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New Efficient Characteristic Three Polynomial Multiplication Algorithms and Their Applications to NTRU Prime

1 / 70



Outline
1 Problem Definition

Quantum Computers and Post Quantum Cryptography
NTRU Prime Protocol
NTRU Prime Decapsulation & Char 3 Polynomial Multiplication
Importance of Polynomial Multiplication in Cryptography
Our Purpose

2 Well-Known Characteristic 3 Polynomial Multiplication Algorithms & Recent
Improvements

3 Our Contribution: New Efficient 4-way and 5-way Char 3 Polynomial
Multiplication Algorithms

New 4-way Multiplication Algorithm (N1)
An Improved 4-way Multiplication Algorithm (N2)
Another Improved 4-way Multiplication Algorithm (N3)
New 5-way Multiplication Algorithm (V1)
Unbalanced 5-way Multiplication Algorithm (U1)

4 Application to NTRU Prime Decapsulation and Implementation Results
Bernstein’s Hybrid-1 Approach vs Our Hybrid Methods
Bernstein’s Improved B1-Hybrid Approach vs Our Improved Hybrid Methods

5 Conclusion
6 References

Esra YENİARAS
New Efficient Characteristic Three Polynomial Multiplication Algorithms and Their Applications to NTRU Prime

2 / 70



Quantum Computers and Post-Quantum Cryptography

QUANTUM COMPUTERS

Shor’s Quantum Factoring Algorithm: IFP (RSA), DLP
(DH, ECDH) are vulnerable to attacks by sufficiently strong
quantum computers. Thus, we need quantum-resistant
algorithms!

Grover’s Search Algorithm: Reduces the search space from
O(N) → O( 2

√
N) for brute force attacks!

AES - 128→ 264 not secure enough! X

AES - 256→ 2128 X
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NIST’s Post-Quantum Cryptography Competition

NIST started a PQC Standardization Process in 2016 and
different types of quantum-resistant algorithms are
submitted as follows:

Lattice-Based: Saber, CRYSTALS-Kyber,
CRYSTALS-Dilithium, New Hope, Frodo KEM, NTRU,
NTRU Prime.

Code-Based: BIKE, Classic McEllice, HQC

Supersingular Isogeny-Based: SIKE.

Hash-Based: Picnic, SPHINCS+.

Multivariate-Based: GeMSS, Rainbow.

https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions
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NIST 3rd Round Results:

Third Round Finalists:

Public Key Encryption/KEMs: Classic McEliece,
CRYSTALS-Kyber, NTRU, Saber.

Digital Signatures: CRYSTALS-Dilithium, FALCON,
Rainbow

Third Round Alternate Candidates:

Public Key Encryption/KEMs: BIKE, FrodoKEM, HQC,
NTRU Prime, SIKE

Digital Signatures: GeMSS, Picnic, SPHINCS+
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NIST Algorithms to be Standardized and the 4th Round:

Algorithms to be Standardized:

Public Key Encryption/KEMs: CRYSTALS-Kyber

Digital Signatures: CRYSTALS-Dilithium, FALCON,
SPHINCS+

Candidates Advancing to the Fourth Round:

Public Key Encryption/KEMs: BIKE, Classic McEliece,
HQC, SIKE

Digital Signatures:
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Lattice-Based Cryptography and Quantum Resistance

LATTICE-BASED HARD PROBLEMS:

1- Shortest Vector Problem (SVP)

2- Closest Vector Problem (CVP)

3- The Shortest Independent Vector Problem (SIVP)

4- Learning with errors (LWE)

5- Ring Learning with Errors (R-LWE)

6- Module Learning with Errors (M-LWE)
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NTRU Prime KEM: A NIST PQC Candidate

NTRU PRIME: A LATTICE-BASED PQC ALGORITHM

NTRU Prime KEM: A Lattice-based KEM by Bernstein et
al.

Advanced to Round 3 as alternative candidate.

NTRU Prime Based on hard problem (SVP), to solve for
input size n ≥ 100→ Quantum SecureX
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Why NTRU Prime: Char 3 Polynomial Multiplication

Google-Couldfire Experiment: NTRU Prime KEM with
batch key generation feature is considered as a faster and a
more secure alternative to ntruhrss701 for TLS 1.3 in
2021 [6].

NTRU Prime uses characteristic-3 polynomial
multiplication in its decapsulation phase. (Possible
Improvement Here!)
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NTRU Prime Decapsulation

NTRU PRIME DECAPSULATION & CHAR 3 POLYNOMIAL MULTIPLICATION

• Decapsulation includes poly. mult. in Z3[x ]/(xp − x − 1) where p is prime [1].

Algorithm 1 Streamlined NTRU Prime Decapsulation Decap
(C ,Sk)

1: Input: (C ,Sk)
2: Output: HashSession(1, r,C ) or HashSession(0, p,C )
3: c ← Decode(c)
4: e ← (Rounded(c .(3f )) mod 3) ∈ R/3
5: r ′ ← Lift(e.g−1) ∈ R/q
6: c ′ ← Round(h.r ′)
7: c′ ← Encode(c ′)
8: C ′ ← (c′, HashConfirm(r′, h))
9: if C ′ == C then

10: return HashSession(1, r,C )
11: else
12: return HashSession(0, p,C ))
13: end if
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NTRU Prime Parameters

p and q are prime numbers, q ≥ 17, 0 < ω ≤ p, 2p ≥ 3ω,
q ≥ 16ω + 1 and xp − x − 1 is an irreducible polynomial in
the polynomial ring Zq[x ].

