
In-situ Proof-of-Transit for
Path-Aware Programmable Networks

Everson Scherrer Borges∗†, Vitor Berger Bonella∗, Abraão Jesus dos Santos∗, Gabriel Tetzner Menegueti∗,
Cristina Klippel Dominicini†, Magnos Martinello∗

∗Department of Informatics, Federal University of Espírito Santo, Brazil.
Emails: {vitor.bonella, abraao.santos, gabriel.menegueti}@edu.ufes.br, magnos.martinello@ufes.br

†Department of Informatics, Federal Institute of Espírito Santo, Brazil
Email: {everson, cristina.dominicini}@ifes.edu.br

Abstract—This paper presents a scalable and efficient solution
for secure network design that involves the selection and verifi-
cation of network paths. The proposed approach addresses the
challenge of extending compliance policies to cover path-aware
programmable networks by decoupling the routing/forwarding
mechanisms from the Proof-of-Transit (PoT) implementation.
Thus, two concepts are bounded: i) a source routing mechanism
based on a fixed routeID representing a unique identifier per
path, which serves as a key for the PoT lookup table; ii) the
"in situ" that allows to collect telemetry information in the
packet while the packet traverses a path. The former enables
path selection with policy at the edge, while the later allows
to perform path verification without extra probe-traffic. A P4
programmable language prototype demonstrates the effectiveness
of this approach to protect against deviation attacks with low
overhead. The results show a significant reduction in network’s
forwarding state for fat-tree topologies depending on the work-
load per path (flows/path).

Index Terms—Path-Aware; Path Verification; Proof-of-transit;
IOAM; In-networking Programming

I. INTRODUCTION

In the current Internet architecture, routers determine how
a packet should be forwarded based on its destination. The
forwarding decision relies on each router’s local routing table.
Each entry in the routing table associates a reachable des-
tination with the next-hop on the path. Unfortunately, in this
architecture, there is almost no means for path verification [1],
and an application can only assume that a packet will even-
tually reach the destination without selecting a specific path
[2], opening up numerous attack possibilities. For example, an
adversary may deviate the traffic violating the security policy.

Internet Service Providers (ISPs) play a critical role in
ensuring reliable data delivery. To maintain the highest level of
service, ISPs must meet a Service Level Agreement (SLA). In
today’s rapidly evolving technological landscape, the demand
for Network Function Virtualization (NFV [3]) and modern
service chaining is increasing [4]. These new technologies
require compliance with specific policies or regulations that
specify the path that data must take through the network,
including the specific nodes it must pass through. Additionally,
ISPs must be able to prove that packets have passed through
a set of service functions to ensure the delivery of accurate
and secure data [5]. In short, ISPs must meet the SLA for

data delivery in their network and comply with regulations to
maintain the trust of their customers and remain competitive.

To meet these requirements, modern routing must have
two properties: path-awareness [2] and path-verifiability
[1]. Path-awareness allows endpoints to choose network paths
by exposing path information at the network or transport
layers. Path-verifiability provides Proof-of-Transit mechanisms
to securely confirm that all packets within a given path passed
through the intended nodes.

In this paper, we examine two concepts: (i) Strict Source
Routing (SSR), where a source node adds a route label
in the packet header to specify all the nodes in an end-to-
end path [6]; and (ii) In situ Operations, Administration,
and Maintenance (IOAM), which collects operational and
telemetry information in the packet while the packet traverses
a path [7]. The former enables path selection and reduces
the control signaling and latency related to path setup [6],
while the later allows to perform path verification without extra
probe-traffic [5]. Our proposal, called PoT-PolKA, is a novel
lightweight and scalable in-situ PoT approach for path-aware
programmable networks that combines the SSR provided by
Polynomial Key-based Architecture (PolKA) [6] with a new
version of the PoT mechanism introduced by a IETF RFC
draft [5] based on the Shamir’s secret sharing scheme [8].

The design relies on the semantic of PolKA routing that
specifies a routeID which is decoded at each node by a
polynomial modulo operation for packet forwarding. This
routeID expresses the entire path for the packet, i.e., not its
destination address, but how to traverse each node until it
reaches the destination. The second part is devoted to path-
verifiability for which a shared secret is distributed by the
controller to the nodes in the path through a secure channel.
At the ingress edge, metadata is added to in-situ header, and
a cumulative number is updated at each hop. At the egress
edge, the verifier node checks if the cumulative number in the
packet header matches its secret.

In comparison to the IETF RFC Draft [5], this work
offers a combined SSR and packet-path binding approach
with PolKA and introduces Mersenne numbers for a feasi-
ble implementation in programmable switches. The unique
routeID, unchanged throughout the path, allows aggregation
of flows avoiding to store per-flow state on routers. This

2023 IEEE 9th International Conference on Network Softwarization (NetSoft)

170

20
23

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
9-

8-
35

03
-9

98
0-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
73

36
.2

02
3.

10
17

54
82

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

routeID serves as a key for PoT table lookup to support the
path verification. Our implementation uses Mersenne numbers
for efficient computation of modulo operations required by
the Shamir mechanism. To the best of our knowledge, this
is the first open-source implementation of PoT with Shamir
mechanism using P4.

