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1. Introduction

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)
I f : {0, 1}n → {0, 1} with n bits of input and 1 bit of output.
I Bn: set of (22n

) Boolean functions with n input bits.

Boolean circuit: A combination of logic gates to compute functions.
(A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.)

x1 x2

x4

∧

∧

x3
Example gates (fanin 2)
input output bits
bits AND (∧) XOR (⊕)
00 0 0
01 0 1
10 0 1
11 1 0

I For nonlinear gates, we focus on AND gates with fanin 2.
I For linear gates, we focus on XOR gates with arbitrary fanin.

4/23
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1. Introduction

Multiplicative complexity (MC)

c∧(f ): MC of a function f
I min # nonlinear gates needed to implement f by a Boolean circuit

I equivalently*: min # AND (∧) gates over the basis (∧,⊕, 1)

* (since any fanin-2 nonlinear gate can be replaced by one AND gate and ⊕’s and 1’s)

Why useful to find circuits with minimal MC?
I Shorter secure multi-party computation and zero-knowledge proofs:

I non-linear gates are expensive; linear gates are “for free”
I Resistance to side-channel attacks:

I threshold protection of leakage from non-linear gates has high cost

Notes:
I Finding the MC of a Boolean function is hard
I Almost all f ∈ Bn have MC ≥ 2n/2 − n − 1; all ≤ 3 · 2(n−1)/2 −On
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1. Introduction

Symmetric Boolean functions

Sn: set of (2n+1) symmetric functions with n input bits
I Output invariant when swapping any pair of input variables.

I Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric n-bit functions:
I Elementary symmetric (Σn

k ): sum of all monomials of degree k
(Note: Any f ∈ Sn is a linear sum of Σn

i ’s)

I Counting (E n
k ): 1 if and only if HW (x) = k

I Threshold (T n
k ): 1 if and only if HW (x) ≥ k

Example function:
Maj3 —majority bit out of three (outputs 1 iff at least two 1s in input):
T 3

2 = (x1 ∧ x2)⊕ (x1 ∧ x3)⊕ (x2 ∧ x3)

= ((x1 ⊕ x2) ∧ (x1 ⊕ x3))⊕ x1

6/23
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1. Introduction

MC of symmetric functions

Why care about the MC of functions in Sn?

I Building blocks for other functions
Improvements for Sn may carry to non-symmetric functions.

E.g.: sum of two n-bit integers, via n applications of Maj3.
Three-to-one AND gate reduction leads to 2/3 communic. reduction in
crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).

I Easier start-point for certain MC analyses?
Sn has 2n+1 functions; Bn has 22n

functions.
Compared with Bn, can we more easily characterize MC for Sn?

7/23
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1. Introduction

Summary of new results in this presentation

I Devise “twin” technique to analyze MC of symmetric functions

I Answer two open questions: c∧(Σ8
4) = 6; c∧(E 8

4 ) = 6

I Characterize MC of functions in Sn, for up to n = 10 variables:
n ∈ {7, 8, 9, 10} ∧ f ∈ Bn ⇒ c∧(f ) ≤ n − 1

8/23
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2. Preliminaries

Affine equivalence
Affine equivalence class. f and g (from Bn) are affine equivalent (f ∼ g) if

f (x) = g(Ax + a) + b · x + c , where:
I A is a non-singular n × n matrix over F2;
I x , a are n-length column vectors over F2;
I b is a n-length row vector over F2.

MC of equivalence class. Multiplicative complexity is invariant under
affine transformations: f ∼ g ⇒ c∧(f ) = c∧(g)

n\k 0 1 2 3 4 5 6 Total
1 1 – – – – – – 1
2 1 1 – – – – – 2
3 1 1 1 – – – – 3
4 1 1 3 3 – – – 8
5 1 1 3 17 26 – – 48
6 1 1 3 24 914 148,483 931 [ÇTP18] 150,357 [Mai91]

Table 1: number of classes per n (#vars) and k (MC)
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2. Preliminaries

Max MC of Boolean Functions with n ≤ 6

I f ∈ B4 (8 classes) ⇒ c∧(f ) ≤ 3 [TP15]
I f ∈ B5 (48 classes) ⇒ c∧(f ) ≤ 4 [TP15]
I f ∈ B6 (150,357 classes) → c∧(f ) ≤ 6 [ÇTP18]

(Circuit) Topologies [CCFS15]
E.g.: f = x1x2x3 + x1x2 + x1x4 + x2x3 + x4

x1 x2

x4

∧

∧

x3

∧

∧

Circuit Topology

Method [ÇTP18]

I Iterate over all topologies with 1, 2,
3, . . .AND gates
# AND gates 1 2 3 4 5 6
# topologies 1 2 8 84 3,170 475,248

I For each topology, mark the classes
generated by circuits.