R = Z[x ]/(xp − x − 1) ring
R/3 = Z3[x ]/(xp − x − 1) ring
R/q = Zq[x ]/(xp − x − 1) field

If the parameters are p = 761, q = 4591 and ω = 286 then
the cryptosystem is represented as sntrup761.
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Another NIST PQC Candidate: NTRU KEM

MORE PQC ALGORITHMS & CHAR 3 MULTIPLICATION

NTRU KEM:

- Hüsling et al., Advanced to Round 3 as a main candidate.

- Merger of two earlier submissions NTRU HRSS-KEM and
NTRUEncrypt.

- Polynomial multiplication in Z3[x ]/(xn−1 + xn−2 + ... + 1)
may improve the efficiency of the decapsulation phase.

Thus, it is worth to improve the arithmetical completixy of
the polynomial multiplication over F3.
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Importance of Polynomial Multiplication in Cryptography

POLYNOMIAL MULTIPLICATION&CHARACTERISTIC 3
FIELDS:

Polynomial multiplication is a very commonly used,
important tool in most cryptographic protocols that effects
the efficiency.

Polynomial multiplication in char 3 fields is used in many
cryptographic applications such as pairing-based
cryptography and/or post-quantum cryptography: NTRU
Prime, NTRU exc.

There exist efficient 2-way, 3-way, 4-way, 5-way (or above)
split type poly. mult. algorithms in binary fields. However, in
char 3, we have up to 3-way split algorithms so far. This can
be improved!
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Purpose

OUR PURPOSE IN THIS STUDY:

Primary Purpose: To develop new & more efficient
polynomial multiplication algorithms that are specific to
characteristic 3 fields in general.

And improve arithmetical complexities for multiplying
polynomials in char 3. X

Secondary Purpose: To apply these new char 3 algorithms
on the NTRU Prime Decapsulation!

And improve the implementation run-time of NTRU
Prime DecapsulationX
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Well-Known Characteristic 3 Polynomial Multiplication
Algorithms

X SB: Schoolbook polynomial multiplication algorithm.

X LT: Schoolbook recursion method [8]. We refer to it as the
last term method.

X KA2: Improved (Refined) Karatsuba 2-way polynomial
multiplication algorithm [8].

X UB: Unbalanced Refined Karatsuba 2-way polynomial
multiplication algorithm [8].

X KA3: (Improved) Karatsuba like 3-way polynomial
multiplication algorithm [10].
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Well-Known Characteristic 3 Polynomial Multiplication
Algorithms

RECENT IMPROVEMENTS:

X A3: In 2018, Cenk, Hasan, and Zadeh [7] introduced a 3-way
split polynomial multiplication algorithm using interpolation
method which is similar to Toom-Cook’s formula [7].

→ A3 is more efficient than SB, Refined Karatsuba 2-way,
(Improved) Karatsuba like 3-way algorithms.

X B1: In 2021, Bernstein et al. proposed a 3-way algorithm
in [6, 8].

→ B1 is more efficient than A3 over F3 but slower than it
over F9.
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Our Contributions: New Efficient Multiplication Algorithms
in Char 3

We develop new efficient 4-way split algorithms N1, N2, and
N3.

Furthermore, we develop new efficient 5-way split algorithm
V1 and the unbalanced 5-way version U1.

We reduce the arithmetical complexities for Char 3 polynomial
multiplication in general, by the help of the proposed N1, N2,
N3, V1, and U1 algorithms.

Finally, we apply the hybrid use of N1, N2, N3, V1 and U1
combined with the others on NTRU Prime Decapsulation.
We obtain speedups in the C implementation run-times (cycle
counts) of the multiplication step compared to Bernstein’s
methods.
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New 4-way Multiplication Algorithm (N1)

N1 is a multiplication algorithm in Char 3, with seven 1/4 sized
multiplications, which is derived by using the interpolation method
in F9.

A(x) = a0 + a1x + a2x
2 + ... + a4n−1x

4n−1

B(x) = b0 + b1x + b2x
2 + ... + b4n−1x

4n−1

}

are two polynomials of degree 4n − 1 where n = 4k for some
k ≥ 0. Let y = xn, C (x) = A(x)B(x) and,
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N1 4-way Split Algorithm

A0 = a0 + a1x + ... + an−1x
n−1

A1 = an + an+1x + ... + a2n−1x
n−1

A2 = a2n + a2n+1x + ... + a3n−1x
n−1

A3 = a3n + a3n+1x + ... + a4n−1x
n−1

B0 = b0 + b1x + ... + bn−1x
n−1

B1 = bn + bn+1x + ... + b2n−1x
n−1

B2 = b2n + b2n+1x + ... + b3n−1x
n−1

B3 = b3n + b3n+1x + ... + b4n−1x
n−1


then,

A(x) = A0 + yA1 + y2A2 + y3A3

B(x) = B0 + yB1 + y2B2 + y3B3

}
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N1 4-way Split Algorithm

thus, the result of the multiplication becomes,

C (x) = (A0 + yA1 + y2A2 + y3A3)(B0 + yB1 + y2B2 + y3B3)