As proof-of-concept, a prototype is built for PoT-PolKA
network (edge and core nodes) developed in P4 programmable
language. For validation, PoT-PolKA scalability analysis is
presented for different workloads. For performance bench-
marks, experimental results are carried out in Mininet em-
ulated environment, showing PoT-PolKA low overhead to
provide protection against traffic deviation attacks.

II. PROBLEM DEFINITION AND RELATED WORKS

In this paper, we want to answer the following research
question: How to prove that a traffic flow follows the cor-
rect path for path-aware programmable networks? To answer
this question, we investigate the feasibility of a lightweight
and scalable in-situ Proof-of-Transit approach for path-aware
programmable networks.

A. Definitions and Scope

Proof-of-Transit (PoT) is a security mechanism for verifying
the path through which a packet was forwarded [5]. PoT is also
known as path verification [1], which enables the destination
to securely retrieve paths taken by packets. In contrast to
conventional traceroute solutions, PoT uses cryptography to
secure the metadata used to retrieve packet trajectories. PoT
brings more transparency of the underlying packet delivery
and, consequently, empowers operators/users to enforce their
preferred paths.

For the path-aware properties of the network, we provide a
SSR mechanism that allows the source to select the specific
path that the packet will traverse. The term "in-situ" means
that the Operations, Administration, and Maintenance (OAM)
information is collected within the packet while the packet
traverses a network domain, rather than send extra packets
dedicated to OAM [7]. Path enforcement, path validation and
the discovery of path properties [2] are important security
aspects [1], but they are out of the scope of this paper.

Our assumption for the adversary model is that a network
attacker is able to deviate the traffic violating its security
policy, which leads to forwarding inconsistencies (i.e., path
deviation attacks) as follows [1]:

Skipping: A malicious router redirects the packet and
skips other router(s) on the path, as illustrated in Fig. 1.
For example, it skips 3 and the packet traverses the path
1 → 2 → 4 → 5. Packet forwarding skips one or more
intermediate routers.Thus, some routers on the intended path
do not forward the packet.

Addition: Packet forwarding first detours and then returns
to the expected path. Packet forwarding thus visits one or more
routers that otherwise are not expected. For example, in Fig.
2, the modified path is 1 → 2 → 6 → 3 → 4 → 5.

21 3 4 5

Figure 1: Skipping
21 3 4 5

6

Figure 2: Addition

21 3 4 5

6 7

Figure 3: Partial Detour
21 3 4 5

7 86

Figure 4: Complete Detour

Path detour: Malicious router 𝑅𝑖 causes a packet to deviate
from the intended path, but later the packet returns to the
correct router. Partial detour is illustrated in Fig. 3, where the
forwarding deviates from some but not all of the expected
routers (path 1 → 2 → 6 → 7 → 4 → 5). Complete detour is
shown in Fig. 4, where the forwarding deviates entirely from
the expected sequence (path 1 → 6 → 7 → 8 → 5).

B. Related Works

In this section, we review some ideas of related works on
PoT. Among the main techniques to provide PoT are: nested
encryption, nested hash, and cryptography mechanisms [7].

ICING is a nested encryption technique that uses aggregate
MACs and self-certifying names. It relies on configuring
shared keys for each node pair to compute and verify proofs
with a stack of self-certifying node names and xor operations.
However, it incurs high control plane overhead due to proof-
of-consent requirements from path nodes and has a complex
implementation due to its variable header stack requirement.

Different from ICING, OPT [9] does not include the list
of on-path nodes in the packet header. OPT assumes that all
nodes trust the source 𝑆, and each on-path node 𝑁𝑖 generates
a shared symmetric key 𝑘𝑖 with 𝑆. OPT refers to secrets as
origin and path validation (OPV); it allocates one 𝑂𝑃𝑉𝑖 field
for each 𝑁𝑖 in the packet header with 128 bits each. Although it
imposes less complexity to the control plane compared to [10],
it also requires variable header size (on-path 𝑂𝑃𝑉𝑖). Extended-
OPT [11] is a variant of OPT that suggests to keep the same
complexity when nodes do not trust the source.

Orthogonal sequence verification (OSV) [12] belongs to the
nested hash category. It follows the same design principle as
OPT, but with lighter orthogonal sequences. OSV also relies
on a Path Validation Field (PVF) and an Original Validation
Field (OVF) per on-path node, but achieves faster computation
of those fields. Specifically, the source first generates an 𝑚×𝑚
Hadamard matrix 𝐻 [13], using vectors of 𝐻 as the credentials
for on-path nodes.

Still in the nested hash category, PPV [14] takes a different
approach with probabilistic path validation. Its premise is that
each packet does not need to be marked by all of the routers
it visits (at most two routers along the forwarding path). It is
based on per-flow path validation, so that PPV routers only
mark packets with a certain probability.

