . . . , n}.

xπ def
= (x(π(i)))1≤i≤n

• Component-wise product:

a ⋆ x def= (a(i)x(i))1≤i≤n

20

TRAPDOOR: GENERALIZED (U | U+V)-CODES

Generalized (U | U+ V)-codes:
Let U and V be [n/2, kU] and [n/2, kV]-codes

C def
=

{
(xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π : xU ∈ U and xV ∈ V

}
where π permutation, b, c,d ∈ Fn/2q verify c(i) 6= 0 and d(i)− b(i)c(i) = 1.

−→ It defines a code with dimension k def
= kU + kV

Secret-key/Trapdoor: U, V,b, c,d and π.

Security assumption: Distinguishing Wave Key (DWK)
Hard to distinguish random and generalized (U | U+ V) codes.

21

OUR DECODING ALGORITHM (1)

Secret-key/Trapdoor: U, V,b, c,d and π.

1. Given Hash(m) = y ∈ Fnq : decompose y = (yL | yR)π ,

2. Compute any xV ∈ V with Prange Algorithm,

3. Using Prange Algorithm: compute xU ∈ U by choosing kU symbols xU(i)’s such that xU(i) + b(i)xV(i) 6= yL(i)
c(i)xU + d(i)xV(i) 6= yR(i)

(i) q ≥ 3, (ii) c(i) 6= 0 and (iii) d(i)− b(i)c(i) = 1.

4. Return c def= (xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π ∈ C (public code).

What is the (typical) distance w between y and c?

22

OUR DECODING ALGORITHM (2)

n/2

xchooseU (i) + b(i)xV(i)− yL(i) c(i)xchooseU (i) + d(i)x1V(i)− yR(i)

no control

n/2− kU

xV(i)xV = ∈ VGiven any valid

c− (yL|yR) =

xchooseU (i)xU = ∈ U

kU

▶ Choose kU symbols xchooseU (i) such that:

 xchooseU (i) + b(i)xV(i)− yL(i) 6= 0
c(i)xchooseU (i) + d(i)xV(i)− yR(i) 6= 0

Typical distance:

w = 2kU + 2q− 1
q

(n/2− kU) > w+
easy = (kU + kV) +

q− 1
q

(n− (kU + kV))

as soon as: kU > kV (parameter constraint in Wave)

23

BE CAREFUL: A HUGE ISSUE

Collecting signatures:
(xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π

may enable to recover the secret, for instance π...

Above procedure leaks quickly π...

Proper Wave specification/implementation:
Choose carefully internal distribution and perform rejection sampling

to produce signatures immune to statistical attacks

hard
easy

hard
w

0 n

w−
easy w+

easy

w−
UV w+

UV

easy with our trapdoor

no leakage with our trapdoor

24

BE CAREFUL: A HUGE ISSUE

Collecting signatures:
(xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π

may enable to recover the secret, for instance π...

Above procedure leaks quickly π...

Proper Wave specification/implementation:
Choose carefully internal distribution and perform rejection sampling

to produce signatures immune to statistical attacks

hard
easy

hard
w

0 n

w−
easy w+

easy

w−
UV w+

UV

easy with our trapdoor

no leakage with our trapdoor
25

AN IMPORTANT CHOICE OF PARAMETERS

In what follows:
We will work in F3 , q = 3.

26

LEAKAGE FREE SIGNATURES

A FORMAL POINT OF VIEW

A signature: x ∈ f−1(y).

−→ x computed via a trapdoor/secret!

Ideal situation:
x distribution independent of the secret

−→ For instance: x uniform over its domain when y uniform

A hard problem
In our case: exponential number of preimages

28

OUR AIM

Given uniform y: compute (xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π such that

esgn def
= y− (xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π uniform over words of Hamming weight w.

Important fact: as d(i)− b(i)c(i) = 1 for all i,

φ : (zU, zV) 7−→ (zU + b ⋆ zV | c ⋆ zU + d ⋆ zV)π bijection.

1. Write y = (yU + b ⋆ yV | c ⋆ yU + d ⋆ yV)π

2. Deduce that esgn = (eU + b ⋆ eV | c ⋆ eU + d ⋆ eV)π where

 eV
def
= yV − xV

eU
def
= yU − xU

Here xV and xU are computed via Prange algorithm...

29

OUR AIM

Given uniform y: compute (xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π such that

esgn def
= y− (xU + b ⋆ xV | c ⋆ xU + d ⋆ xV)π uniform over words of Hamming weight w.

Important fact: as d(i)− b(i)c(i) = 1 for all i,

φ : (zU, zV) 7−→ (zU + b ⋆ zV | c ⋆ zU + d ⋆ zV)π bijection.

1. Write y = (yU + b ⋆ yV | c ⋆ yU + d ⋆ yV)π

2. Deduce that esgn = (eU + b ⋆ eV | c ⋆ eU + d ⋆ eV)π where

 eV
def
= yV − xV

eU
def
= yU − xU

Here xV and xU are computed via Prange algorithm...

