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Kand &,
Imaginary Quadratic Fields
> K=Q(Ak), Ak <0
» Fundamental Discriminant:

> Ag =1 (mod 4) square-free
» A =0 (mod 4) and Ag/4 = 2,3 (mod 4) square-free

Ring of integers of K

> ) : ring of integers of K, the maximal order,

Ag + VA
@)AK:Z'F%Z
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Ideals

Ideals of @7,

» Fractional Ideals: a C K such that da € K*, aca is an ideal of
O\

» Invertible Fractional Ideals: a such that there exists b such
that ab = @)

K

> Principal Fractional Ideals: a @5, where a € K*

Notation
> 1(@p,) : group of Invertible Fractional Ideals of @,
> P(@py) : sub-group of Principal Ideals
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Class Group

C(Or) = WONIP(O )

its (finite) cardinal is the class number denoted h(,, )

» Equivalence relation:
a~bh = JaeK* b=ana

> Class Number: On average h(, ) = 0.461559+/|Ak|
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Representation of the Classes

Representation of (primitive) ideals of @

a =al+ —— b+

= (a,b)
with a € N and b € Z such that b2 Ax mod 4a

Representation of classes of C(¢,, )

» (a,b)isreducedif -a <b<a<candb>0ifa=cwherecis
s.t. Ag = b? — 4ac; moreover a < v|Agl/3

» A unique reduced ideal per class

> Representation of an element of C(¢7,, ): same bit size as [Ag]|
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Computation in C(@, )

» Product of ideals followed by reduction

» Efficient algorithms known since Gauss and Lagrange:
reduction and composition of Binary Quadratic Forms

» Quadratic complexity or even quasi linear (Schénhage, 91)

> Inverse is for free: [(a,b)]™ = [(a, —b)]
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Cryptography in Class Groups of Maximal Orders
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Hard Problems in Imaginary Quadratic Fields

> Computation of (¢, ), the structure of C(¢, ) and DL
> Sub exponential algorithm of Hafner and Mc-Curley (1989)
> COITIplCXlty L|AK|[]‘/2’ 1+ 0(1)]

» Recent record by Beullens, Kleinjung and Vercauteren (May
2019) : structure of C(&,, ) with a 512 bits [Ag| (52 core years)

> Bit sizes for factoring N vs computing DL in C(&, ) :

Security Parameters N A
112 2048 | 1348
128 3072 | 1827
192 7680 | 3598
256 15360 | 5971

Biasse, Jacobson and Silvester (10)
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Crypto based on DL in C(¢7, )

» Buchmann and Williams (88): Diffie-Hellman key exchange
and ElGamal

» DSA and GQ signatures adaptations : Biehl, Buchmann,
Hamdy, and Meyer (01-02)

» Dillmann, Hamdy, Méller, Pohst, Schielzeth, Vollmer
(90-07): Implementation

> Construct Ag a fundamental negative discriminant, in order
to minimize to 2-Sylow subgroup of C(¢, ); e.g., Ay = -,
g =3 (mod 4), g prime : h(¢7,, ) is odd

> Choose g a random class of C(7, )
~ order of g will be close to () = V|Ak|

> Work in the cyclic group G = (g) C C(%,,)
» The order of g is unknown!
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Paradox of Unknown Order @

> DL in a cyclic group G = (g) C C(Z,, ) of unknown order s
» s is divisible by small primes with non negligible probability!

» But s not smooth for cryptographic sizes: no algorithm
similar to the (p — 1) method

» Uniform sampling in G possible with an upper bound on
h(Op) 2 s

> Can not decide if an element of C(@, ) is in G

12/29



Paradox of Unknown Order @

» Cryptographic accumulators (Lipmaa 12), verifiable delay
functions (Wesolowski 19), and many others applications
without trusted setup

» Example of verifiable delay functions:

» Slow to compute and easy to verify

> Based on computing g% without knowing the order of g

> RSA based construction: someone knows ¢(1)! Needs some
trusted setup.

