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Summary of Result

• SPHINCS+ is a stateless hash-based signature selected for 
standardization by NIST

• We present a forgery attack that reduces classical security by 40 bits
• For submitted parameter sets:

• That target Category 5 

• While using SHA-256

• Our attack builds on a previous attack by Antonov on the DM-SPR 
property of SHA-256 (a security assumption for SPHINCS+)

• The SPHINCS+ team has proposed a tweak which defeats our attack by 
using SHA-512 instead of SHA-256 (where necessary)



Outline

• DM-SPR Property and Antonov’s Attack

• Using Antonov’s Attack to Forge WOTS+  (This Paper) 

• Optimizations (This Paper)

• The SPHINCS + Tweak

• Conclusion



Prefixes and
Distinct Function Multitarget Preimage Resistance (DM-SPR)

• Many places in hypertree where a preimage can create a forgery:
• Hashes in Merkle Trees

• Hash Chains in WOTS+

• Hash trees in FORS

• FORS public key hash

• WOTS+ public key hash (Our attack here)

• New targets are revealed with every honest signature

• To avoid a 1 out of 𝑡 multi-target preimage attack:
• Make sure hash input at each hypertree location has a distinct prefix

• Formalized as a tweakable hash function with DM-SPR property 



Antonov’s Attack on SHA-256 
DM-SPR [Antonov 2022]
• Collect 𝑡 target hashes with different prefixes

• Find preimage with the same prefix for 1 of them
• Use Herding to reach same state from all prefixes at the penultimate block
• Use Multi-Target preimage search on compression function to find a block to append 

and reach a target

• Longest hash input in SPHINCS + is WOTS+ public key hash

• That’s still pretty short (34 blocks)
• To balance cost of herding, multi-target preimage search, use some compression-

function 3-collisions
• Let 𝑡 be 210323 ≈ 246 instead of 233

• 3-Collision search cost: 1.5 ∙ 323 ∙ 2170.7 ≈ 2208

• Multi-Target preimage cost: 2256/246 ≈ 2210



What’s Left to Do?

• Antonov’s attack lets us create a validly-signed WOTS+ public key 
preimage

• But we need to know the corresponding private key to forge a 
SPHINCS+ signature
• This involves knowing preimages of parts of WOTS+ public key
• For validity, prefix must match hypertree location
• But hypertree location depends which target we reached
• No way to force correct prefix for all targets

• Or at least part of it…
• As long as we can sign more than one possible digest with our WOTS+ key
• Can graft a forged Merkle-Tree root to the hypertree for less than 2256 work!



Our Attack: Outline

• Find a preimage of some WOTS+ public key with enough private key 
info to sign some digests

• Brute-force search for a valid Merkle/FORS tree whose root has 
signable digest

• Sign the tree root with the attacked WOTS+ key

• To forge a signature, try message randomization strings until the 
hypertree address is a descendent address of the tree root 



WOTS+ Signature

• Write digest as base-𝑤 (16) 
number

• Append a base-𝑤 checksum
• (960 − <sum of digits>)

• Sign each digit 𝑑𝑖 of digest plus 
checksum by:
• Hash 𝑠𝑘𝑖,0 (with prefix) 𝑑𝑖 times
• Put the result in the signature

• Note: The signature of 0xF is just 
𝑝𝑘𝑖



Finding a Merkle/FORS Root 
We Can Sign
• Aim to sign a digest like:

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

• Modify Antonov’s multi-target preimage search to find a WOTS+ public key that 
can sign this

• Treat the part that signs xxxx… as prefix – so we know 𝑠𝑘𝑖,0 for this part

• Use the last block of the prefix and the part that signs FFFF… for herding and multitarget 
preimage search

• Target the SHA-256 state immediately before the first block that signs checksum

• The part that signs the checksum will come from the target honest signature

• Can forge a signature on any Merkle/FORS root of the above form as long as
checksum works out



Making Sure the Checksum 
Works Out
• For a digest like: 

xxxxxxxx xxxxxxxx xxxxxxxF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

• Checksum is 960 − 41 ∙ 15 − σ𝑥

• We can increment, but not decrement, digits of honest checksum
• Increment a digit by hashing (with prefix) 𝑠𝑘𝑖,𝑑𝑖

• Can choose targets with unusually small checksums

• Need σ𝑥 to be small enough with high enough probability



Optimization: Batched Multicollision Search 

• Best parameterization of our attack involves finding lots of 4-way collisions 
with distinct prefixes

• It is cheaper to search for lots of collisions at once
• Finding a single 4-way collision costs ~2192

• Finding 𝑡 4-way collisions costs ~2192𝑡1/4

• (Ignoring prefixes and memory access costs)

• To get good memory access costs, use parallel collision search techniques

• To avoid wasting time colliding already-used prefixes
• Compute collisions in smaller batches of size α𝑡

• More detail in paper



Memory Considerations for our Attack

• Sometimes memory intensive attacks or attacks that don’t parallelize 
well are more expensive in practice than simple time-complexity 
suggests

• To show these considerations do not undermine our attack:
• We analyze highly parallel implementations of all steps of our attack

• in a computation model, where reading or writing a bit to a memory of size 𝑀
costs 2−5 𝑀 bit operations (probably somewhat pessimistic)

• This only changed the cost of our attack by about 2 bits of security



Memory/Parallelization-Friendly Collision Search
[V-OW 1994]
• Each of M threads picks, and 

remembers, a random starting point 
xi.

• Each thread  iteratively hashes xi until 
it reaches a “distinguished point” with 
n/2 – log2(M) leading zeroes.

• The threads then collectively sort 
their outputs to find colliding 
distinguished points, yi, yj.

• Two threads iteratively recompute
hashes of xi, xj to find the hash 
collision.

• Time = ~2n/2/ M; Space = ~M.
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Adapting V-OW to 𝑘-collisions
[JL 2009] 

• Similar to V-OW, but distinguished points need 
𝑘−1

𝑘
𝑛 − log2(𝑀)

leading zeroes

• 𝑀 needs to be at least as large as the expected number of 2-

collisions: 2
𝑘−2

𝑘
𝑛



Important Memory Costs

• When using V-OW like techniques to find collisions with different 
prefixes
• need to define a function on a 256-bit input that will pick each of 𝑡 prefixes 

1

𝑡
of the time

• In order to deal with different prefixes either
a. Recompute state including hash-chains every time
b. Store precomputed values (about 512𝑡 bits)

• Option b turns out to be cheaper, even with memory costs for reasonable 
values 𝑡

• Sorting distinguished points costs 𝑂(𝑀1.5)
• Dominant cost when looking for 4-way or bigger collisions



Attack Complexity



SPHINCS+ Tweak [Hülsing 2022]

• In response to Antonov’s attack on DM-SPR the SPHINCS + team 
issued a tweak to the SPHINCS+ specification
• Replaced SHA-256 with SHA-512, for hashing multi-block inputs in Category 3 

and 5 parameters

• Still some use of SHA-256, but doesn’t seem exploitable



Conclusion

• Our attack shows that some submitted parameter sets of SPHINCS+

are not as strong as claimed

• The problem is not the security proof for the SPHINCS+ construction, 
but how its tweakable hash functions are instantiated

• Lesson: need to be very careful trying to get more than 128 bits of 
security from SHA-256

• On the upside:
• SPHINCS+’s proposed tweak seems to address these issues
• SHA-256 on fixed-length inputs pretty reliably gets 128 bits of security, so it’s 

unlikely this sort of oversight leads to a practical break



Thank You!
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