I Max MC for n = 6 is found when
all classes are marked.
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2. Preliminaries

Some prior results on the MC of symmetric functions

I Functions in Bn have circuits with ≤ n + 3
√

n AND gates [BPP00]
I The MC of an n-bit nonlinear symmetric function is at least ⌊ n

2⌋ [BP08]
I The MC of Σn

2 is ⌊ n
2⌋; the MC of Σn

3 is ⌈ n
2⌉, ... [BP08]

Table A.1 from [BP08]:
MC complexity of the elementary symm Σn

i
n\i 2 3 4 5 6 7 8
3 1 2 – – – – –
4 2 2 3 – – – –
5 2 3 3 4 – – –
6 3 3 4 4 5 – –
7 3 4 4 5 5 6 –
8 4 4 5–6 5 6 6 7

Table A.3 from [BP08]:
MC complexity of the counting function E n

i
n\i 0 1 2 3 4 5 6 7 8
3 2 2 2 2 – – – – –
4 3 2 2 2 3 – – – –
5 4 4 3 3 4 4 – – –
6 5 4 3 3 5 4 5 – –
7 6 6 6 6 6 6 6 6 –
8 7 6 6 6 6–7 6 6 6 7

Two concrete open questions:
1. What is the MC of Σ8

4? (Is it 5 or 6?)
2. What is the MC of E 8

4 ? (Is it 6 or 7?)

12/23
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3. Twin method

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks
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3. Twin method

Boolean Functions with Twin Variables
(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let f (x) = xi xj g(x) + h(x), where g and h do
not depend on xi and xj . Then, xi and xj are called twins in f .

Tn: set of functions in Bn and with twins.

Example: f (x1, x2, x3, x4) = x1x4(1 + x2 + x2x3) + x3

What can we do with this?

Replace x1xn by y1 and let f ′(y1, x2, ..., xn−1) = f (x1, x2, ..., xn).

Fact: c∧(f ) ≤ 1 + c∧(f ′). Twin Conjecture: c∧(f ) = 1 + c∧(f ′)

Result: Analyzing c∧(f ∈ Tn) is reduced to analyzing c∧(f ′ ∈ Bn−1)

But what about symmetric functions (Sn)? (next slide)

14/23
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3. Twin method

Symmetric Functions and Twin Variables
Theorem: Any symmetric Boolean function (f ∈ Sn) is affine equivalent to a
Boolean function (f ′ ∈ T n) with twins.

Example with elementary symmetric function:
I f = Σ3

2= x1x2 ⊕ x1x3 ⊕ x2x3 = (x1 ⊕ x3)(x2 ⊕ x3)⊕ x3

I Var transform (τ ): x1 → A + C ; x2 → A + B; x3 → A + B + C + 1
I Result: Σ3

2 = (B ⊕ 1)(C ⊕ 1)⊕ A ⊕ B ⊕ C ⊕ 1 =A ⊕ BC

Intuition:
I For any n and k , τ applied to Σn

k combines B and C as twins
I Any f ∈ Sn is a sum of elementary symmetric functions (Σn

i )
I Each disjoint var triplet becomes one twin pair and another variable
I For c∧(·) analysis, each twin pair is replaced by a new variable

Result: f ∈ Sn is mapped to f ′ ∈ Bn−⌊n/3⌋; and c∧(f ) ≤ ⌊n/3⌋+ c∧(f ′)

Example: analysis of f ∈ S8 becomes analysis of f ′ ∈ B6
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I For c∧(·) analysis, each twin pair is replaced by a new variable

Result: f ∈ Sn is mapped to f ′ ∈ Bn−⌊n/3⌋; and c∧(f ) ≤ ⌊n/3⌋+ c∧(f ′)

Example: analysis of f ∈ S8 becomes analysis of f ′ ∈ B6
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3. Twin method

Symmetric Functions and Twin Variables
Theorem: Any symmetric Boolean function (f ∈ Sn) is affine equivalent to a
Boolean function (f ′ ∈ T n) with twins.

Example with elementary symmetric function:
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3. Twin method

Multiplicative Complexity of E 8
4 and Σ8

4

Using the Twin technique:
I Reduce # variables (from 8 to 6): f ∈

{
E 8

4 ,Σ
8
4
}
→ f ′ ∈ B6

I Find MC-optimal circuit for f ′ ∈ B6

I c∧(f ) ≤ c∧(f ′) + 2

Case f = E 8
4 (counting function):

I It was known that c∧(f ) ∈ {6, 7}
I We find that c∧(f’)=4
I If follows that c∧(f ) = 4 + 2 = 6

Case f = Σ8
4 (elementary symmetric function):

I It was known that c∧(f ) ∈ {5, 6}
I (Cheap) If twin-conj true: c∧(f ′) = 4 directly implies c∧(f ) = 4+2 = 6
I (Expensive) No 5-AND topology can generate f , hence c∧(f ) = 6
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3. Twin method

Transformation and SLPs (just for a glimpse)