171
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

Table I: PoT design comparison
Method Routing Path

Info
Route
Identifier Policy Control Plane

Overhead Data Plane Overhead

Original PoT
RFC draft

Table-Based
Routing None None Per flow Routing tables

PoT configs Path tracing POT metadata

PoT RFC Draft with
Segment Routing

List-based
Source Routing In clear Variable Per flow PoT configs Path tracing PoT metadata routeID

PoT-PolKA PolKA
Source Routing Encoded Constant Per path POT configs POT metadata routeID

As an example of cryptography mechanisms, Shamir’s se-
cret sharing scheme [8] is a well-known method to secure a
secret in a distributed way. In [5], the authors explore it to pro-
vide an in-situ PoT solution in an IETF RFC draft. It splits a
secret into multiple parts and share them with the nodes of the
path. The main idea uses polynomial interpolation over finite
fields that can be divided in two main parts, share distribution
and secret reconstruction (based on Lagrange Interpolation
Formula [15] used to obtain the original polynomial). The
main advantage with respect to the previous works is its
lightweight in-situ fingerprint [7] with a small cumulative
signature and low control plane overhead.

However, this PoT proposal has some drawbacks: (i) it
depends on an integer modulo operation that is not commonly
supported in programmable switches; (ii) if it uses traditional
table-based routing, it still requires large numbers of table
entries which restricts path selection [6]; and (iii) it aggregates
PoT policies per flow, impacting the scalability of the PoT
solution. An alternative is to replace table-based routing by
Segment Routing [16] in order to allow path selection, but,
since it represents the path as a list of nodes and updates
this list on each hop, it depends on the implementation of
variable size headers and does not keep unchangeable the route
identifier.

As detailed in the next section, PoT-PolKA solves the
described problems by proposing a design for in-situ PoT with
Shamir scheme that uses PolKA SSR and a feasible imple-
mentation of the modulo operation with Mersenne numbers.
Table I shows a design comparison, showing that PoT-PolKA
has capabilities that are unique compared to existing works:
i) encoded path information; ii) constant route identifier; iii)
aggregation per path not per flow; and iv) routeID overhead for
the data plane, instead of path tracing or variable size header.

III. POT-POLKA PROPOSAL

This section introduces PoT-PolKA proposal, presenting
a comparative overview with the existing IETF RFC in
section III-A. In subsection III-B, a step-by-step design is
described with its implementation in P4 code.

A. Overview

Fig. 5 (a) presents the overview of IETF RFC Draft
[5] based on the Shamir secret sharing [8] method. We
provide more information about the Shamir mechanism in
Appendix V-A. The system parameters are provisioned by the
controller and header metadata is updated at every hop. At

the egress node, the collected meta-data allows to reconstruc-
tion of the secret for path verification. Thus, PoT metadata
(𝑟𝑛𝑑, 𝑐𝑚𝑙 = 0) is inserted into the packet header at the edge.
In node 𝐴, the PoT table is checked in order to update the PoT
metadata and its respective routing table to forward the packet
to the output link. The packet in transit has its POT metadata
updated with its path tracing (𝐴, 𝑙𝑖𝑛𝑘1). Then in node 𝐵, the
process is repeated until the egress edge node, updating the
PoT metadata (𝑟𝑛𝑑, 𝑐𝑚𝑙 = 44) and stacking its path tracing
(𝐶, 𝑙𝑖𝑛𝑘4). The path verification is performed at the egress
edge that checks whether the collected meta-data matches with
the cumulative PoT metadata (𝑟𝑛𝑑, 𝑐𝑚𝑙 = 55). It is important
to note that each core node stores tables for routing and PoT
parameters.

On the other hand, PoT-PolKA design offers a path-binding
property by using a SSR approach based on PolKA [6], which
explores the Residue Number System (RNS) and Chinese
Remainder Theorem (CRT). PolKA encodes the path in a
routeID Fig. 5 (b) using the RNS in contrast to the conven-
tional table-based, which depends on routing tables, or list-
based representations, which transports the path information
“in clear” inside the packet header. Then, PolKA core nodes
use this encoded route label to discover the output ports,
by performing the forwarding as an arithmetic operation: the
remainder of division of the routeID by its own nodeID.
However, if an attacker is able to mirror a port, then path
deviation attacks can occur. Thus, assuming she/he gets access
to nodeID and portID, despite PolKA first security barrier, this
will not guarantee the forwarding consistency, so that a PoT
is required to protect against packet path deviation.

PoT-PolKA solves problems in traditional PoT solutions
by proposing a design based on Shamir’s secret sharing
scheme and PolKA. It uses programmable P4 switches and
a small packet digest (PoT metadata) to ensure the path-
binding property. The PolKA routeID acts as a key to check
the nodes along the defined path and update the PoT metadata
at each hop. The egress node verifies if the packet traversed all
the specified nodes without the need for storing path tracing
information, as the routeID uniquely identifies the network
path.

Limitations of the approach and additional security analysis
can be seen in [5], with proofs of robustness for inter-node and
inter-packets passive attacks. However, the current solution
does not mitigate replay and pre-replay attacks, requiring a
mitigation mechanism to be included in future versions.