> With class groups, h(¢7,, ) is really unknown to anyone!

» Another application: linearly homomorphic encryption
modulo a prime.
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Imaginary Quadratic Orders

Definition

> K=Q(\WAx),
» (7 is a subring of K containing 1 and ¢ is a free Z-module of
rank 2

Characterisation

> O : ring of integers of K is the maximal order
> T C Op, :=[0Op : 7]is the conductor,
Ar+ VA
@ =7+ %Z

Ay = ? Ay is the non fundamental discriminant of @) , =0

Can extend the definition of class groups: C(¢7,,)
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Class Groups of Non Maximal Orders

> Ag = KZAK
» There exists a surjection

P 2 C(On) — COny)
> If Ax <0, Ag # -3, -4,

h(p,) =) x ] (1 - (%) l)
DIt plp
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NICE Family

» Paulus Takagi 98: crypto with non maximal orders

> Ag =-p, by = —pqz, p,q primes and p =3 (mod 4)

A
h(O,) = h(@p) X (q - (f))

> Public key: A, and h € ker @, with ¢, : C(@Aq) — C(Opy)
> Secret key: g

» Cryptanalysis : C., Joux, Laguillaumie, Nguyen (09):

> Each class of ker ¢, contains a non reduced ideal (4%, kq)
» From h € ker P4y we find this ideal in polynomial time
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A Subgroup with an Easy DL

» C. Laguillaumie 15
> Ax =—pq, Ay = —pq’,p,q primes and pg = 3 (mod 4)

h(ﬁAq) = h(Op) X q

> Let f =[(4% q)] € C(Oh,)
» F = (f)is of order g, and
™= g% -L(m)q)]

where L(m) € [—q,9] is odd and L(m) = m™! (mod q)

> Moreover if p > 4q, the ideals of norm g2 are reduced
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Generation of a group with an easy DL subgroup
> g aprime

> p>4q, Ax = —pq, A, = —pg°, with pg = —1 (mod 4) and
(plg) = -1
h(ﬁAq) = h(Op) X q

we assume that gcd(q, h(@p,)) =1
> Let G be the subgroup of squares of C(&, )

> ¢, =11 where r is a random element of G

> =% 9] €G
> =8 G=()F=()GT=(gp

G~FxG1

DL easy in F, G has unknown order s a divisor of h(&,, )
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Linearly Homomorphic Encryption modulo a prime

20/29



Framework
Group with an easy discrete logarithm (DL) subgroup

> g aprime

» G = (g) cyclic group of order g - s such that gcd(g,5) =1
» [ = (f) subgroup of G of order g

> 7= (g, = {x7,x € G} subgroup of G of order s,

G~FxG1

» DL is easyin F:
Given u € F, find m € Z/qZ such that u = f™
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Framework
Group with an easy discrete logarithm (DL) subgroup

> g aprime

» G = (g) cyclic group of order g - s such that gcd(g,5) =1
» [ = (f) subgroup of G of order g

> 7= (g, = {x7,x € G} subgroup of G of order s,

G~FxG1

» Hard to distinguish elements of G¥:
{Z < G} = {Z « G}

Hard Subgroup Membership Assumption (HSM)
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Framework

Group with an easy discrete logarithm (DL) subgroup
> g aprime
» G = (g) cyclic group of order g - s such that gcd(g,5) =1
» ' = (/) subgroup of G of order g
> 7= (g, = {x7,x € G} subgroup of G of order s,
G=~FxG1

» Inspired by Bresson, Catalano, Pointcheval / Camenisch,
Shoup (2003) : constructions over Paillier
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A Generic Linearly Homomorphic Encryption Scheme

> W =Z/qZ

> EvalSum:
> KeyGen: , , / / '
sk=xe I (161, 265) = (87", W77 f™)
pk=h « g;‘
> EvalScal:
> Encrypt:
reo (€5, ¢) = (g, e f)
c= (C]_I CZ) — (82/ fmhi’)
> Decrypt:
DLy (cofe}) ~ m