30

LEAKAGE-FREE SIGNATURES

esgn def
= (eU + b ⋆ eV | c ⋆ eU + d ⋆ eV)π and eunif unif word of weight w.

−→ Write: eunif = (eunifU + b ⋆ eunifV | c ⋆ eunifU + d ⋆ eunifV)π

We would like,
esgn ∼ eunif

In a first step we want,
eV ∼ eunifV where eV = yV − xV = yV − Prange (V, yV)

Important remark (function of weight):

P
(
eunifV = x

)
=

1
♯{y : |y| = t}

P
(∣∣∣eunifV

∣∣∣ = t
)

when |x| = t.

Approximation: Distribution of Prange algorithm, only function of the weight

P(Prange(·) = x | |Prange(·)| = t) = 1
♯{y : |y| = t}

when |x| = t.

−→ Uniformity property: enough to reach |eV| ∼ |eunifV | as distribution

31

GUIDE THE WEIGHT OF eV

• We first look for E(|eV|) = E(|eunifV |)

eV =

n/2− kV symbolskV symbols

e′V e′′V

• e′′V follows a uniform law over Fn/2−kV
3 : E(|e′′V |) =

2
3 (n/2− kV)

• e′V can be chosen.

−→ kV is fixed as: E(|e′V|) +
2
3 (n/2− kV) = E

(
|eunifV |

)

32

REJECTION SAMPLING

Perform rejection sampling!

P(accept) = min
j

P(|eV| = j)
P(|eunifV | = j)

� 1.
33

REJECTION SAMPLING: TAIL

P(accept) = min
j

P(accept) = min
j

P(|eV| = j)
P(|eunifV | = j)

� 1.

34

PROBABILISTIC CHOICE OF e′V

eV =

n/2− kV symbolskV symbols

e′V e′′V

• e′′V follows a uniform law: its variance is fixed,

Choose the weight of e′V as a random variable!

• |e′V| s.t:


E(|e′V|) +

2
3 (n/2− kV) = E

(
|eunifV |

)
|e′V| high variance!

35

REJECTION SAMPLING

P(accept) = min
j

P(accept) = min
j

P(|eV| = j)
P(|eunifV | = j)

≈ Cste.
36

REMOVING THE REJECTION SAMPLING

−→ Distribution |eV|′ can be precisely chosen s.t. P(accept) ≈ 1

Using Renyi divergence argument: removing rejection sampling!

Signing algorithm: signatures don’t leak any information on the secret-key!

37

REMOVING APPROXIMATION IN PRANGE

PRANGE ALGORITHM: GAUSSIAN ELIMINATION

To represent C: use a basis/generator-matrix G ∈ Fk×n
q ,

C =
{
xG : x ∈ Fkq

} (
rows of G form a basis of C

)
.

Prange algorithm: by linear algebra (Gaussian elimination)

C has dimension k: ∀z ∈ Fkq , easy to compute c ∈ C such that,

c = z

k symbols freely chosen n− k, no control

∈ C

Where the k symbols are picked is not uniform!

1. Pick I ⊆ {1, · · · , n} such that GI has rank k (columns of G indexed by I),

2. Compute the codeword xG where x def= zG−1
I .

39

NON-UNIFORMITY OF PRANGE

P (Prange(·) = x | |Prange(·)| = t) = 1
♯{y : |y| = t}

: only ≈

−→ Only ≈ as we cannot invert the system for all k coordinates!

n− k symbolsk columns

echoose1 Unif. Distrib.

40

NON-UNIFORMITY OF PRANGE

P (Prange(·) = x | |Prange(·)| = t) = 1
♯{y : |y| = t}

: only ≈

−→ Only ≈ as we cannot invert the system for all k coordinates!

n− k symbols

n− k+ d symbols
true with proba. ≈ 1− 1/3k−(k−d)

k columns

k− d columns where G has rank k

echoose1

echoose1

Unif. Distrib.

41

NON-UNIFORMITY OF PRANGE

P (Prange(·) = x | |Prange(·)| = t) = 1
♯{y : |y| = t}

: only ≈

−→ Only ≈ as we cannot invert the system for all k coordinates!

n− k symbols

n− k+ d symbols
true with proba. ≈ 1− 1/3k−(k−d)

k columns

k− d columns where G has rank k

echoose1

echoose1

echoose1

Unif. Distrib.

Unif. Distrib.Unif. Distrib.

Choose rand. vector on these d coordinates

n− k symbolsk columns

42

CONCLUSION

Signing algorithm: signatures don’t leak any information on the secret-key!

−→ It enables to reduce the security (EUF-CMA in (Q)ROM) to the hardness of:

Security reduction ((Q)ROM):

• Decoding a random linear code at distance w ≈ 0.9n,

• Distinguishing random and generalized (U | U+ V)-codes.

43

	Wave: standardization candidate (NIST)
	Next Steps
	Code-based Hash and Sign
	Design Rationale: Wave Trapdoor
	Leakage free signatures
	Removing Approximation in Prange