172
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

Update
& Verify

6

2 5

7
4

3Insert PoT
metadata

Edge Edge

Header

Payload

1

Header

Payload

Header

Payload

C 4
rnd cml=44

A 1A

B

C

D

Header

Payload

C 4

rnd cml=30

A 1

B 6

PoT metadata
Path tracing

 Update PoT
metadata

 Update PoT
metadata

Routing
Table

PoT
Table

 Update PoT
metadata

 Update PoT
metadata

 Update PoT
metadata

 Update PoT
metadata

Header

Payload

C 4

rnd cml=55

A 1

B 6

D 7

Header

Payload

rnd cml=0

Header

Payload

rnd cml=44
A 1

(a) PoT proposal by IETF Draft

Update
& Verify

6

2 5

7
4

3
Insert PoT
metadata &

routeID

Edge Edge

Header

Payload

routeID
rnd cml=16

Header

Payload

1

Header

Payload

A

B

C

D

Header

Payload

rnd cml=30
routeID

PoT metadata

 Update PoT
metadata

 Update PoT
metadata

PoT
Table

 Update PoT
metadata

 Update PoT
metadata

 Update PoT
metadata

Header

Payload

routeID
rnd c=44

PolKA routeID

 Update PoT
metadataHeader

Payload

routeID
rnd cml=0 Header

Payload

rnd cml=55
routeID

(b) General Design of PoT-PolKA

Figure 5: Comparison of proposals: IETF Draft [5] and PoT-PolKA

B. Design

Fig. 6 explains the PoT-PolKA step-by-step. The design is
structured in three main steps: the computations at control
plane, configuration of the data plane, and, finally, the path
verification in the egress edge node.

1) Step1 : PoT Computation at the control plane: The PoT-
PolKA algorithm leverages on Shamir’s Secret Sharing scheme
[8]. The principle is to define a single secret, represented by
a polynomial, that is associated with a particular set of 𝑛 + 1
nodes that typically represent the path to be verified. Thus, a
polynomial of degree 𝑛 is selected as a secret at the control
plane. A set of 𝑛+1 points of this polynomial will be assigned
to 𝑛 + 1 nodes. Each of these 𝑛 + 1 points is called a "share"
of the secret.

For the edge nodes, a private polynomial (𝑃𝑜𝑙𝑦1) is selected
(see fig. 6), and its zero degree coefficient gives the secret (e.g.
𝑆𝑒𝑐𝑟𝑒𝑡 = 10). When a path is selected to be verified, for each
pair of edge nodes, (𝑥, 𝑃𝑜𝑙𝑦1 (𝑥) 𝑚𝑜𝑑 𝑀) must be computed.
For example, see the green box (𝑃1 = 16, 𝑀 = 31, 𝐵 = 5, 𝑆 =

10).
The novelty in comparison to the IETF RFC Draft [5]

is the introduction of (Mersenne) numbers for a feasible
implementation in programmable switches. Since the modulo
operation is not natively supported in P4 language, we propose
to use Mersenne numbers (𝑀 = (2𝐵) − 1,(𝐵 = 5, 𝑀 = 31))
to efficiently compute the modulo operation. Thus, a mod-

ulo with a Mersenne number can be calculated by a 𝑠ℎ𝑖 𝑓 𝑡

and an 𝑎𝑛𝑑 operator (&). Suppose a 𝐾 𝑚𝑜𝑑 𝑃 operation,
this computation can be done with elementary operations
whether 𝑃 is a mersenne number and K is smaller than
(1 << (2 ∗ 𝐵)) − 1, where 𝐵 is the power of two of the
mersenne number ((2𝐵) − 1). The algorithm written in P4 is
shown in Code 1.

For the core nodes, a public polynomial (𝑃𝑜𝑙𝑦2), as there
are 𝑛 + 1 nodes in the path, the polynomials (𝑃𝑜𝑙𝑦1,(𝑃𝑜𝑙𝑦2))
should be of degree 𝑛, is chosen and the verifier egress node
can reconstruct the 𝑛 degree polynomial (𝑃𝑜𝑙𝑦3) only when
all the points are correctly retrieved. The shares of the secret
are the points on (𝑃𝑜𝑙𝑦1) chosen for a path length of 4 nodes.
For example, let 𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 5, 𝑥3 = 7. 𝑃𝑜𝑙𝑦1(1) = 16

= (𝑥0, 𝑦0) = (1, 16)

𝑃𝑜𝑙𝑦1(3) = 15 = (𝑥1, 𝑦1) = (3, 15)

𝑃𝑜𝑙𝑦1(5) = 7 = (𝑥2, 𝑦2) = (5, 7)

𝑃𝑜𝑙𝑦1(7) = 23 = (𝑥3, 𝑦3) = (7, 23)

Lagrange polynomial interpolation is used for secret re-
construction to a given set of points on the curve [5]. The
Lagrange Polynomial Constants (𝐿𝑃𝐶′𝑠) [15] are computed
by the Controller and communicated to the nodes. Since the
points are 𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 5, 𝑥3 = 7 in the example,
(𝐿𝑃𝐶′𝑠) can be computed as follows:

173
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

Controller

Step 1: Computation of control plane parameters

Edge
Core Node 1 Core Node 2

Edge

Step 2: Data plane configuration & Step 3: Path verification

Core Node 3

P1 M B S
16 31 5 10

Core Node 4

Mersenne Mersenne_Base Secret Poly_1 Poly_2

31 5 10 Secret + 3x + 3x^2 (Random + x^3 + x^2 + x)