= C0 + C1y + C2y
2 + C3y

3 + C4y
4 + C5y

5 + C6y
6

For interpolation we need 7 point but since F3 does not have
enough points we use points from F9.
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N1 4-way Split Algorithm

Note that, since x2 + 1 is an irreducible polynomial over F3 then
F9
∼= F3[x ]/(x2 + 1), thus we can represent the elements of F9 as

polynomials of degree less than 2. Let’s define ω ∈ F9 such that
ω2 + 1 = 0.

Table: Comparison of basic operations, a, b, c , d ∈ F3

Operation F3 cost F9 cost

(a + bω) + (c + dω) = (a + c) + (b + d) · ω 2 Adds 1 Add
(a + bω) · (c + dω) = (ac − bd) + (bc + ad) · ω 2 Adds+4 Mults 1 Mult
ω · a, 1 · a, (−1) · a 0 0
ω · (a + bω) = −b + a · ω 0 0

Multiplying an element of F9 by ω, 1, or −1 is cost-free.
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N1 4-way Split Algorithm

We choose {ω,−ω, ω + 1,−ω + 1,−ω− 1, ω− 1,∞} as the points
of evaluation for interpolation and we get the following system of
equations,

P0 = [(A0 − A2) + ω(A1 − A3)] · [(B0 − B2) + ω(B1 − B3)] = C (ω)

P1 = [(A0 − A2)− ω(A1 − A3)] · [(B0 − B2)− ω(B1 − B3)] = C (−ω)

P2 = [(A0 + A1 + A3) + ω(A1 − A2 − A3)] · [(B0 + B1 + B3) + ω(B1 − B2 − B3)] = C (ω + 1)

P3 = [(A0 + A1 + A3) + ω(−A1 + A2 + A3)] · [(B0 + B1 + B3) + ω(−B1 + B2 + B3)] = C (−ω + 1)

P4 = [(A0 − A1 − A3) + ω(−A1 − A2 + A3)] · [(B0 − B1 − B3) + ω(−B1 − B2 + B3)] = C (−ω − 1)

P5 = [(A0 − A1 − A3) + ω(A1 + A2 − A3)] · [(B0 − B1 − B3) + ω(B1 + B2 − B3)] = C (ω − 1)

P6 = A3 · B3 = C6


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N1 4-way Split Algorithm

Solving the matrix representation of the system of equation,

[Vij ]7x7 · [Ci ]7x1 = [Pj ]7x1

then,

⇒ [Ci ]7x1 = [Vij ]
−1
7x7 · [Pj ]7x1
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N1 4-way Split Algorithm

yields,

C0 = −P0,0 + P2,0 + P4,0 + P6 − P2,1 − P4,1

C1 = P2,0 − P4,0 − P0,1

C2 = P6 + P2,1 + P4,1

C3 = P2,0 − P4,0 − P2,1 + P4,1

C4 = −P0,0 − P2,0 − P4,0 + P6 − P2,1 − P4,1

C5 = −P0,1 − P2,1 + P4,1

C6 = P6


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N1 4-way Split Algorithm

where,
P0 = P0,0 + ωP0,1

P1 = P1,0 + ωP1,1

P2 = P2,0 + ωP2,1

P3 = P3,0 + ωP3,1

P4 = P4,0 + ωP4,1

P5 = P5,0 + ωP5,1


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N1 4-way Split Algorithm

and observe that,
P0,0 = P1,0

P0,1 = −P1,1

P2,0 = P3,0

P2,1 = −P3,1

P4,0 = P5,0

P4,1 = −P5,1


which helps us avoiding the cost of three multiplications, i.e.,
instead of calculating the six Pi for 0 ≤ i ≤ 5 multiplications, it
will be sufficient to calculate P0, P2, and P4. Thus, three
multiplications in F9[x ] get cost-free.
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Complexity of N1 Algorithm

By using the cost of multi-evaluation and reconstruction tables we get,

M9(4n) ≤ 7M9(n) + 144n − 52,M9(1) = 6

M9,⊗(4n) ≤ 7M9,⊗(n),M9,⊗(1) = 4

M9,⊕(4n) ≤ 7M9,⊕(n) + 144n − 52,M9,⊕(1) = 2

M3(4n) ≤ M3(n) + 3M9(n) + 44n − 18,M3(1) = 1

M3,⊗(4n) ≤ M3,⊗(n) + 3M9,⊗(n),M3,⊗(1) = 1

M3,⊕(4n) ≤ M3,⊕(n) + 3M9,⊕(n) + 44n − 18,M3,⊕(1) = 0


then we get the explicit complexities as follows,

M9(n) ≤ 45.33nlog4 7 − 48n − 8.66

M9,⊗(n) ≤ 4nlog4 7

M9,⊕(n) ≤ 41.33nlog4 7 − 48n − 8.66

M3(n) ≤ 22.66nlog4 7 − 33.33n − 44 log4 n + 11.66

M3,⊗(n) ≤ 2nlog4 7 − 1

M3,⊕(n) ≤ 20.66nlog4 7 − 33.33n − 44log4n + 12.66


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Complexity of N1 4-way Algorithm - Unbalanced Split
Version