Affine transformation from f ∈ S8 to f ′ ∈ T6:
I (x1, x2, x8) → (x1 ⊕ x2 ⊕ x8 ⊕ 1, x2 ⊕ x8 ⊕ 1, x1 ⊕ x2 ⊕ 1)
I (x3, x4, x7) → (x3 ⊕ x4 ⊕ x7 ⊕ 1, x4 ⊕ x7 ⊕ 1, x3 ⊕ x4 ⊕ 1)
I (x5, x6) → (x5, x6)

SLP for f = E 8
4 (counting function):

a0 = (1 ⊕ x2 ⊕ x8) ∧ (1 ⊕ x1 ⊕ x2)
a1 = (1 ⊕ x4 ⊕ x7) ∧ (1 ⊕ x3 ⊕ x4)
a2 = (a0 ⊕ a1 ⊕ 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8) ∧ (a0)
a3 = (1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8) ∧ (1 ⊕ x1 ⊕ x2 ⊕ x5 ⊕ x8)
a4 = (a2 ⊕ 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8) ∧ (a0 ⊕ a1 ⊕ a3 ⊕ 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8)
a5 = (1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8) ∧ (a2 ⊕ a4)
f = a5 ⊕ 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

SLP for f = Σ8
4 (elementary symmetric function):

a0 = (1 ⊕ x2 ⊕ x8) ∧ (1 ⊕ x1 ⊕ x2)
a1 = (1 ⊕ x4 ⊕ x7) ∧ (1 ⊕ x3 ⊕ x4)
a2 = (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8) ∧ (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8)
a3 = (x1 ⊕ x2 ⊕ x8) ∧ (x3 ⊕ x4 ⊕ x7)
a4 = (a0 ⊕ a1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8) ∧ (a0 ⊕ a2 ⊕ a3 ⊕ 1 ⊕ x3 ⊕ x4 ⊕ x7)
a5 = (a2) ∧ (a3)
f = a0 ⊕ a4 ⊕ a5 ⊕ 1 ⊕ x1 ⊕ x2 ⊕ x8
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3. Twin method

MC-optimal circuit for E 8
4 (just for a glimpse)

∧ A0

x2 + x8 + 1 x1 + x2 + 1

∧ A1

x4 + x7 + 1 x3 + x4 + 1

∧ A3

x1 + x2 + x3 + x4 + x7 + x8 + 1

x1 + x2 + x5 + x8 + 1

∧ A2

∧ A4

∧ A5

E8
4

x1 + x2 + x3 + x4 + x7 + x8 + 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1

x1 + x2 + x3 + x4 + x7 + x8 + 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1
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3. Twin method

MC-optimal circuit for Σ8
4 (just for a glimpse)

y1 + x1 + x2 + x8 + 1

∧ A0
∧A1

x1 + x2 + x3 + x4 + x5 + x7 + x8

x1 + x2 + x3 + x4 + x6 + x7 + x8

x1 + x2 + x8 x3 + x4 + x7

∧A2

y1 + y2 + x1 + x2 + x3 + x4 + x7 + x8

∧A3

y1 + x3 + x4 + x7 + 1

fs

∧ y1

x2 + x8 + 1 x1 + x2 + 1

∧ y2

x4 + x7 + 1 x3 + x4 + 1
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3. Twin method

MC of Symmetric Functions with n ≤ 10
Prior lemma ([BP08]): c∧(f ∈ S7) ≤ 8

Using the twin technique and the ability to find MC for f ∈ Bn≤6, we get:
n ∈ {7, 8, 9, 10} ⇒ c∧(f ∈ Sn) ≤ n − 1

# Symmetric Boolean Functions
n\k 0 1 2 3 4 5 6 7 8 9 Total ∗
1 4 4
2 4 4 8
3 4 4 8 16
4 4 12 16 32
5 4 4 24 32 64
6 4 12 48 64 128
7 4 4 16 104 128 256 Twin

conj.
(TC)

8 4 12 16 224 256 512
9 4 4 8 48 448 512 1024
10 4 12 0 96 712 1224 2048

Legend: n (# input vars); k (# AND gates); TC (twin conjecture)

∗: if TC holds, all results are exact; otherwise some MCs might be smaller by 1.

Note: all cells are multiple of 4, since MC is independent of sum by Σn
0 and Σn

1
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4. Final remarks

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks
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4. Final remarks

Summary and further research

Summary
I Studied the MC of symmetric functions
I Devised the twin method for reducing # variables
I Answered two open questions: c∧(Σ8

4) = 6; c∧(E 8
4 ) = 6

I Gave upper bounds (conjectured tight) for up to n = 10 variables
I (Not shown here) new non-tight upper-bounds for higher n

Further research
I Prove (or disprove?) the twin conjecture
I How to enable tight characterizations for higher n?

Thank you for your attention!
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4. Final remarks
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