LPC (Core-Node) mod M X Y
8 1 16

23 3 15
11 5 7
21 7 23

Lagrange and x_y parameters

P1 M B S
16 31 5 10

Rid X Y P2 LPC M B
R1 7 23 10 21 31 5

KEY ACTIONS

RND = 45 | CML = 0

RouteID = R1
RND = 45 | CML = 16

RouteID = R1
RND = 45 | CML = 30

RouteID = R1
RND = 45 | CML = 13

RouteID = R1
RND = 45 | CML = 24

RouteID = R1
RND = 45 | CML = 24

RouteID = R1

Rid X Y P2 LPC M B
R1 1 16 17 8 31 5

KEY ACTIONS

Rid X Y P2 LPC M B
R1 3 15 22 23 31 5

KEY ACTIONS

Rid X Y P2 LPC M B
R1 5 7 14 11 31 5

KEY ACTIONS

Figure 6: PoT-PolKA design step-by-step

𝐿𝑃𝐶 (𝑥0) = 0−𝑥1
𝑥0−𝑥1

∗ 0−𝑥2
𝑥0−𝑥2

∗ 0−𝑥3
𝑥0−𝑥3

= 105
48 𝑚𝑜𝑑 31 = 8

𝐿𝑃𝐶 (𝑥1) = 0−𝑥0
𝑥1−𝑥0

∗ 0−𝑥2
𝑥1−𝑥2

∗ 0−𝑥3
𝑥1−𝑥3

= 35
16 𝑚𝑜𝑑 31 = 23

𝐿𝑃𝐶 (𝑥2) = 0−𝑥0
𝑥2−𝑥0

∗ 0−𝑥1
𝑥2−𝑥1

∗ 0−𝑥3
𝑥2−𝑥3

= − 21
16 𝑚𝑜𝑑 31 = 11

𝐿𝑃𝐶 (𝑥3) = 0−𝑥0
𝑥3−𝑥0

∗ 0−𝑥1
𝑥3−𝑥1

∗ 0−𝑥2
𝑥3−𝑥2

= 45
48 𝑚𝑜𝑑 31 = 21

2) Step 2 : Data plane configuration:: In this stage, the
parameters are assigned to a PoT table at the nodes. According
to PolKA routing [6], the routeID is the key (e.g., 𝑟𝑜𝑢𝑡𝑒𝐼𝐷 =
R1 = 10979360238159862843) needed to perform the actions
in the table. Also, the nodeIDs are generated and associated to
these nodes in the path (𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(1) = 65579, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(2)
= 65581, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(3) = 65593, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(4) = 65599)1.

It is worth noting that each parameter is kept secret by
individual nodes (i.e. precisely the points on 𝑃𝑜𝑙𝑦1, the share
of 𝑃𝑜𝑙𝑦2, 𝐿𝑃𝐶, 𝑀 , 𝐵). Only the constant coefficient (𝑅𝑁𝐷) of
𝑃𝑜𝑙𝑦2 is public, whereas 𝑥 value and non-constant coefficient
of 𝑃𝑜𝑙𝑦2 are secret.

On the edge (green table), they receive the information
about the secret (𝑆𝑒𝑐𝑟𝑒𝑡) and the fixed polynomial (𝑃𝑜𝑙𝑦1).
The core nodes receive respectively the pair (𝑋,𝑌) and the
𝐿𝑃𝐶 of the node, and the polynomial (𝑃𝑜𝑙𝑦2). There are some
conditions to choose the polynomials: Assuming that 𝐾1 is the
degree of 𝑝𝑜𝑙𝑦1, and 𝐾2 is the degree of 𝑝𝑜𝑙𝑦2 with 𝑁 nodes
in the core, we need 𝐾1 < 𝑁 and 𝐾2 < 𝑁 . Thus, as we use
polynomials of minimum degree equal 2, the number of core
nodes must be at least 3. In Figure 7, 𝑝𝑜𝑙𝑦1 has degree 2 and
𝑝𝑜𝑙𝑦2 has degree 3, so the minimum number of core nodes
must be 4. Finally, the Mersenne 𝑀 with 𝐵 is assigned to all
nodes.

Data plane computation: In operation, each packet carries
its PoT metadata with a random value (𝑅𝑁𝐷), generated by
the edge, and a cumulative of secret (𝐶𝑀𝐿) that is initially
zero. The 𝐶𝑀𝐿 is updated by every core node by computing

1PolKA project with github implementation and examples can be found at:
https://nerds-ufes.github.io/polka/

the current CML with the Equation 1, which is implemented
in the P4 language (as detailed in Code 1):

𝐶𝑀𝐿 = (𝐶𝑀𝐿+ (𝑃𝑜𝑙𝑦1 (𝑋) +𝑃𝑜𝑙𝑦2 (𝑋)) ∗𝐿𝑃𝐶) 𝑚𝑜𝑑 𝑀 (1)

3) Step 3: Path verification: In the verifier node, the
verification is made by comparing if the 𝐶𝑀𝐿 in the packet
header and the 𝑉𝐸𝑅𝐼𝐹𝑌 value are equal (Equation 2):