Moreover, assuming that A(x) and B(x) are degree 3n + k − 1
polynomials where 1 ≤ k ≤ n, i.e the size of the polynomials to be
multiplied are not multiples of 4, A0,A1,A2,B0,B1,B2 are degree
n − 1 polynomials and A3,B3 are degree k − 1 polynomials. Then,
the cost analysis of the N1 4-way algorithm yields,

M3(3n + k) ≤ M3(k) + 3M9(n) + 36n + 8k − 18

M9(3n + k) ≤ 6M9(n) + M9(k) + 124n + 20k − 52

}
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Comparison of N1 Algorithm to Others

N1 algorithm is less costly than KA2 for n ≥ 280 in F3[x ]
and for n ≥ 28 in F9[x ].

Also N1 is more efficient than A3 for n ≥ 1020 in F3[x ] and
for n ≥ 84 in F9[x ].

N1 is faster than than B1 for n ≥ 192.
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An Improved 4-way Multiplication Algorithm (N2)

N2 is an improved version of N1:

-The new 4-way algorithm N1 from the previous section can be
improved if we choose different interpolation points.

-This time we use {0, 1, ω + 1,−ω + 1,−ω − 1, ω − 1,∞} as the
interpolation evaluation points.
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N2 4-way Split Algorithm

More simplifications than N1 case as follows:

P2,0 = P3,0

P2,1 = −P3,1

P4,0 = P5,0

P4,1 = −P5,1


P3 and P5 can be derived out of P2 and P4 thus, it is sufficient to
calculate the latter two multiplications only. In this way, we save
two F9[x ] multiplications. Interpolation regarding the N2 algorithm
gives us the following results.
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N2 4-way Split Algorithm

This time the coefficients of the multiplication polynomial
becomes:

C0 = P0

C1 = −P0 − P1 + P2,0 + P4,0 − P6 − P2,1

C2 = P6 + P2,1 + P4,1

C3 = P2,0 − P4,0 − P2,1 + P4,1

C4 = P0 + P2,0 + P4,0

C5 = −P0 − P1 − P4,0 − P6 + P2,1 + P4,1

C6 = P6


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Complexity of N2 Algorithm

M9(4n) ≤ 7M9(n) + 132n − 48,M9(1) = 6

M9,⊗(4n) ≤ 7M9,⊗(n),M9,⊗(1) = 4

M9,⊕(4n) ≤ 7M9,⊕(n) + 132n − 48,M9,⊕(1) = 2

M3(4n) ≤ 3M3(n) + 2M9(n) + 50n − 20,M3(1) = 1

M3,⊗(4n) ≤ 3M3,⊗(n) + 2M9,⊗(n),M3,⊗(1) = 1

M3,⊕(4n) ≤ 3M3,⊕(n) + 2M9,⊕(n) + 50n − 20,M3,⊕(1) = 0


And we get the following asymptotic complexities:

M9(n) ≤ 42nlog4 7 − 44n − 8

M9,⊗(n) ≤ 4nlog4 7

M9,⊕(n) ≤ 38nlog4 7 − 44n − 8

M3(n) ≤ 21nlog4 7 − 38n + 18

M3,⊗(n) ≤ 2nlog4 7 − nlog4 3

M3,⊕(n) ≤ 19nlog4 7 + nlog4 3 − 38n + 18


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Complexity of N2 4-way Algorithm - Unbalanced Split
Version

Moreover, assuming that A(x) and B(x) are degree 3n + k − 1
polynomials where 1 ≤ k ≤ n, A0,A1,A2,B0,B1,B2 are degree
n − 1 polynomials and A3,B3 are degree k − 1 polynomials. Then,
the cost analysis of the N2 4-way algorithm yields,

M3(3n + k) ≤ 2M3(n) + M3(k) + 2M9(n) + 38n + 12k − 20

M9(3n + k) ≤ 6M9(n) + M9(k) + 108n + 24k − 48

}
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Comparison of N2 with Others

N2 becomes faster than KA2 for n ≥ 60 in F3[x ] and for
n ≥ 20 in F9[x ].

N2 is more efficient than A3 beginning from n ≥ 180 in F3[x ]
and for n ≥ 72 in F9[x ].

