
On the Multiplicative Complexity of 6-variable

Boolean Functions

Çağdaş Çalık, Meltem Sönmez Turan, René Peralta

National Institute of Standards and Technology, Gaithersburg, MD, USA

July 5, 2017 BFA 2017 Os, Norway

What is Multiplicative Complexity?

Multiplicative complexity is a complexity measure that is defined as the

minimum number of AND gates required to implement a function f by a

circuit over the basis (AND, XOR, NOT).

1

Why do we count the AND gates?

• Lightweight Cryptography: Efficient implementations needed for

resource-constrained devices (e.g. RFID tags). The technique of

minimizing the number of AND gates, and then optimizing the linear

components leads to the implementations with low gate complexity.

• Secure multi-party computation: Reducing the number of AND

gates improves the efficiency of secure multi-party protocols (e.g.

conducting online auctions in a way that the winning bid can be

determined without opening the losing bids).

• Side channel attacks: Minimizing the number of AND gates is

necessary when implementing a masking scheme to prevent

side-channel attacks.

• Cryptanalysis of cryptographic primitives: Primitives with low

multiplicative complexity may be susceptible to algebraic

cryptanalysis.

2

Some Properties of Multiplicative Complexity

• Multiplicative complexity of a function with degree d is at least

d − 1.

• Multiplicative complexity is invariant w.r.t affine transformation.

• f and g are affine equivalent, if there exists an affine transformation

of the form f (x) = g(Ax + a) + b · x + c, where A is a non-singular

n × n matrix over F2; x , a are column vectors over F2; b is a row

vector over F2.

• If f and g are affine equivalent, they are said to be in the same

equivalence class and they have the same multiplicative complexity.

• Multiplicative complexity of a randomly selected n-bit Boolean

function is at least 2n/2 −O(n). No specific n-bit Boolean function

has been proven to have multiplicative complexity larger than n − 1

for any n.

3

4- and 5-bit Boolean Functions (Turan and Peralta, 2014)

Turan and Peralta (2014) showed that multiplicative complexity is

• ≤ 3 for f ∈ B4 (8 equivalence classes),

• ≤ 4 for f ∈ B5 (48 equivalence classes).

Method

1. Find a simple representative from each

equivalence class.

2. Find a circuit with small number of AND

gates.

3. Check if it is optimal using the degree

bound.

Equivalence classes for n = 4

Class Representative

1 x1

2 x1x2

3 x1x2 + x3x4

4 x1x2x3

5 x1x2x3 + x1x4

6 x1x2x3x4

7 x1x2x3x4 + x1x2

8 x1x2x3x4 + x1x2 + x3x4

4

6-bit Boolean Functions

The approach of Turan & Peralta does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Our approach

Exhaustively construct all Boolean circuits with 1,2, 3, . . . AND gates,

and mark the Boolean functions that can be generated by the circuits

until all 6-bit Boolean functions are generated.

5

6-bit Boolean Functions

The approach of Turan & Peralta does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Our approach

Exhaustively construct all Boolean circuits with 1,2, 3, . . . AND gates,

and mark the Boolean functions that can be generated by the circuits

until all 6-bit Boolean functions are generated a function from each

equivalence class is generated.

5

6-bit Boolean Functions

The approach of Turan & Peralta does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Our approach

Exhaustively construct all Boolean circuits topologies with 1,2, 3, . . .

AND gates, and mark the Boolean functions that can be generated by

the circuits until a function from each equivalence class is generated.

5

Boolean circuit and Topology of a circuit (Codish et al, 2015)

Definition (Boolean circuit)

For a given n ∈ N, let Xn = {x1, x2, . . . , xn} denote the n inputs to a

circuit. A Boolean circuit C with n inputs and k AND gates is a pair

C = (A,O), where:

• A = {a1, . . . , ak} is a list of k AND gates, where the i-th AND gate

inputs Li and Ri with Li ,Ri ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Li−1.Ri−1〉.
• O ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Lk .Rk〉 is the output gate.

Definition (Topology)

A topology of a circuit C = (A,O) is the set of AND gates A, except

that L ∪ R ⊂ A for all 〈L,R〉 ∈ A. Given an AND-XOR circuit

C = 〈A,O〉, the topology of C is 〈〈L ∩ A,R ∩ A〉 | 〈L,R〉 ∈ A〉.

6

Boolean circuit and Topology of a circuit (Codish et al, 2015)

Definition (Boolean circuit)

For a given n ∈ N, let Xn = {x1, x2, . . . , xn} denote the n inputs to a

circuit. A Boolean circuit C with n inputs and k AND gates is a pair

C = (A,O), where:

• A = {a1, . . . , ak} is a list of k AND gates, where the i-th AND gate

inputs Li and Ri with Li ,Ri ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Li−1.Ri−1〉.
• O ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Lk .Rk〉 is the output gate.

Definition (Topology)

A topology of a circuit C = (A,O) is the set of AND gates A, except

that L ∪ R ⊂ A for all 〈L,R〉 ∈ A. Given an AND-XOR circuit

C = 〈A,O〉, the topology of C is 〈〈L ∩ A,R ∩ A〉 | 〈L,R〉 ∈ A〉.

6

Example: Boolean Circuit and Topology

Let f = x1x2x3 + x1x2 + x1x4 + x2x3 + x4.