𝑉𝐸𝑅𝐼𝐹𝑌 = (𝑆 + 𝑅𝑁𝐷) 𝑚𝑜𝑑 𝑀 (2)

action calc_cml(){
meta.new_cml = (meta.y + meta.poly2) * meta.lpc;
meta.new_cml = (meta.new_cml & meta.mersenne) +

(meta.new_cml >> meta.mersenne_b);
if (meta.new_cml > meta.mersenne){

meta.new_cml = meta.new_cml - meta.mersenne;
}
meta.new_cml = hdr.potPolka.cml + meta.new_cml;

}
apply { // PoT-PolKA pipeline

if (hdr.potPolka.isValid()){
// Calculate egress port using PolKA SR
srcRoute_nhop();
// Table lookup to initialize PoT parameters
pot_param.apply();
// Calculate and update CML
calc_cml();
hdr.potPolka.cml = meta.new_cml;
// Set egress port
standard_metadata.egress_spec = meta.port;

}else{drop();}
}

Code 1: PoT-PolKA Data Plane Computation in P4 Code

As can be seen in Fig. 6, the 𝑅𝑁𝐷 remains fixed during
the path, but the 𝐶𝑀𝐿 is computed hop by hop. So, in the
egress edge, the PoT applies the equation 2. Given that the
𝑉𝐸𝑅𝐼𝐹𝑌 = 24 computed in the edge is equal to 𝐶𝑀𝐿 = 24
in the packet header, the path verification is confirmed.

174
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

2 4 6 8 10
Flows per Path

0

500

1000

1500

2000

2500
To

ta
l S

ta
te

s (
Th

ou
sa

nd
s) PoT IETF K 6

PoT IETF K 8
PoT IETF K 10
PoT PolKA K 6
PoT PolKA K 8
PoT PolKA K 10

Figure 7: Number of states for Fat-Tree topologies.

IV. EVALUATION

The evaluation methodology has two components. The first
assesses scalability by comparing the network state reduction
achieved by PoT-PolKA to the IETF RFC draft [5] for different
fat-tree topology sizes and workloads (flows per path). The
second involves conducting experiments on the Mininet emu-
lation platform to measure the added latency of PoT-PolKA in
comparison to PolKA, as the number of hops along the path
varies. The deviation of traffic in the third scenario violates
the security policy and undermines the reliable delivery of data
within the network.

A. Scalability analysis

For evaluation purposes, we assume that each rule (i.e.
network state) is a flow entry for exact matching at the
PoT table. So, for the IETF RFC draft, we have 𝑁 =
𝑓 𝑙𝑜𝑤𝑠_𝑝𝑒𝑟_𝑝𝑎𝑡ℎ ∗𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑎𝑡ℎ𝑠 ∗ 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ∗2. For
PoT-PolKA, as it aggregates multiple flows that cross a path
avoiding to store per-flow state on routers, then the number of
network states is 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑎𝑡ℎ𝑠 ∗ 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ∗ 2.

Fig. 7 presents a network state requirements comparison
between PoT-PolKA and the PoT proposal of the IETF RFC
draft. We use fat-tree topologies for different 𝐾 = 6, 8, 10
under a variable workload (flows per path) from 1 to 10. The
pod path lengths were calculated for all combinations of nodes,
either for intra or inter pod. As can be seen, the heavier is
the workload per path, the greater is the reduction achieved
by PolKA on the total number of states. For example, for a
fat-tree with 𝐾 = 10 and a workload of 6 flows per path, the
reduction achieves 83,3% and 90% for 10 flows per path.

B. Experiments and Proof-of-Concept

To evaluate the main functionalities of PoT-PolKA, we de-
veloped a prototype in the software switch bmv2 simple_switch
with the v1model architecture as the target. The scenario of
Fig. 8 shows a linear fabric topology with edge and core nodes
emulated in Mininet. The main objective is to compare the
overhead of our PoT-PolKA proposal with the pure PolKA
source routing approach (with no PoT mechanism), as the
number of hops increases in the core network (e.g., from 3
hops for path H1 → H3 to 9 for path H1 → H10). The physical
setup consists of a server Dell PowerEdge T430, with an Intel

Core

Edge

Host

S1 S2 S3

e1

S10

H1

e3

H3

e10

H10

S4

e4

H4

Figure 8: Linear Fabric Topolology

3 4 5 6 7 8 9
Number of core hops

0.0

2.5

5.0

7.5

10.0

12.5

RT
T

(m
s)

PoT-PolKA
PolKA

Figure 9: RTT comparison between PolKA and PoT-PolKA

3 4 5 6 7 8 9
Number of core hops

0

2

4

6

8

10

Th
ro

ug
hp

ut
 1

0M
bp

s

PoT-PolKA
PolKA

Figure 10: Throughput between PolKA and PoT-PolKA

Xeon E5-2620 v3 2.40GHz processor and 64GB of RAM.
We ran experiments within an Ubuntu 18.04.6 LTS. To build
our emulated environment, we used Mininet 2.6 with a P4
compiler and bmv2 1.15.0.

As shown in Fig. 9, the latency grows linearly with the
increase on the number of hops. Comparing the PolKA vs.
PoT-PolKA, we observe a small increase on latency by PoT-
PolKA (around 4% when the path length is longer than 6).
Throughput is essentially the same for both (Fig. 10), although
it is just a comparative value because the link rates were
limited to 10 Mbps, due to bmv2 simple_switch processing
capacity in the emulation.