N2 is faster than than B1 for n ≥ 192

In general, N2 is more efficient than N1 for all input sizes.
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Another Improved 4-way Polynomial Multiplication
Algorithm (N3)

N3 is another improved 4-way split multiplication algorithm in
Char 3, with seven 1/4 sized multiplications, using Lagrange
interpolation in R = F9[x ] with evaluation points
{0, 1,−1, x , ω,−ω,∞} we get,

P0 = A0B0 = C (0)

P1 = (A0 + A1 + A2 + A3)(B0 + B1 + B2 + B3) = C (1)

P2 = (A0 − A1 + A2 − A3)(B0 − B1 + B2 − B3) = C (−1)

P3 = (A0 + A1x + A2x
2 + A3x

3)(B0 + B1x + B2x
2 + B3x

3) = C (x)

P4 = [(A0 − A2) + ω(A1 − A3)][(B0 − B2) + ω(B1 − B3)] = C (ω)

P5 = [(A0 − A2)− ω(A1 − A3)][(B0 − B2)− ω(B1 − B3)] = C (−ω)

P6 = A3B3 = C6


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New 4-way Split Algorithm (N3)

Let,
P4 = P4,0 + ωP4,1

P5 = P5,0 + ωP5,1

}
then one can observe that,

P4,0 = P5,0

P4,1 = −P5,1

}

By the above two equations, the product P4 can be calculated from the product P5. Thus,
one multiplication gets cost-free. We get the formula for C (x) as follows:

C (x) =P0 + xn ·
[
x2

(
(P1 − P2)

x2 − 1
− ω(P4 − P5)

x2 + 1

)
− U

]
+ x2n · [(P1 + P2)− (P4 + P5)− P6]

+ x3n · [(P1 − P2) + ω(P4 − P5)] + x4n · [−P0 + (P1 + P2) + (P4 + P5)]

+ x5n ·
[(
−(P1 − P2)

x2 − 1
− ω(P4 − P5)

x2 + 1

)
+ U

]
+ x6n · P6

where, U =
P0

x
+

P3/x

x4 − 1
− x

(
P4 + P5

x2 + 1
+

P1 + P2

x2 − 1

)
− P6x
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New 4-way Split Algorithm (N3)

N3 is not recursive and can only be applied once at a time since the six products P0, P1, P2, P4,
P5, and P6 involve polynomials of degree n − 1, but P3 involves polynomials of degree n + 2.

M3(n + 3) = M3(n) + 12n + 12

M3,⊗(n + 3) = M3,⊗(n) + 6n + 9

M3,⊕(n + 3) = M3,⊕(n) + 6n + 3

M9(n + 3) = M9(n) + 48n + 60

M9,⊗(n + 3) = M9,⊗(n) + 24n + 36

M9,⊕(n + 3) = M9,⊕(n) + 24n + 24


To get a fully recursive version of N3, we express the product of degree n + 2 polynomials in
terms of one product of degree n − 1 polynomials plus some additional non-recursive terms and
then we expand the multiplication using schoolbook method, compute each product of the
expansion separately and add them up to get the final result. The result indicates the following
equalities.
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New Efficient Characteristic Three Polynomial Multiplication Algorithms and Their Applications to NTRU Prime

38 / 70



Complexity of N3 Algorithm

Then we get the complexity of the N3 algorithm as follows:

M9(4n) ≤ 7M9(n) + 196n − 40,M9(1) = 6

M9,⊗(4n) ≤ 7M9,⊕(n) + 24n + 36,M9,⊗(1) = 4

M9,⊕(4n) ≤ 7M9,⊗(n) + 172n − 76,M9,⊕(1) = 2

M3(4n) ≤ 5M3(n) + M9(n) + 78n − 36,M3(1) = 1

M3,⊗(4n) ≤ 5M3,⊗(n) + M9,⊗(n) + 6n + 9,M3,⊗(1) = 1

M3,⊕(4n) ≤ 5M3,⊕(n) + M9,⊕(n) + 72n − 45,M3,⊕(1) = 0


M9(n) ≤ 64.66nlog4 7 − 65.33n − 6.66

M9,⊗(n) ≤ 18nlog4 7 − 8n + 6

M9,⊕(n) ≤ 46.66nlog4 7 − 57.33n − 12.66

M3(n) ≤ 32.33nlog4 7 − 29.33nlog4 5 − 12.66n + 10.66

M3,⊗(n) ≤ 9nlog4 7 − 6.25nlog4 5 + 2n − 3.75

M3,⊕(n) ≤ 23.33nlog4 7 − 23.08nlog4 5 − 14.66n + 14.41


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Complexity of N3 Algorithm - Unbalanced Split Version

Moreover, assuming that A(x) and B(x) are degree 3n + k − 1
polynomials where 1 ≤ k ≤ (n − 1), A0,A1,A2,B0,B1,B2 are
degree n − 1 polynomials and A3,B3 are degree k − 1 polynomials
for (n + 1)/2 ≤ k . Then, the cost analysis of the N3 4-way
algorithm yields,

M3(3n + k) ≤ 4M3(n) + M3(k) + M9(n) + 68n + 10k − 38

M9(3n + k) ≤ 6M9(n) + M9(k) + 176n + 20k − 44

}
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Comparison of N3 Algorithm to Others

In terms of arithmetic complexity,

N3 4-way algorithm is better than the N1 and N2 4-way
algorithms [5] for n ≥ 64.