C., Laguillaumie, Tucker (2018)
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Indistinguishability a la Cramer Shoup under HSM

c=(cL,e)=(g f"1), h=gl, xred
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Indistinguishability a la Cramer Shoup under HSM

C=(01/CZ)=(ngfnle916)/ thX, x,ng

Compute ¢ with the secret key
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Indistinguishability a la Cramer Shoup under HSM

c=(cl,c2)=(Z,f"’Zx), h=g:, x 9, ZeG1

Use Z « G1 for ¢q
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Indistinguishability a la Cramer Shoup under HSM

c=@,0) =2z, h=g x e
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Indistinguishability a la Cramer Shoup under HSM

C=(51,C2)=(Z/fmzx)r h=g, x <9, Z<G

Under the HSM assumption, replace by Z <« G
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Indistinguishability a la Cramer Shoup under HSM

C=(51102)=(Z/fmzx)r h=g, x <9, Z<G

Smoothness argument:

» & close to uniform modulo gs and ged(g, s) = 1:

(x mod s) fixed by h but (x mod g) remains uniformly
distributed

» Z = f"Y for some fixed a € Z/qZ,Y € G1

CZ :fﬂ’IZY :fﬂ’H-ﬁxYx

~> m is hidden!
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Application: Two-Party ECDSA Signing
ECDSA

» Used to sign Bitcoin @) transactions
» Stealing signing key x ~» immediate financial loss

» Public params: (G, +), of prime order g, with generator P
» Secret Key: x < Z/qZ and Public Key: Q < x-P
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Application: Two-Party ECDSA Signing
ECDSA

» Used to sign Bitcoin @) transactions
» Stealing signing key x ~» immediate financial loss

» Public params: (G, +), of prime order g, with generator P
» Secret Key: x < Z/qZ and Public Key: Q < x-P

Two-Party ECDSA

m to be signed

X1 I X2

o signature of m

x1,Xy: shares of x ; Public Key: Q « x-P
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Difficulty and some Previous works

Unfriendly Equation in ECDSA

s« k™t (H(m) +r - x) mod q

Lindell zor17)
» Uses Paillier Linearly homomorphic encryption
» Homomorphic mod N an RSA integer (2048 bits)
» ECDSA uses operations mod ¢ (256 bits)

» Drawbacks: Costly range proof, loss in reduction or
interactive assumption
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Our Two-Party ECDSA Protocol

» C., Catalano, Laguillaumie, Savasta, Tucker (2019)

» Use a linearly homomorphic encryption scheme mod g
~+ Remove the range proof and some technicalities
» Construction a la Cramer-Shoup: can use an argument based

on indistinguishability even if the simulation knows the
secret key

~ Tight security without interactive assumptions

» Better bandwidth and speed (for high level of security)
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Comparison: Primitives

» Paillier
Sec. Param. | N (b) | Expo in Z/N?Z (ms) | Ciphertext (b)
112 2048 7 4096
128 3072 22 6144
192 7680 214 15360
256 15360 1196 30720

» C.-Laguillaumie

Sec. Param. | Ak (b) | Expo in C(@’Aq) (ms) | Ciphertext (b)
112 1348 32 3144
128 1827 35 4166
192 3598 212 7964
256 5971 623 12966

Timings with Pari C Library
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Comparison: Two-Party ECDSA

> Lindell
Curve | Sec. | KeyGen (s) | Sign (s) || KeyGen (kb) | Sign (kb)
P-256 | 128 6.3 0.049 1317 7.7
P-384 | 192 65 0.437 3280 17.7
P-521 | 256 429 2.4 6549 33.8

» C. Catalano, Laguillaumie, Savasta, Tucker

Curve | Sec. | KeyGen (s) | Sign (s) || KeyGen (kb) | Sign (kb)
P-256 | 128 9.3 0.17 227 5.7
P-384 | 192 35 0.64 427 10.2
P-521 | 256 103 1.8 688 16.1

Timings with Pari C Library
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Questions?
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