175
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

C. Protection to path deviation

In Fig. 11, a network attacker is able to deviate the traffic,
violating the security policy. By using the prototype of PoT-
PolKA in the Mininet emulation, two flows are created at 𝑠𝑟𝑐
host: (i) a green line flow crossing 𝑆1 → 𝑆2 → 𝑆3 → 𝑆4
(from T=0s to T=40s); and (ii) a red line flow, deviated from
the intended path by the attacker, going over 𝑆1 → 𝑆5 → 𝑆4
(from T=20s to T=40s).

S1 S2 S4

S5src dst

S3

Attacker

Figure 11: Path deviation attack

0 5 10 15 20 25 30 35 40
Time(s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bp
s)

src
dst
s2

s5

Figure 12: Throughput with PoT-PolKA protection

As shown in Fig. 12, at T=20s, a new flow of 4Mbps is
initialized and the aggregated flows at 𝑠𝑟𝑐 (blue line) increase
from 4Mbps to 7Mbps. However, this new flow was deviated
which leads to the red line at 3Mbps, whereas the orange
line representing the 𝑑𝑠𝑡 host remains at 4Mbps. Since the
egress edge node applied the PoT-PolKA verification, it drops
3Mbps of the aggregated flows, demonstrating the PoT-PolKA
protection against the path deviation attack.

V. CONCLUSION

This paper introduces a novel in-situ PoT design for pro-
grammable networks that leverages PolKA source routing [6]
for strict path selection and a modified version of PoT IETF
RFC draft [5] for path verification. The design integrates
seamlessly with P4 programmable switches, resulting in a
scalable and efficient implementation. The proposed solution
is validated through experiments performed using a software
switch implementation and the Mininet emulation platform,
evaluating metrics such as RTT and throughput.

The proposed design extends the existing IETF RFC drafts,
by conceptually decoupling the routing/forwarding mecha-
nisms and the PoT implementation. This is enabled by a fixed

routeID that represents a unique path in the administrative
domain and is used as a key for the PoT lookup table to support
the path verification. Thus, we can aggregate PoT policies
by path with a reduction on the number of network states,
which can achieve up to 50 percent for fat-tree topologies
with different workloads (flows/path).

We envision as future work to devote efforts to deploy our
approach at P4 Tofino programmable switches [17], to include
path enforcement and validation functionalities, and to extend
[18] for security multipath routing.

APPENDIX I
MATHEMATICAL BACKGROUND

A. Shamir’s Secret Sharing

Shamir’s Secret Sharing Scheme (SSSS) is a well-known
method for securing secrets in a distributed manner. The
basic idea behind SSSS is to divide a secret into multiple
parts, called shares, which are distributed among different
individuals. The secret can only be reconstructed and unlocked
if a sufficient number of shares are combined. SSSS is based
on polynomial interpolation over finite fields, which provides
a secure and efficient method for dividing and reconstructing
the secret.

SSSS has been widely adopted in various fields, including
cryptography, data security, and network security. It is partic-
ularly useful in scenarios where a secret must be protected,
but also needs to be shared among multiple parties.

Shamir’s (𝑡, 𝑛) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Secret Sharing Scheme can
be divided by two main parts, share distribution and secret
reconstruction. First in the share distribution phase, we create
and distribute a limited number(𝑛) of shares. After, in the
secret reconstruction phase, we need at least the threshold
number(𝑡) shares to reconstruct the secret. Besides that, is
necessary to select a prime number(𝑝) to define the finite field
F𝑝 .

In share distribution, the dealer randomly selects 𝑡 coef-
ficients (𝑎𝑖 , ..., 𝑎𝑡−1) with a uniform distribution . Then the
dealer must construct the polynomial which SSSS is based,
the polynomial is constructed based in equation 3, so it must
have a degree 𝑡 − 1. The secret (𝑆) to hide is contained in the
polynomial and must be less than 𝑝 (𝑝 > 𝑆). A mod operation
is needed because the main principle is to use a polynomial
over finite fields.

𝑓 (𝑥) = 𝑆 + 𝑎1𝑥
1 + 𝑎2𝑥

2 + ... + 𝑎𝑡−1𝑎
𝑡−1 𝑚𝑜𝑑 𝑝

𝑓 (𝑥) = 𝑆 +
𝑡−1∑︁
𝑖=1

𝑎𝑖𝑥
𝑖 𝑚𝑜𝑑 𝑝

(3)

Before defining the polynomial, (𝑥, 𝑓 (𝑥) 𝑚𝑜𝑑 𝑝) pairs need
to be generated to distribute over the parts. The x for each part
can be randomly selected (they must be different) or use a
ordered selection based on the number of parts (1, 2, 3, ..., 𝑛).

To reconstruct the secret at least (𝑡) pairs must be used,
with this pairs of points Lagrange Interpolation Formula
[15] are used to obtain the original polynomial. The original

176
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

polynomial has the secret as the zero degree, thus to recover
the secret just calculate the function at zero 𝑓 (0) = 𝑆. The
Lagrange interpolation formula can be defined as in equation
4, where 𝑠𝑖 𝑘 = 𝑓 (𝑥) 𝑚𝑜𝑑 𝑝 of the shares.

