
Threshold EdDSA/Schnorr Signatures
Multi-Party Threshold Cryptography Project, Cryptographic Technology Group, Computer Security Division

EdDSA / Schnorr Signatures

EdDSA = Edwards-Curve Digital Signature Algorithm

Known as a variant of the Schnorr signature scheme (1989)

Has three operations: Keygen; Sign; Verify.

The EdDSA signature formula σ = (R,S)











σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

Secret nonce r = H(ν ,M)

Base point (generator of order n)

Hash function
Public verification key Q = s • G

Message being signed

Private signing key

Nonce “commitment” R = r • G

“Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Fig. 1. Annotated formula of an EdDSA signature486

The Threshold Paradigm

• The private key is split (via secret-
sharing) across various parties.

• The signing goes through without
the key being in any one place.

• It is secure even if a threshold num-
ber of parties is compromised.

Poster presented at the NIST-ITL Science Day 2022 (October 24th), by
Luís Brandão (Foreign Guest Researcher at NIST, contractor from Strativia)
and Michael Davidson. Reference: https://doi.org/10.6028/NIST.IR.8214B.ipd

Recent publication: IR 8214B

Notes on Threshold EdDSA/Schnorr Signatures

• Reviews security of conventional EdDSA

• Summarizes known threshold approaches

• Supports future call for threshold proposals

Some properties of conventional scheme:

• Deterministic (non-verifiably): The Ed-
DSA standard asks for deterministic signatures
(avoids problems with bad randomness), but ma-
licious signer can undetectably randomize it.

• Strong unforgeability (SUF): Adversary
(without private key) cannot by themself create a
new signature (even for already signed messages).

• Strong binding? Standardized verification
does not avoid the use of malformed keys. Ma-
licious signer can find a different pair public key /
message that is consistent with some signature.

“Threshold” considerations

• Interchangeability: threshold-produced
EdDSA signatures must be verifiable
with the conventional “Verify” algorithm.
This allows probabilistic signatures.

• Concurrency: the set of “parties” must
securely handle concurrent signature request
(where the quorum may change).

• Communication model: Timing assump-
tions (e.g., synchrony) strongly affect the set
of feasible protocols. Some primitives are often
modularized, e.g., broadcast.

• Good/Bad randomness: Good random-
ness from a single party can be leveraged to im-
prove the randomness used by other parties.

Takeaways:
• Gained insights: also useful for other schemes.

• Intended followup: Public call for threshold
schemes; future guidance and recommendations.

https://doi.org/10.6028/NIST.IR.8214B.ipd