Also note that, all of N1, N2, and N3 4-way methods are
faster than Bernstein’s 3-way algorithm B1 [6] for n ≥ 192 in
the implementation run-times.
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A New 5-way Multiplication Algorithm (V1)

Let,
A(x) = a0 + a1x + a2x

2 + ... + a5n−1x
5n−1

B(x) = b0 + b1x + b2x
2 + ... + b5n−1x

5n−1

}
are two polynomials of degree 5n − 1 and n = 5k for some k ≥ 1.
Let y = xn and also we assume that C (x) = A(x)B(x). Given,

A0 = a0 + a1x + ... + an−1x
n−1

A1 = an + an+1x + ... + a2n−1x
n−1

A2 = a2n + a2n+1x + ... + a3n−1x
n−1

A3 = a3n + a3n+1x + ... + a4n−1x
n−1

A4 = a4n + a4n+1x + ... + a5n−1x
n−1


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V1 5-way Split Algorithm

A(x) = A0 + yA1 + y2A2 + y3A3 + y4A4

B(x) = B0 + yB1 + y2B2 + y3B3 + y4B4

}

and the multiplication has the following form,

C (x) = C0 + C1y + C2y
2 + C3y

3 + C4y
4 + C5y

5 + C6y
6 + C7y

7 + C8y
8
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V1 5-way Split Algorithm

To get the least expensive 1/5 sized products, we try each possible
combination of F9 points for the interpolation evaluation, points
{0, 1, ω,−ω, ω + 1,−ω + 1,−ω − 1, ω − 1,∞} yield the most
efficient 5-way algorithm.

C0 = P0

C1 = −P0 + P1 + P2,0 − P6,0 − P8 + P2,1 − P4,1 + P6,1

C2 = P0 + P2,0 − P4,0 − P6,0 + P8 − P4,1 − P6,1

C3 = −P0 + P1 + P2,0 − P6,0 − P8 − P2,1 + P4,1 − P6,1

C4 = P0 + P4,0 + P6,0 + P8

C5 = −P0 + P1 + P2,0 − P4,0 − P8 + P2,1 + P4,1 − P6,1

C6 = P0 + P2,0 − P4,0 − P6,0 + P8 + P4,1 + P6,1

C7 = −P0 + P1 + P2,0 − P4,0 − P8 − P2,1 − P4,1 + P6,1

C8 = P8


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Complexity of V1 Algorithm

M9(5n) ≤ 9M9(n) + 196n − 72,M9(1) = 6

M9,⊗(5n) ≤ 9M9,⊗(n),M9,⊗(1) = 4

M9,⊕(5n) ≤ 9M9,⊕(n) + 196n − 72,M9,⊕(1) = 2

M3(5n) ≤ 3M3(n) + 3M9(n) + 72n − 29,M3(1) = 1

M3,⊗(5n) ≤ 3M3,⊗(n) + 3M9,⊗(n),M3,⊗(1) = 1

M3,⊕(5n) ≤ 3M3,⊕(n) + 3M9,⊕(n) + 72n − 29,M3,⊕(1) = 0


by Remark 1 we get,

M9(n) ≤ 47nlog5 9 − 49n − 9

M9,⊗(n) ≤ 4nlog5 9

M9,⊕(n) ≤ 43nlog5 9 − 49n − 9

M3(n) ≤ 23.5nlog5 9 − 13nlog5 3 − 37.5n + 28

M3,⊗(n) ≤ 2nlog5 9 − nlog5 3

M3,⊕(n) ≤ 21.5nlog5 9 − 12.nlog5 3 − 37.5n + 28



Esra YENİARAS
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Complexity of V1 Algorithm - Unbalanced Split Version

Moreover, assuming that A(x) and B(x) are degree 4n + k − 1
polynomials where 1 ≤ k ≤ n, A0,A1,A2,A3,B0,B1,B2,B3 are
degree n − 1 polynomials and A4,B4 are degree k − 1 polynomials.
Then, the cost analysis of the V1 5-way algorithm yields,

M3(4n + k) ≤ 2M3(n) + M3(k) + 3M9(n) + 66n + 6k − 29

M9(4n + k) ≤ 8M9(n) + M9(k) + 168n + 28k − 72

}
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Comparison of V1 with Others

V1 becomes more efficient than KA2 for n ≥ 100 in F3[x ]
and for n ≥ 20 in F9[x ]..

V1 is better than A3 for n ≥ 60 in F3[x ] and for n ≥ 15 in
F9[x ].

In general, V1 is the most efficient among all algorithms
including B1, N1, N2, and N3 for all input sizes.
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Unbalanced 5-way Split Multiplication Algorithm (U1)

Assume that A(x) and B(x) degree 5n − k − 1 polynomials,
n ∈ Z+ and n ≥ 5.

Let k ∈ {0, 1, 2, 3, 4}. If 5n− k is not a multiple of 5, then we
divide A and B into five smaller size polynomials so that,

The first four of them have (5n − k + k)/5 = n elements
and the last one has (5n − k − 4k)/5 = n − k elements.