𝑓 (𝑥) =
𝑡∑︁

𝑘=1
𝑠𝑖 𝑘

𝑡∏
𝑗=1, 𝑗≠𝑘

𝑥 − 𝑖 𝑗
𝑖𝑘 − 𝑖 𝑗

𝑚𝑜𝑑 𝑝 (4)

B. Cumulative Shamir’s Secret Sharing

As can be seen in section V-A, all the shares must be
together at the same time to be able to reconstruct the secret,
see equation 4. In this section, we discuss how to change 𝑆 to
be the secret step-by-step, i.e., save the information about the
share (x,y).

The two main changes are in the share distribution and in re-
construction. The dealer has to give an additional information
to the shares. The additional information is called 𝐿𝑃𝐶𝑖 , 𝐿𝑃𝐶𝑖

is the lagrange basis polynomial of Lagrange Interpolation
Formula [15] at zero once the secret is 𝑓 (0) = 𝑆 . The dealer
has the information about all the system, this guarantee he can
see all shares to distribute the 𝐿𝑃𝐶𝑖 along with all pairs.

𝐿𝑃𝐶𝑖 =

𝑘∏
𝑚=0,𝑚≠𝑖

0 − 𝑥𝑚
𝑥𝑖 − 𝑥𝑚

𝑚𝑜𝑑 𝑝 (5)

This way the secret (𝑆) can be reconstructed cumulativel.
Equation 6 shows that once 𝑠𝑖 𝑘 and 𝐿𝑃𝐶𝑖 is contained on the
share, and the sum can be done step-by-step.

𝑆 =

𝑡∑︁
𝑘=1

𝑠𝑖 𝑘 ∗ 𝐿𝑃𝐶𝑖 (6)

VI. ACKNOWLEDGMENTS

Financial support from Brazilian agencies: CNPq, CAPES,
FAPESP/MCTI/CGI.br (PORVIR-5G 20/05182-3, and
SAWI 20/05174-0), FAPES (94/2017, 281/2019, 515/2021,
284/2021, 06/2022, 1026/2022, 941/2022). CNPq fellows Dr.
Martinello 306225/2020-4. This work also received funds
from the 2021 Google Research Scholar Award and the 2022
Intel Fast Forward Initiative.

REFERENCES

[1] K. Bu et al., “Unveiling the mystery of internet packet forwarding: A
survey of network path validation,” ACM Comput. Surv., vol. 53, no. 5,
sep 2020.

[2] B. Trammell, “Current open questions in path-aware net-
working,” IRTF, RFC 9217, Mar 2022. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc9217

[3] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[4] P. Quinn, U. Elzur, and C. Pignataro, “Network service
header (NSH),” IETF, RFC 8300, Jan 2018. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8300

[5] F. Brockners et al., “Proof of transit,” IETF, Internet-Draft
draft-ietf-sfcproof-of-transit-08, Oct. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-brockners-proof-of-transit

[6] C. Dominicini et al., “Polka: Polynomial key-based architecture for
source routing in network fabrics,” in 2020 6th IEEE Conference on
Network Softwarization (NetSoft). IEEE, 2020, pp. 326–334.

[7] F. Brockners et al., “In-situ OAM Deployment,” IETF, Internet-Draft
draft-ietf-ippm-ioam-deployment-01, Apr. 2022. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-ippm-ioam-deployment/01/

[8] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p.
612–613, nov 1979.

[9] T. H.-J. Kim et al., “Lightweight source authentication and path valida-
tion,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, p. 271–282.

[10] J. Naous et al., “Verifying and enforcing network paths with icing,” in
Proceedings of the 7th COnference on Emerging Networking EXper-
iments and Technologies, ser. CoNEXT ’11. New York, NY, USA:
ACM, 2011.

[11] F. Zhang et al., “Mechanized network origin and path authenticity
proofs,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, p. 346–357.

[12] H. Cai et al., “Source authentication and path validation in networks
using orthogonal sequences,” in 2016 25th International Conference on
Computer Communication and Networks (ICCCN), 2016, pp. 1–10.

[13] K.-J. Assmus, E.F., “Designs, codes and cryptography,” Springer Open,
1996.

[14] B. Wu et al., “Enabling efficient source and path verification via
probabilistic packet marking,” in 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), 2018, pp. 1–10.

[15] D. Quadling, “Lagrange’s interpolation formula,” The Mathematical
Gazette, vol. 50, no. 374, pp. 372–375, 1966.

[16] C. Filsfils et al., “The segment routing architecture,” in IEEE Global
Communications Conference (GLOBECOM), 2015, pp. 1–6.

[17] C. Dominicini et al., “Deploying polka source routing in p4 switches :
(invited paper),” in 2021 International Conference on Optical Network
Design and Modeling (ONDM), 2021, pp. 1–3.

[18] R. S. Guimarães et al., “M-polka: Multipath polynomial key-based
source routing for reliable communications,” IEEE Transactions on
Network and Service Management, 2022.

177
Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on July 18,2023 at 09:55:52 UTC from IEEE Xplore. Restrictions apply.

