

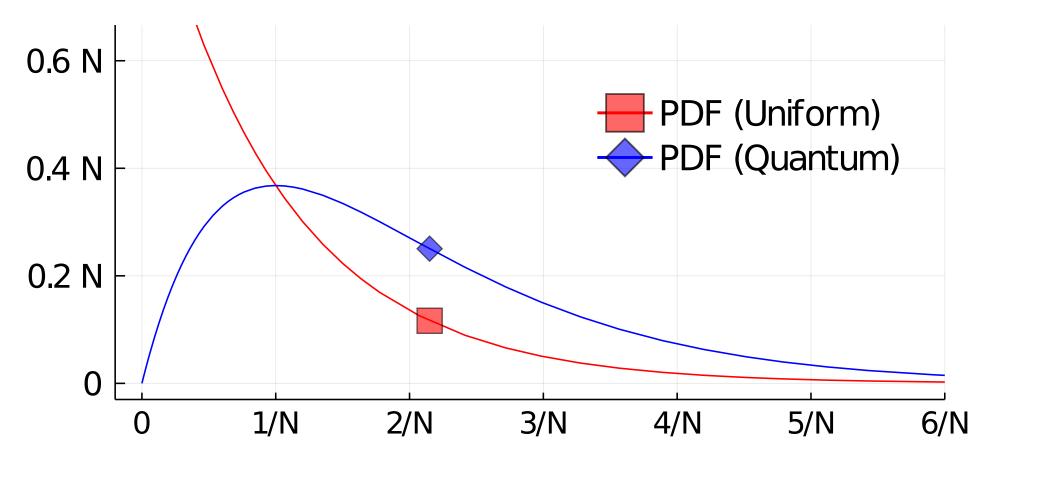
Cryptographic Technology Group, Computer Security Division, National Institute of Standards and Technology

An App of Quantum Computing

- National Quantum Initiative Act calls for quantum computing apps
- Google reported an experiment achieving quantum supremacy
- Aaronson proposed an application for **certifiable randomness**

Certifiable Randomness

Our RNG outputted: 352316...


Can we be sure this is really random?

With **certifiable randomness**, we can verify randomness!!

How: prove something must have been quantumly computed, using a **probabilistic** process, i.e., cannot have been computed deterministically.

Distribution of QC-values

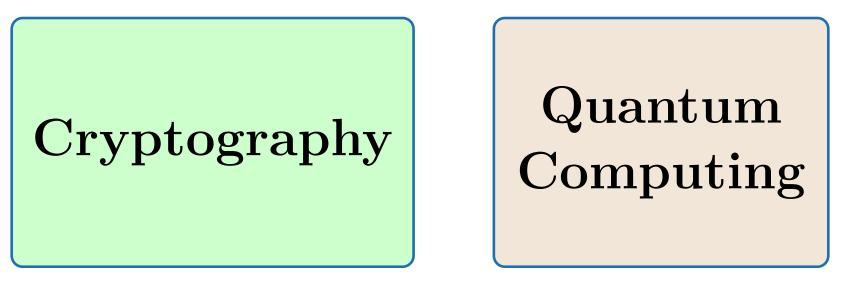
- We consider quantum circuits with 53 qubits (as showcased by Google).
- For any fixed input, their output (53-bit strings) is probabilistic.
- QC-value: probability that a string s is output by a quantum circuit.

The uniform (X_U) and quantum (X_Q) distributions have different statistics: $E[X_U] = 1/N$ vs. $E[X_Q] = 2/N$ and $V[X_U] = 1/N^2$ vs. $V[X_Q] = 2/N^2$.

Legend: E (expected value); V (variance)

Notes on Interrogating Random Quantum Circuits

Luís T. A. N. Brandão · René Peralta



An analysis suited for NIST/ITL

- Perform a statistical analysis, to determine randomness and safety bounds
- Propose an adversarial model for conservative estimation of parameters
- Abstract from the computational assumptions, using a black-box model

Technical challenges/achievements:

- Derive the misleading power of adversarial sampling
- Obtain formulas to measure randomness (based on information entropy)
- Honest evaluations have low fidelity (e.g., 0.002 probability of correctness)

The Adversary \mathcal{A}

Confusion matrix		Classification		
		Positive	Negative	
Actual condition	Positive	True Positive	False Negative	
	(Honest operator)	ratio (TP)	ratio (FN)	
	Negative	False Positive	\mathbf{T} rue \mathbf{N} egative	
	(Malicious operator)	ratio (FP)	ratio (TN)	

accuracy = (TP + TN)/All; precision = TP / (TP + FP); recall = TP / (TP + FN); ...

- *A*'s goal: Produce a sample that minimizes the expected entropy, but conditioned to be accepted by the client with probability \geq FP.
- *A*'s capability: Can evaluate the quantum circuit more times than needed; can choose which strings to include (including pseudo-random).

Results in black-box model: \mathcal{A} can only evaluate the circuit as a black-box.

ker.com/clipart-10778.html

What sample size m (how many strings) are needed to safely distinguish honest quantum sampling (with some expected entropy H), from a malicious sampling with fewer quantum strings (possibly all pseudo-random)?

$$m = 2 \cdot \left(\frac{\operatorname{erf}^{-1}(1-2\cdot\epsilon)}{\phi_1 - \phi_2}\right)$$

 $(\epsilon = FN = FP; \phi_1 \text{ is the honest fidelity}; \phi_2 = q/m \text{ is the adversarial pseudo-}$ fidelity; q is the # of quantumly obtained strings included in the sample.)

Results for n = 53 qubits and honest fidelity $\phi_1 = 0.002$

ϵ	$ \begin{vmatrix} m & \text{for} \\ \phi_2 = 0 \end{vmatrix} $	$m \text{ for} \\ \frac{\phi_2}{\phi_1} = 1/100$	$m \text{ for} \\ \frac{\phi_2}{\phi_1} = 1/4$	$m ext{ for } rac{\phi_2}{\phi_1} = 1/2$
2^{-40}	4.98E+7	5.08E + 7	$8.85E{+7}$	1.99E + 8
		9.76E + 6		
10^{-1}	1.65E+6	1.68E+6	2.93E+6	$6.59E{+}6$

For fidelity 0.002, abou to reduce the classif About 2 million strings

A more sophisticated analysis can correlate the amount of certifiable entropy (H) with the adversarial sampling budget β and other parameters. (See paper)

Poster prepared for the ITL Virtual Science Day 2020 (October 29). Poster based on paper with the same title (2020-May-29): DOI: 10.13140/RG.2.2.24562.94400. The first author is a Foreign Guest Researcher at NIST (Contractor via Strativia).

INFORMATION TECHNOLOGY ABORATORV

How Many Strings to Sample?

)

$$\int \cdot \left(\sqrt{1+\phi_1\cdot(2-\phi_1)}+\sqrt{1+\phi_2}\right)^2$$

ut 50 million strings are needed
ification bias to less than 2^{-40} .
s are needed if the fidelity is 0.01.