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What is Multiplicative Complexity?

Multiplicative complexity is a complexity measure that is defined as the

minimum number of AND gates required to implement a function f by a

circuit over the basis (AND, XOR, NOT).
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Why do we count the AND gates?

• Lightweight Cryptography: Efficient implementations needed for

resource-constrained devices (e.g. RFID tags). The technique of

minimizing the number of AND gates, and then optimizing the linear

components leads to the implementations with low gate complexity.

• Secure multi-party computation: Reducing the number of AND

gates improves the efficiency of secure multi-party protocols (e.g.

conducting online auctions in a way that the winning bid can be

determined without opening the losing bids).

• Side channel attacks: Minimizing the number of AND gates is

necessary when implementing a masking scheme to prevent

side-channel attacks.

• Cryptanalysis of cryptographic primitives: Primitives with low

multiplicative complexity may be susceptible to algebraic

cryptanalysis.
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Some Properties of Multiplicative Complexity

• Multiplicative complexity of a function with degree d is at least

d − 1.

• Multiplicative complexity is invariant w.r.t affine transformation.

• f and g are affine equivalent, if there exists an affine transformation

of the form f (x) = g(Ax + a) + b · x + c, where A is a non-singular

n × n matrix over F2; x , a are column vectors over F2; b is a row

vector over F2.

• If f and g are affine equivalent, they are said to be in the same

equivalence class and they have the same multiplicative complexity.

• Multiplicative complexity of a randomly selected n-bit Boolean

function is at least 2n/2 −O(n). No specific n-bit Boolean function

has been proven to have multiplicative complexity larger than n − 1

for any n.
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4- and 5-bit Boolean Functions (Turan and Peralta, 2014)

Turan and Peralta (2014) showed that multiplicative complexity is

• ≤ 3 for f ∈ B4 (8 equivalence classes),

• ≤ 4 for f ∈ B5 (48 equivalence classes).

Method

1. Find a simple representative from each

equivalence class.

2. Find a circuit with small number of AND

gates.

3. Check if it is optimal using the degree

bound.

Equivalence classes for n = 4

Class Representative

1 x1

2 x1x2

3 x1x2 + x3x4

4 x1x2x3

5 x1x2x3 + x1x4

6 x1x2x3x4

7 x1x2x3x4 + x1x2

8 x1x2x3x4 + x1x2 + x3x4
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6-bit Boolean Functions

The approach of Turan & Peralta does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Our approach

Exhaustively construct all Boolean circuits with 1,2, 3, . . . AND gates,

and mark the Boolean functions that can be generated by the circuits

until all 6-bit Boolean functions are generated.
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Boolean circuit and Topology of a circuit (Codish et al, 2015)

Definition (Boolean circuit)

For a given n ∈ N, let Xn = {x1, x2, . . . , xn} denote the n inputs to a

circuit. A Boolean circuit C with n inputs and k AND gates is a pair

C = (A,O), where:

• A = {a1, . . . , ak} is a list of k AND gates, where the i-th AND gate

inputs Li and Ri with Li ,Ri ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Li−1.Ri−1〉.
• O ∈ 〈1, x1, . . . , xn, L1.R1, . . . , Lk .Rk〉 is the output gate.

Definition (Topology)

A topology of a circuit C = (A,O) is the set of AND gates A, except

that L ∪ R ⊂ A for all 〈L,R〉 ∈ A. Given an AND-XOR circuit

C = 〈A,O〉, the topology of C is 〈〈L ∩ A,R ∩ A〉 | 〈L,R〉 ∈ A〉.
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Example: Boolean Circuit and Topology

Let f = x1x2x3 + x1x2 + x1x4 + x2x3 + x4.

The circuit C = 〈A,O〉 is

represented as A = 〈a1, a2〉
a1 = 〈{x2}, {x3}〉
a2 = 〈{a1, x2, x4}, {x1}〉
O = 〈{x4}, {a1, a2}〉 ∧

∧

x2 x3

x2 + x4

x1

x4

The topology of C is represented as

A = 〈a1, a2〉
a1 = 〈∅, ∅〉
a2 = 〈{a1}, ∅〉
O = 〈∅, {a1, a2}〉

∧
∧
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Constructing Circuit Topologies

Let Tk be the set of all topologies with k AND gates. We use an

iterative method to construct Tk+1 as follows:

1. Let S be an empty set.

2. For each topology t ∈ Tk ,
2.1 For all choices of (Lk+1,Rk+1) (Lk+1 and Rk+1 can take on all 2k

possible combinations of previous k AND gates),

2.1.1 Let t′ be a new topology constructed by adding a new AND gate

ak+1 with inputs (Lk+1,Rk+1) to t.

2.1.2 S = S ∪ t′

3. We eliminate redundant topologies (due to symmetry). Tk+1 = S .

Number of topologies for k up to 6

k 1 2 3 4 5 6

|Tk | 1 2 8 84 3 170 475 248
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Constructing Circuit Topologies

Topologies with 1 AND gate

∧

Topologies with 2 AND gates

∧ ∧ and
∧

∧
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∧ ∧

∧

∧ ∧
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∧
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∧
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∧
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Evaluating Topologies to Generate Boolean Functions

• A topology with k AND gates can be supplied

2k linear function inputs X = (L1, . . . , L2k).

Trying all inputs becomes quickly infeasible

since there are 22kn choices (260 inputs for

n = 6, k = 5).

• Any affine transformation of the inputs

A(X ) = (A(L1), . . . ,A(L2k)) will produce a

function from the same equivalence class.

Hence, the inputs that are affine

transformations of each other need not be

considered.

• The number of inputs corresponds to the

Gaussian binomial coefficient
(
2k
n

)
2

(≈ 226

inputs for n = 6, k = 5).

∧ ∧
∧

∧ ∧

∧

L1 L2

L4 L5

L3 L6
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Computation Summary

• Generated all topologies ≤ 6 AND gates.

• For each topology having k = 1, 2, 3, 4, 5 AND gates, all equivalence

classes each topology can produce is found.

• 149 426 equivalence classes out of 150 357 generated with at most 5

AND gates.

• Remaining 931 equivalence classes were generated from a selection

of 6 AND gate topologies.

• Computations were done on a cluster (Intel Xeon E5-2630 processor,

64GB RAM) and took 38 422 core hours.
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Multiplicative Complexity Distribution for n = 6

Multiplicative complexity distribution of the equivalence classes and

functions for n = 6

MC #classes #functions log2(#functions)

0 1 128 7.00

1 1 83 328 16.34

2 3 73 757 184 26.13

3 24 281 721 079 808 38.03

4 914 7 944 756 861 878 272 52.81

5 148 483 18 344 082 080 963 133 440 63.99

6 931 94 716 954 089 619 456 56.39
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Conclusion

• Multiplicative complexity distribution of 6-bit Boolean functions is

found.

• Showed that the multiplicative complexity is ≤ 6 for f ∈ B6.

• Showed that there exists f ∈ B6 with multiplicative complexity 6,

e.g.,

• A function with 6 monomials:

x1x5 + x3x6 + x3x4x5 + x2x4 + x1x2x6 + x1x2x3x4x5x6

• A function with algebraic degree 4: x4x5 + x3x4x5 + x2x5 + x2x4 +

x2x4x6 + x1x5x6 + x1x4 + x1x3 + x1x2x4x5 + x1x2x3x6
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