By this means, we get an unbalanced 5-way division method
for any polynomial with size n ≥ 5.
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Unbalanced 5-way Split Multiplication Algorithm (U1)

Let y = xn and C (x) = A(x)B(x) then A(x) and B(x) are divided
into five parts as follows:

A0 = a0 + a1x + ... + an−1x
n−1

A1 = an + an+1x + ... + a2n−1x
n−1

A2 = a2n + a2n+1+1x + ... + a3n−1x
n−1

A3 = a3n + a3n+1x + ... + a4n−1x
n−1

A4 = a4n + a4n+1x + ... + a5n−k−1x
n−k−1


Similarly, we divide B(x) into five pieces just as we do to A(x)
above.
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Complexity of U1 Algorithm

COMPLEXITY:

- By using the cost of multi-evaluation and reconstruction tables, the complexity of U1 can be
calculated as below:

M9(5n − k) ≤ 8M9(n) + M9(n − k) + 196n − 24k − 72,M9(1) = 6

M3(5n − k) ≤ 2M3(n) + M3(n − k) + 3M9(n) + 72n − 6k − 29,M3(1) = 1

}

- Observe that, for k = 0, the U1 algorithm yields the V1 algorithm, so we can think of V1 as
a special case of the U1 algorithm.

COMPARISON TO OTHER ALGORITHMS:

- According to the arithmetic costs and the implementation run-times, the use of U1 algorithm
yields fastest run-time of all algorithms.
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New Hybrid Algorithms for NTRU Prime Decapsulation

The decapsulation phase of the Streamlined NTRU Prime Key
Encapsulation Mechanism (KEM) conducts a polynomial
multiplication operation for multiplying the elements of
Z3[x ]/(xp − x − 1) for parameters p = 653, 761.

Thus, we can apply the proposed 4-way and 5-way polynomial
multiplication algorithms N1, N2, N3, and V1 to it.

Bernstein uses 2 different methods. First method is
Hybrid-1 [2] and the second method is B1-Hyrid [6].
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Bernstein’s Hybrid-1 Algorithm for NTRU Prime
Decapsulation

Hybrid-1 Multiplication Algorithm: 5 KA2 then SB (n=768):

768KA2 384

KA2

192

KA2

96

KA2

48

KA2

24

SB

/2 /2 /2 /2 /2

Figure: Hybrid-1 Algorithm requires a total # of 303600 arithmetic
operations

Bernstein et al. use a combination of five layers of KA2 and then
SB for multiplying the input size n = 768 (zero-padded from 761
coefficient inputs) polynomials in the Streamlined NTRU Prime
decapsulation phase.
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Our Alternative Approaches for Hybrid-1: Hybrid-2
Multiplication Algorithm

First Alternative Method for Hybrid-1:

(i) Hybrid-2 Multiplication Algorithm: 8 KA2 then SB
(n=768):

768

KA2

384

KA2

192

KA2

96

KA2

48

KA2

24

KA2

12

KA2

6

KA2

3

SB

/2 /2 /2 /2 /2 /2 /2 /2

Figure: Hybrid-2 Algorithm requires a total # of 207858 arithmetic
operations
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N1-Hybrid Algorithm for NTRU Prime Decapsulation

Second Alternative Method for Hybrid-1:

(ii) N1-Hybrid Algorithm: The new N1 algorithm is used in:

768N1F3

192

N2F9

192

KA2F3

48

N2F9

12

A3F9

4

SBF9

96

KA2F3

48

KA2F3

24

KA2F3

12

KA2F3

6

KA2F3

3

SBF3

/4

/4

/4 /4 /3

/2 /2 /2 /2 /2 /2

Figure: N1-Hybrid Algorithm requires a total # of 187152 arithmetic
operations
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N2-Hybrid Algorithm for NTRU Prime Decapsulation

Third Alternative Method for Hybrid-1:

(iii) N2-Hybrid Multiplication Algorithm (n=768)

768N2F3

192

N2F9

192

KA2F3

48

N2F9

12

A3F9

4

SBF9

96

KA2F3

48

KA2F3

24

KA2F3

12

KA2F3

6

KA2F3

3

SBF3

/4

/4

/4 /4 /3

/2 /2 /2 /2 /2 /2

Figure: N2-Hybrid Algorithm requires a total # of 180878 arithmetic
operations
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V1-Hybrid Algorithm for NTRU Prime Decapsulation

(iv) V1-Hybrid Multiplication Algorithm (n=765):

765V 1F3

153

A3F9

51

LTF9

50

V 1F9

10

A2
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KA2F3
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SBF3

153UBF3 77
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76KA2F3

39UBF3

38

KA2F3
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UBF3

10 KA2F3

10 KA2F3

9

LTF3

8

KA2F3

4

SBF3

38KA2F3

/5

/3 /5

/2

/2

/2

/2

/2

/5

Figure: V1-Hybrid Algorithm requires a total # of 182647 arithmetic
operations
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A3-Hybrid for NTRU Prime Decapsulation

(v) A3-Hybrid Multiplication Algorithm (n=768):

768A3F3

256

N2F9

64

N2F9

16

KA2F9
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KA2F9

4

SBF9

256

N2F3

64 N2F9

64

KA2F3

32

KA2F3

16

KA2F3

8

KA2F3

4
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/3
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/4 /4 /2
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/2 /2 /2 /2
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Figure: A3-Hybrid Algorithm requires a total # of 189115 arithmetic
operations
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LT-Hybrid for NTRU Prime Decapsulation

(vi) LT-Hybrid Multiplication Algorithm (n=761):

761LTF3 760 V 1F3

152

KA2F3
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KA2F3

38

KA2F3
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N2F9

38
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KA2F3
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UBF3 10 KA2F3
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LTF3