The circuit C = 〈A,O〉 is

represented as A = 〈a1, a2〉
a1 = 〈{x2}, {x3}〉
a2 = 〈{a1, x2, x4}, {x1}〉
O = 〈{x4}, {a1, a2}〉 ∧

∧

x2 x3

x2 + x4

x1

x4

The topology of C is represented as

A = 〈a1, a2〉
a1 = 〈∅, ∅〉
a2 = 〈{a1}, ∅〉
O = 〈∅, {a1, a2}〉

∧
∧

7

Constructing Circuit Topologies

Let Tk be the set of all topologies with k AND gates. We use an

iterative method to construct Tk+1 as follows:

1. Let S be an empty set.

2. For each topology t ∈ Tk ,
2.1 For all choices of (Lk+1,Rk+1) (Lk+1 and Rk+1 can take on all 2k

possible combinations of previous k AND gates),

2.1.1 Let t′ be a new topology constructed by adding a new AND gate

ak+1 with inputs (Lk+1,Rk+1) to t.

2.1.2 S = S ∪ t′

3. We eliminate redundant topologies (due to symmetry). Tk+1 = S .

Number of topologies for k up to 6

k 1 2 3 4 5 6

|Tk | 1 2 8 84 3 170 475 248

8

Constructing Circuit Topologies

Let Tk be the set of all topologies with k AND gates. We use an

iterative method to construct Tk+1 as follows:

1. Let S be an empty set.

2. For each topology t ∈ Tk ,
2.1 For all choices of (Lk+1,Rk+1) (Lk+1 and Rk+1 can take on all 2k

possible combinations of previous k AND gates),

2.1.1 Let t′ be a new topology constructed by adding a new AND gate

ak+1 with inputs (Lk+1,Rk+1) to t.

2.1.2 S = S ∪ t′

3. We eliminate redundant topologies (due to symmetry). Tk+1 = S .

Number of topologies for k up to 6

k 1 2 3 4 5 6

|Tk | 1 2 8 84 3 170 475 248

8

Constructing Circuit Topologies

Topologies with 1 AND gate

∧

Topologies with 2 AND gates

∧ ∧ and
∧

∧

Topologies with 3 AND gates

∧ ∧ ∧
∧ ∧

∧

∧ ∧

∧
∧ ∧

∧

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧

9

Constructing Circuit Topologies

Topologies with 1 AND gate

∧

Topologies with 2 AND gates

∧ ∧ and
∧

∧

Topologies with 3 AND gates

∧ ∧ ∧
∧ ∧

∧

∧ ∧

∧
∧ ∧

∧

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧

9

Constructing Circuit Topologies

Topologies with 1 AND gate

∧

Topologies with 2 AND gates

∧ ∧ and
∧

∧

Topologies with 3 AND gates

∧ ∧ ∧
∧ ∧

∧

∧ ∧

∧
∧ ∧

∧

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧

9

Evaluating Topologies to Generate Boolean Functions

• A topology with k AND gates can be supplied

2k linear function inputs X = (L1, . . . , L2k).

Trying all inputs becomes quickly infeasible

since there are 22kn choices (260 inputs for

n = 6, k = 5).

• Any affine transformation of the inputs

A(X) = (A(L1), . . . ,A(L2k)) will produce a

function from the same equivalence class.

Hence, the inputs that are affine

transformations of each other need not be

considered.

• The number of inputs corresponds to the

Gaussian binomial coefficient
(
2k
n

)
2

(≈ 226

inputs for n = 6, k = 5).

∧ ∧
∧

∧ ∧

∧

L1 L2

L4 L5

L3 L6

10

Computation Summary

• Generated all topologies ≤ 6 AND gates.

• For each topology having k = 1, 2, 3, 4, 5 AND gates, all equivalence

classes each topology can produce is found.

• 149 426 equivalence classes out of 150 357 generated with at most 5

AND gates.

• Remaining 931 equivalence classes were generated from a selection

of 6 AND gate topologies.

• Computations were done on a cluster (Intel Xeon E5-2630 processor,

64GB RAM) and took 38 422 core hours.

11

Multiplicative Complexity Distribution for n = 6

Multiplicative complexity distribution of the equivalence classes and

functions for n = 6

MC #classes #functions log2(#functions)

0 1 128 7.00

1 1 83 328 16.34

2 3 73 757 184 26.13

3 24 281 721 079 808 38.03

4 914 7 944 756 861 878 272 52.81

5 148 483 18 344 082 080 963 133 440 63.99

6 931 94 716 954 089 619 456 56.39

12

Conclusion

• Multiplicative complexity distribution of 6-bit Boolean functions is

found.

• Showed that the multiplicative complexity is ≤ 6 for f ∈ B6.

• Showed that there exists f ∈ B6 with multiplicative complexity 6,

e.g.,

• A function with 6 monomials:

x1x5 + x3x6 + x3x4x5 + x2x4 + x1x2x6 + x1x2x3x4x5x6

• A function with algebraic degree 4: x4x5 + x3x4x5 + x2x5 + x2x4 +

x2x4x6 + x1x5x6 + x1x4 + x1x3 + x1x2x4x5 + x1x2x3x6

13

References

1. Sönmez Turan M., Peralta R., ”The multiplicative complexity of

Boolean functions on four and five variables”, International

Workshop on Lightweight Cryptography for Security and Privacy,

2014

2. M. Codish, L. Cruz-Filipe, M. Frank, P. Scheneider-Kamp, ”When

Six Gates are Not Enough”, https://arxiv.org/pdf/1508.05737.pdf,

2015

3. Fuller, J.E. ”Analysis of affine equivalent boolean functions for

cryptography” Ph.D. thesis, Queensland University of Technology,

2003

Thanks!

14