5

SBF3

8

KA2F3

4
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/4 /2

/2

/2

/5
/2 /2

Figure: LT-Hybrid Algorithm requires a total # of 186914 arithmetic
operations
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Comparison of the Arithmetical Complexities of the New
Hybrid Algorithms Including N1, N2, and V1

Table: Comparison of the Arithmetical Complexities of the New Hybrid Algorithms Including N1, N2,
and V1 / Candidates for the Streamlined NTRU Prime KEM

n Algorithm Arithmetic Cost Improvement Source

768 Hybrid-1 303600 Reference method used in [2] for sntrup761
768 Hybrid-2 207858 31.53% min. cost: before this study [5]
768 A3-Hybrid 189115 37.70% this work [5]
768 N1-Hybrid 187152 38.35% this work [5]
761 LT-Hybrid 186914 38.43% this work [5]
765 V1-Hybrid 182647 39.83% this work [5]
768 N2-Hybrid 180878 40.42% min. cost: after this study [5]
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Implementation Results of the New Hybrid Algorithms
Including N1, N2, and V1

Table: Implementation Results of the New Hybrid Algorithms Including N1, N2, and V1 /
Candidates for the Streamlined NTRU Prime KEM (without AVX/AVX2)

Algorithm n Cycle Count Time (s) Improvement

Hybrid-1 768 481 688 0.000186 method used in [2] for sntrup761
Hybrid-2 768 2 028 918 0.000783 -

LT-Hybrid 761 1 312 231 0.000506 -
N2-Hybrid 768 758 611 0.000293 -
V1-Hybrid 765 561 386 0.000217 -
A3-Hybrid 768 469 257 0.000181 2.58%
N1-Hybrid 768 456 071 0.000176 5.31%
A3-Hybrid2 768 317 692 0.000123 34.04%
N1-Hybrid2 768 301 571 0.000116 37.39%
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Comparison Results to Bernstein’s Hybrid-1 Method

X N1-Hybrid2 37.39% faster than Hybrid-1.

X A3-Hybrid2 34.04% faster than Hybrid-1.

X Therefore N1-Hybrid2 can be a better alternative for Char 3
polynomial multiplication in NTRU Prime decapsulation.
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Bernstein’s Approach: B1-Hybrid1 for n = 653

B1-Hybrid1 Algorithm for n = 653
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Figure: B1-Hybrid1 Algorithm cycles/time is 758.027/0.000329
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Bernstein’s Approach: B1-Hybrid2 for n = 761

B1-Hybrid2 Algorithm for n = 761
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Figure: B1-Hybrid2 Algorithm cycles/time is 944.139/0.000410
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Our Alternative Approach for B1-Hybrid1: U1-Hybrid1 for
n = 653

U1-Hybrid1 Algorithm for n = 653

653U12F3 131

129U11F3

26

KA2F9

13

26 13

25UBF3 12

131U14F9

23UBF9

12

11

27 9

27

23
U14F3

A3F9 /3

/2

KA2F3

SBF3

SBF3

SBF9

SBF9

SBF9

SBF9

SBF3

SBF3

Figure: U1-Hybrid1 Algorithm cycle/time is 531.692/0.000231
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Our Alternative Approach to B1-Hybrid2: U1-Hybrid2 for
n = 761

U1-Hybrid2 Algorithm for n = 761
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Figure: U1-Hybrid2 Algorithm cycle/time is 608.694/0.0000265
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Implementation Results for New Hybrid Algorithms

Table: Implementation Results for Polynomial Multiplication over F3 in Streamlined NTRU Prime
Decapsulation

Parameter Algorithm Cycles/Time Improvement

sntrup653
B1-Hybrid1 (Bernstein’s B1 [6]) 758, 027/0.000329 Ref. Value
U1-Hybrid1 (this work [9]) 531, 692/0.000231 29.85%

sntrup761
B1-Hybrid2 (Bernstein’s B1 [6]) 944, 139/0.000410 Ref. Value
Hybrid-1 (Bernstein’s prev. [2]) 1, 054, 828/0.000458 -10.49%
U1-Hybrid2 (this work [9]) 608, 694/0.0000265 35.52%
N1-Hybrid2 (this work [5]) 665, 729/0.0000289 29.48%

https://github.com/cryptoarith/F3Mul

https://github.com/cryptoarith/NTRUPrimePolyMultF3
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Conclusion

The use of new algorithms N1, N2, N3, V1, and U1 provides
improved in arithmetical complexities in Char 3 polynomial
multiplication:

- For instance, 48.6% reduction in arithmetic complexity
for polynomial multiplication in F9[x ] and a 26.8% reduction
for polynomial multiplication in F3[x ] for n = 1280.

The proposed U1-Hybrid1 is 29.85% faster than the
Bernstein’s B1-Hybrid1 algorithm for n = 653.

The proposed U1-Hybrid2 is 35.52% faster than the
Bernstein’s B1-Hybrid2 algorithm for n = 761.

Therefore U1-Hybrid1 for U1-Hybrid2 can be better
alternatives for Char 3 polynomial multiplication in NTRU
Prime decapsulation.
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Thank You For Listening!
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